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Abstract: Facial Expression Recognition (FER) is a fundamental component of 

human communication with numerous potential applications. Convolutional neural 

networks, particularly those employing advanced architectures like Densely 

connected Networks (DenseNets), have demonstrated remarkable success in FER. 

Additionally, attention mechanisms have been harnessed to enhance feature 

extraction by focusing on critical image regions. This can induce more efficient 

models for image classification. This study introduces an efficient DenseNet model 

that utilizes a fusion of channel and spatial attention for FER, which capitalizes on 

the respective strengths to enhance feature extraction while also reducing model 

complexity in terms of parameters. The model is evaluated across five popular 

datasets: JAFFE, CK+, OuluCASIA, KDEF, and RAF-DB. The results indicate an 

accuracy of at least 99.94% for four lab-controlled datasets, which surpasses the 

accuracy of all other compared methods. Furthermore, the model demonstrates an 

accuracy of 83.18% with training from scratch on the real-world RAF-DB dataset. 

Keywords: Convolutional neural networks, Dense connected network architectures, 

Channel and spatial attention mechanisms, Facial expression recognition. 

1. Introduction 

Facial Expression Recognition (FER) presents significant challenges in computer 

vision, with applications in various real-life scenarios. It plays a crucial role in 

interpersonal communication by enabling others to understand a person's emotions 

and intentions, making it an essential element in human interaction. Its applications 

are diverse, including human-computer interaction, image captioning, video 

transcription, and social communication.  

Paul Ekman and Wallace Friesen initially identified six fundamental human 

facial expressions, which include Happiness (Ha), Sadness (Sa), Surprise (Su), 

Disgust (Di), Anger (An), and Fear (Fe), as mentioned in [1, 2]. These facial 

expressions are believed to be universally recognized across various nationalities, 

ethnicities, and religions. Additionally, some authors [3, 4] have proposed including 
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Contempt (Co) and Neutral (Ne) as basic facial expressions. These six basic facial 

expressions are illustrated in Fig. 1, sourced from the JAFFE [5] dataset. 

Anger              Disgust               Fear 

 

Happiness           Sadness            Surprise 

 
Fig. 1. Example images of six basic facial expressions from the JAFFE dataset. The highlighted areas 

on these images are generated by the gradient-based localization of the proposed model, which they 

indicate as important for FER 

 

Intuitively, facial expressions are closely tied to the extent of deformation 

observed in facial landmarks and muscles, particularly in critical regions like the 

eyes, nose, and mouth. Consequently, these areas play a pivotal role in addressing the 

FER challenge [6]. For instance, as depicted in Fig. 1, the eye region consistently 

appears in most facial expressions but gains exceptional prominence in expressions 

of anger, fear, surprise, and sadness. Therefore, specific facial movements such as 

raised eyebrows, locked eyebrows, and movements in the corners of the mouth are 

regarded as fundamental components of expression changes. These factors can 

significantly influence the performance and efficiency of FER systems, especially 

those relying on computer vision techniques. Hence, when developing models for 

facial expression recognition, meticulous attention to these distinctive features 

becomes imperative.  

DenseNet, introduced by H u a n g  et al. [4], has gained prominence as a 

breakthrough architecture. Its key innovation lies in the dense connectivity scheme, 

illustrated in Fig. 2, where each layer connects densely to all others within a Dense 

Block (DB). This design promotes feature reuse, optimizes gradient flow, and reduces 

parameters. Consequently, it effectively addresses challenges like the vanishing 

gradient problem, enabling the training of deep networks. DenseNet excels in tasks 

with limited data, forming robust feature hierarchies that capture details ranging from 

edges to complex objects in image recognition. In FER, where capturing spatial and 

semantic information is crucial, DenseNet’s ability to preserve fine-grained details 

and extract meaningful features becomes invaluable. This is especially valuable in 
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scenarios with limited data or computational resources, making DenseNet a 

cornerstone in various CNN models across research [1, 10, 16, 17].  

 
Fig. 2. Illustration of a dense block in DenseNet architecture [7] 

 

On the other hand, attention mechanisms [8] have gained prominence in recent 

years for their ability to explicitly establish dependencies among features. They excel 

at enhancing feature representations generated by standard convolutional layers. In 

FER, this can help the network focus on critical regions of the face, such as the eye 

area, nose area, and mouth area, where crucial facial expressions are often 

manifested. 

These insights motivate our approach of integrating attention mechanisms with 

densely connected convolutional layers to improve the performance of Convolutional 

Neural Networks (CNNs) for FER. This helps reduce the number of parameters in 

the network and enhances its generalization ability, allowing it to capture both spatial 

and semantic information in the images. The proposed model is assessed on the 

performance of well-known FER datasets, encompassing various poses and lighting 

conditions. 

The remainder of this paper is organized as follows: Section 2 shows a brief 

review of the literature related to CNNs for FER, DenseNet, and attention 

mechanisms. In Section 3, the approach in detail is explained and illustrated.  

Section 4 describes our experiments and results. Finally, Section 5 includes the 

conclusion of this research and a discussion on future work. 

2. Related works 

In recent years, significant efforts have been dedicated to enhancing FER 

performance in both controlled laboratory settings and real-world applications. 

Researchers have predominantly focused on harnessing modern Convolutional 

Neural Networks (CNNs) with various architectures, including well-established ones 

such as VGGNet [9], ResNet [10], InceptionNet [11], SENet [12], and DenseNet [7]. 

CNNs exhibit the remarkable ability to extract intricate features from images, 

consistently achieving state-of-the-art results on benchmark datasets [3, 13]. 
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DenseNet is an efficient architecture for FER in recent articles. Its dense 

connectivity between convolutional layers allows it to learn more complex features 

than traditional CNNs. B h a t t i  et al. [9] employed the DenseNet architecture for 

extracting deep features from facial images. They evaluated their model’s 

performance in FER, specifically utilizing DenseNet201, with the highest accuracy 

of 96.8% on the JAFFE dataset, surpassing the second-highest accuracy of 96% 

accuracy of other methods [15]. Furthermore, the authors in [1] proposed a 

lightweight model using dense blocks. They assessed the performance of their model 

on three benchmark datasets: JAFFE, CK+, and OuluCASIA. The experimental 

results revealed that their model achieved state-of-the-art performance on all datasets, 

with an average accuracy of 99.08%, 99.90%, and 100%, respectively. 

In the integration of attention mechanisms into CNNs, authors have utilized 

channel or spatial attention models, or combinations of them. In [23-25], researchers 

introduced end-to-end CNN models equipped with an attention mechanism for FER. 

In [23], the attention module assigns higher weights to critical features, directing the 

network’s focus toward these crucial elements for expression recognition. On the 

other hand, [24] proposed a co-attentive multi-task CNN for two tasks: facial 

landmark detection and facial expression recognition. In [25], the authors used an 

attention module through a spatial transformer network to focus on important facial 

regions. These models were evaluated on benchmark datasets, including JAFFE, 

CK+, OuluCASIA, NCUFE, FER2013, and SFEW2, achieving high accuracies. The 

best performance reported in [23] is 98.68% on CK+, while [24] achieved a 

maximum accuracy of 96.71% on CK+, and [25] has the highest accuracy of 98.0% 

on CK+. The CK+ dataset is collected in a controlled lab environment, making it 

relatively easier for FER models compared to the others.   

In [16], the authors used state-of-the-art models, including VGG-19, 

GoogLeNet, and ResNet-152, as backbone networks for feature extraction. They 

employed a fusion attention process, combining both channel attention and spatial 

attention, to create the model. It analyses the link between different channels and 

assigns weights to them, generating spatial attention weights in the spatial domain to 

suppress or raise the relevance of certain regions. On the other hand, in [18], an end-

to-end DenseNet model integrated with spatial attention is proposed for FER. This 

architecture consists of two key components: a densely connected module and a 

spatial attention module, each with its specific function. The densely connected 

module generates a deep representation of the entire image, while the spatial attention 

module identifies and highlights regions of local and global levels. The combination 

of these two components allows for the extraction of emotion-relevant features, 

resulting in accurate classification. Extensive experiments conducted on publicly 

available facial expression databases demonstrate the reliability of this proposed 

method. It achieves accuracies of 76.95% on RAF-DB and 95.71% on CK+. 

Additionally, the model in [18] has a relatively small size, comprising approximately 

1.2 million parameters. 

In this review, the exploration of combining DenseNet architecture with the 

fusion of channel and spatial attention to harness its substantial potential has not been 
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undertaken. This issue will be discussed in detail in the next section, addressing a key 

aspect of our proposed method. 

3. Proposed method 

In this section, the proposed model is presented, which integrates a fusion of attention 

mechanisms with an end-to-end DenseNet architecture. This model is referred to as 

FCSDNet (Fusion of Channel and Spatial Attention in Densely Connected 

Convolutional Layers Network), and it is tailored for the FER task. The FCSDNet 

model encompasses two fundamental stages: 

(a) Feature extraction from images, with a focus on crucial regions using 

attention mechanisms. 

(b) Classification of the extracted features into their respective labels for FER. 

The quality of recognition and the computational complexity of models are often 

influenced by factors such as the number of filters and the depth of networks. 

Researchers frequently adjust these factors based on specific application 

requirements to achieve high recognition accuracy while maintaining acceptable 

computational complexity. Thus, the FCSDNet model is designed with a moderate 

number of layers and an appropriate number of filters in each convolutional layer. 

This design choice ensures compatibility with computational resources and broadens 

the model’s applicability. 

3.1. Fusion of channel and spatial attention module 

Channel attention modules can learn to focus on the most important channels in a 

feature map, while spatial attention modules learn to emphasize critical spatial 

locations within a feature map. Combining these two types of attention modules can 

lead to improved performance in the FER task. This combination is achieved by 

establishing a linear collaborative relationship between spatial and channel attention 

modules, as they are sensitive to different network depths and tasks. 

Given an intermediate feature map 𝐹𝑖 ∈ 𝑅𝐻×𝑊×𝐶 as input, where 𝐻, 𝑊, and 𝐶 

denote spatial height, width, and the number of channels. For the Channel Attention 

Module (CAM), global information aggregation is performed through average-

pooling (𝑃ga) and max-pooling (𝑃gm) operations, yielding descriptors 𝑃ga(𝐹𝑖) and 

𝑃gm(𝐹𝑖) in the dimension of 1 × 1 × 𝐶. These descriptors are then processed by a 

scale network (𝕊𝐶 = {𝕊𝐶
1,𝑟 , 𝕊𝐶

2 }, which denotes two fully connection layers, the first layer 

has a ratio (𝑟) for compacting features) to create a channel attention map optimized for 

the FER task. This scale network performs the same as a Squeeze-and-Excitation 

network block [12], utilizing a set of learnable parameters (weights matrix 𝕎𝐶  and 

biases vector 𝕓𝐶). The output of the scale network is computed as 𝕊𝐶(𝑥) = 𝕎𝐶
2 ∙

𝛿(𝕎𝐶
1,𝑟 ∙ 𝑥 + 𝕓𝐶

1,𝑟) + 𝕓𝐶
2 , where 𝕎𝐶

2 ,   𝕓𝐶
2 ∈ 𝕊𝐶

2  and 𝕎𝐶
1,𝑟 , 𝕓𝐶

1,𝑟 ∈ 𝕊𝐶
1,𝑟

 are the 

network parameters, 𝑥 ∈ {𝑃ga(𝐹𝑖), 𝑃gm(𝐹𝑖)} is the input to the network, 𝛿 is the 

activation function (in this study, it is the rectified linear unit (ReLU) function). The 

output dimensions of 𝑃ga, 𝑃gm, and 𝕊𝐶 are [1 × 1 × 𝐶]. The output feature vectors 

are combined using element-wise summation ⨁ and a sigmoid-gated mechanism σ. 
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The final channel attention output is obtained by element-wise multiplication with 

the input feature map. The CAM is formulated as follows: 

(1) CAM(𝐹𝑖) = 𝐹𝑖 ⊗ σ (𝕊𝐶 (𝑃ga(𝐹𝑖)) ⨁𝕊𝐶 (𝑃gm(𝐹𝑖))). 

For the Spatial Attention Module (SAM), it is first produced by applying a 

convolutional operation (ℂ𝑆) to the concatenation ([;]) of channel-based average-

pooling (𝑃ca) and max-pooling (𝑃cm) on the input to obtain a spatial attention map. 

The concatenation is done by stacking the channels of the input. The output 

dimensions of  𝑃ca, 𝑃cm, and ℂ𝑆 are [𝑊 × 𝐻 × 1]. Then, the final output is obtained 

by element-wise multiplication of the input by the spatial attention map. The SAM is 

formulated as follows: 

(2) SAM(𝐹𝑖) = 𝐹𝑖 ⊗ ℂ𝑆([𝑃ca(𝐹𝑖); 𝑃cm(𝐹𝑖)]). 

A fusion of channel and spatial attention (ℱ𝑐𝑠) can involve maximum, addition, 

multiplication, or concatenation [8]. In this study, a normalized weight function for 

addition on channel and spatial attention is employed, as shown in the next equation. 

This weight (𝑤𝑓) is a hyperparameter and can be chosen heuristically based on 

specific tasks: 

(3) ℱ𝐶𝑆(𝐹𝑖) = 𝑤𝑓 . CAM(𝐹𝑖) ⨁ (1 − 𝑤𝑓). SAM(𝐹𝑖). 

The process of this fusion is illustrated in Fig. 3. 

 

Fig. 3. Fusion of channel and spatial attention in the proposed FCSDNet model 

3.2. Designing the FCSDNet model 

The FCSDNet model utilizes the architecture of densely connected convolutional 

layers for the feature extraction stage. It incorporates initial convolutional layers to 

better preserve the details of low-level features from the original image. For the main 

body, dense blocks are employed to capture high-level and abstract features. These 

layers are integrated with a fusion of attention mechanisms to enhance the richness 

and effectiveness of the features by focusing on crucial regions of images. Therefore, 

the FCSDNet model has two phases of extracting features: the first involves raw and 

low-level feature extraction by traditional convolutional layers, and the second 

refines features, producing increasingly high-level features through densely 

connected blocks with integrated attention modules.  
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The proposed model consists of a series of Dense Blocks (DBs), illustrated in 

Fig. 4. Each DB contains multiple pairs of ConVolutional (CV) layers, each of which 

includes immediately preceding Batch Normalize (BN) and ReLU activation, 

referred to as components (𝒞). In each 𝒞, the first CV has a kernel size of 1 × 1 with 

stride 1, denoted by CV1(1 × 1: 1), and the second one is CV2(3 × 3: 1). Given a 

desired number of output channels for DBs, denoted as 𝑚, the number of output 

channels of the first and the second CV is set to 𝑚 and 𝑚/4, respectively. The 

processing of the component with input feature maps 𝐹′ can be formulated as 

𝒞(𝐹′) = ℱ2(ℱ1(𝐹′)), where ℱ𝑘(𝑥) = CV𝑘(ReLU(BN(𝑥))), 𝑘 ∈ {1, 2}. Since 𝐹′ is 

of size 𝑊′ × 𝐻′ × 𝐶′, then 𝒞(𝐹′) has an output size of 𝑊′ × 𝐻′ × 𝑚/4. At the end 

of each component, a concatenation ([;]) of all previous feature maps is performed, 

instead of just the feature maps from the immediately preceding layer in traditional 

CNNs. This means that each convolutional layer has access to all previous feature 

maps, which allows it to learn more complex features. To simplify the computational 

complexity of the network, Transition Layers (TLs) are applied after each DB to 

reduce the number of channels. The TLs consists of a 1 × 1: 1 convolution operation 

with ReLU activation to refine the information in the feature maps, and a 2 × 2 

average pooling with strides of 2, denoted by 𝑃a(2 × 2: 2), is responsible for reducing 

the spatial size of the feature maps.  

 

 
Fig. 4. Dense blocks used in the proposed FCSDNet model 

 

The processing of DBs can be formulated as below: 

(4) 𝐹o = TL ([; ](… , [; ](𝒞(𝐹′), 𝐹′))) (𝑓[;] (⋯ ; 𝑓[;] (𝑓𝑝2 (𝑓𝑝1(𝐹𝑖)) ; 𝐹𝑖) ; 𝐹𝑖)). 

The output feature map of the DBs is denoted by 𝐹o. Since the input size of the 

DBs is 𝑊𝑖 × 𝐻𝑖 × 𝐶𝑖, the output size is 
𝑊𝑖

2
×

𝐻𝑖

2
× 𝑚. The frequency notation[; ] 

corresponds to the number of components (pairs of convolutional layers) used in the 

DBs. DB(𝑚, 𝑝) is also used to denote the dense block with the desired number of 

output channels as 𝑚, and 𝑝 represents the number of repetition pairs of convolutional 

layers. 

Overall, the proposed FCSDNet model consists of three DBs preceded by an 

initial convolutional layer, as shown in Fig. 5. Following each DB is the integration 

of a fusion of channel and spatial attention module, as detailed in the section above. 

This attention module operates on the output feature maps of the DB, emphasizing 
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important feature regions for the Facial Expression Recognition (FER) task. These 

DBs are configured with different numbers of output channels, specifically 32, 64, 

and 128, and they consist of pairs of convolutional layers with one, two, and four 

pairs, respectively. This repetition of pairs of convolutional layers with varying filters 

enables the network to capture hierarchical features. Typically, lower layers focus on 

extracting low-level features like edges and textures, while deeper layers learn more 

abstract and complex representations. By concatenating features from all pairs of 

convolutional layers, the FCSDNet model creates a feature hierarchy that spans from 

simple to intricate details. This hierarchical representation is highly valuable for the 

FER task, as it allows the model to recognize facial expressions based on both basic 

facial features and more complex patterns. 

 
Fig. 5. Overall structure of the proposed FCSDNet model 

Table 1. Parameters of the FCSDNet model 

Layers /blocks Operations (kernel size – strides, filters) #Parameters (thousand) 

Input  - - 

Initial layers C(7×7 – 2, 64) 

Pa(3×3 – 2) 

9.47 

- 

1st dense block [C(1×1 – 1, 128) 

     →C(3×3 – 1, 32)] 

8.32 

36.89 

Transition C(1×1 – 1, 128) 

     →Pa(2×2 – 2) 

12.41 

- 

Attention module D(8)2, C(7×7 – 1, 1) 4.33 

2nd dense block [C(1×1 – 1, 256) 

     →C(3×3 – 1, 64)]2 

82.42 

295.04 

Transition C(1×1 – 1, 256) 

     →Pa(2×2 – 2) 

65.79 

- 

Attention module D(8)2, C(7×7 – 1, 1) 16.77 

3rd dense block [C(1×1 – 1, 512) 

     →C(3×3 – 1, 128)]4 

919.55 

2359.80 

Transition C(1×1 – 1, 512) 

→Pa(2×2 – 2) 

393.72 

- 

Attention module D(8)×2, C(7×7 – 1, 1) 66.21 

Aggregation Global average pooling - 

Classifier (FC layer) Softmax 3.59 

Total - 4.27M 

 

The FCSDNet model has a total depth of 18 convolutional layers, divided into 

three DBs with transition layers and initial layers, which serve as feature extractors. 
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Additionally, three fusion modules of channel and spatial attention are incorporated 

into the model to emphasize crucial regions of images by weighting feature maps. 

Despite having a relatively moderate number of layers, this model contains only 

about 4.27 million parameters, making it less complex compared to other modern 

CNN models for image classification problems. This parameter efficiency is achieved 

by using small kernel sizes for the convolutional operations within the DBs. The 

detailed parameters of the model with a specific input size in height×width×channels 

of 100×100×3 are shown in Table 1, where the symbol “” indicates repetition in 

DBs; C represents a convolutional layer with specified kernel size, strides, and the 

number of filters; Pa indicates an average pooling layer with a specified window size 

and strides; and “→” signifies the forward connection between two layers. 

3.3. Model classifying and training loss 

The feature maps extracted by the DBs, which incorporate the fusion of channel and 

spatial attention modules, are further processed through a Global Average Pooling 

(GAP) layer, as in Fig. 5. This layer reduces the spatial dimensions of the feature 

maps while preserving crucial information. It operates by calculating the average 

value of each feature map across all spatial locations. The results are then 

consolidated into a vector, where each element corresponds to the average activation 

of a specific feature map. This vector (denoted by 𝑓∗) serves as a compact 

representation of the essential features derived from the input image. 

Following the GAP, a softmax function is applied in conjunction with a fully 

connected layer for classification. This step generates a probability distribution across 

different expression categories. The classification process can be summarized as 

follows: 

(5) 𝑦∗ = argmax𝑘=1,…,𝑁c{�̂�𝑘},   �̂� = softmax(𝑊o  × 𝑓∗ + 𝑏o), 

where 𝑦∗ is the output class of the model classification; �̂�𝑘 ∈ �̂� indicates the 

probability distribution of the prediction of k-th category (or class), 𝑘 = 1, … , 𝑁c; 𝑁c 

is the number of categories; 𝑊o and 𝑏o are the weight matrix and bias of the final fully 

connected layer (or output layer), respectively; softmax(. ) stands for the normalized 

exponential function. 

Cross-entropy loss is a commonly used loss function for multi-class 

classification tasks, such as FER. It is a nonlinear function that measures the 

difference between two probability distributions. In the context of FER, cross-

entropy loss measures the difference between the predicted probability distribution 

of facial expressions and the actual probability distribution of facial expressions. 

During training, the FCSDNet model is optimized to minimize cross-entropy 

loss. This means that the model learns to predict the correct facial expression with 

the highest probability possible. The employed loss function is defined as follows: 

(6) ℒ(𝑦, �̂�) = −
1

𝑁s
∑ 𝑦(𝑖) log �̂�(𝑖)𝑁s

𝑖=1 , 

where 𝑁s is the number of samples in a dataset; 𝑦(𝑖) and �̂�(𝑖)
 represent the ground-

truth distribution and the predicted distribution of the i-th sample. 

The non-linear, exponential behavior of cross-entropy loss helps the model to 

converge to optimal performance. This is because cross-entropy loss penalizes the 
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model more heavily for incorrect predictions than for correct predictions. This helps 

to ensure that the model learns to predict the correct facial expression even when the 

input image is noisy or ambiguous. 

4. Experimental results  

In this section, the datasets and running parameters to be employed for training the 

FCSDNet model will be initially described. Subsequently, the results and discussion 

will be presented to assess the performance of the model. 

4.1. Dataset and experimental setup 

For experimental running, five datasets were used, namely, JAFFE [5], CK+ 

(Extended Cohn-Kanade) [26], OuluCASIA [27], KDEF [28], and RAF_DB [29].  

The JAFFE dataset consists of 213 images captured from 10 Japanese women, 

showcasing six basic emotions along with a “neutral” emotion. On the other hand, 

the CK+ dataset comprises 981 images collected from 118 individuals, each 

displaying six basic emotions in addition to the “contempt” emotion. The 

OuluCASIA dataset features 1440 images from 80 individuals, offering a range of 

six basic facial expressions under varying illumination and head poses, all in color. 

Both the JAFFE and CK+ datasets are presented in grayscale. The KDEF dataset 

contains 4900 images capturing six basic emotions and the “neutral” expression, all 

from five different angles. It includes images of 70 individuals (35 females and 35 

males) aged between 20 and 30 years. Notably, all images were taken without any 

occlusions such as mustaches, earrings, or eyeglasses.  

Lastly, the RAF_DB (Real-world Affective Faces database) is a unique facial 

expression dataset, collected from the internet, with a total of 29,672 real-world facial 

images. This dataset includes six basic emotions along with the “neutral” expression, 

and it is divided into a training set, consisting of 12,271 face-aligned images, and a 

testing set, which contains 3068 images. The total images and distributed images in 

classes of these datasets are also shown in Table 2. 

Table 2. Distributed images in classes of datasets 

Dataset 
Number 

of classes 
Total 

images 

Distributed images in classes 

Min Max Average 

JAFFE  7 213 29 32 30.4 

CK+ 7 981 54 249 140.1 

OuluCASIA 6 1440 240 240 240.0 

KDEF 7 4900 700 700 700.0 

RAF_DB 7 29,672 355 5957 2191.3 

 

This experiment utilized a 5-fold cross-validation scenario for the first four 

datasets (JAFFE, CK+, OuluCASIA, and KDEF). Therefore, the images of each 

dataset are randomly divided into 5 equal-sized folds for five runs. In each run, one 

fold is selected for testing (𝐷te), and the remaining folds are used for training the 

model, with 80% used for training set (𝐷tr) and 20% for model evaluation (𝐷va) to 
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select the best one. The final results were reported as the mean and standard deviation 

of the five runs. In the case of the RAF_DB dataset, which involves separated training 

images and testing images (𝐷te), 80% of the training images are used for training set 

(𝐷tr), and the remaining 20% are allocated for validation set (𝐷va) to select the best 

model. Therefore, only one run was performed for this dataset due to a fixed testing 

set. 

To enhance the performance of the model and prevent overfitting, the training 

data is augmented by using 2D image transform operations as in [30] like rotation, 

scaling, noise addition, and translation. This increases the diversity of the training 

data, improving the model’s ability to generalize and perform well under different 

conditions.  

The FCSDNet model was trained from scratch using Adam as the optimizer with 

an initial learning rate (lr) of 10−3. The training process is terminated when it reaches 

the maximum epochs or the model’s performance on the validation set has not 

improved for a certain number of epochs. Then, the best model is chosen to get the 

results on the test set. Augmentation parameters, as outlined in Table 3, are randomly 

chosen within specified ranges. The extent of augmentation for each image is 

contingent upon the dataset’s volume; it is set at three for datasets containing over 

20,000 images, five for datasets with images numbering between 20,000 and 5000, 

and ten for datasets with fewer than 5000 images. 

Table 3. Parameters for augmentation and training model 

No Parameters Range value 

 A. Data augmentation  

1 Variance of Gaussian noise addition  [0, 0.05] 

2 Rotation relative to the original image 

(degree, negative is counter-clockwise) 

[−18𝑜, 18𝑜] 

3 Translation relative to the original image 

(percentage, negative is left translation for 

width or up translation for height) 

[−10%, 10%] 

4 Scaling relative to the size of the image 

(negative is downscaling, for both width and 

height) 

[−10%, 10%] 

5 Horizontal flipping image Yes/No 

 B. Training model  

6 Initial learning rate (lr) 10−3 

7 Batch size 128 

8 Max epochs 150 

 

The experiments were run on a computer system equipped with TPU and 32 Gb 

RAM. The FCSDNet model is developed by using the Python programming language 

on the TensorFlow platform, which is a widely used deep learning framework known 

for its powerful features in image processing and CNN modeling. 

(https://github.com/duongthanglong/ 

duongthanglong/blob/main/y23attentiondensenet4fer.py) 

https://github.com/duongthanglong/
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4.2. Results and discussion 

The training results of the FCSDNet model are an average from the number of runs, 

depicted in Fig. 6, for four datasets, excluding CK+ due to its small size with well-

distinguished images, and ease in achieving high accuracy during training. Each 

subfigure exhibits the accuracies of the training data (blue line) and validation data 

(yellow line) for a specific dataset. Within the JAFFE dataset, where the number of 

images is limited, and facial expressions across classes are notably similar, 

fluctuations in validation accuracy during training are observed. Conversely, for the 

other datasets, improvements in validation accuracy align with those in training 

accuracy. Notably, the model rapidly improved its accuracy within the first 20 

epochs, reaching its peak performance around the midway point of the total epochs. 

This trend persisted, indicating that the model continually learned and enhanced its 

performance. 

    

       

Fig. 6. The training progress with accuracies of training and validation data 

The testing data accuracies for the FCSDNet model are presented in detail in 

Table 4. In the table, the symbol “-“ indicates that no running, and the appended “R#” 

indicates the corresponding experiment run. The last column represents the average 

accuracy across all runs for each dataset. The first three datasets, including JAFFE, 

CK+, and OuluCASIA, achieved the highest testing accuracy of 100%. The model 

also performed exceptionally well on the KDEF dataset, with an accuracy of 99.94%. 

It has approximately the highest accuracy. These datasets achieved such high 

accuracies because they are based on controlled laboratory conditions, resulting in 

consistent image capture conditions. In contrast, the RAF-DB dataset consists of real-

world data captured under diverse and uncontrolled conditions, leading to the lowest 
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testing accuracies (83.18%) compared to the other datasets. Only one run was 

conducted for this dataset since it has two separate sets for training and testing data. 

Table 4. Accuracies of experiment running in details 

Dataset R#1 R#2 R#3 R#4 R#5 Average 

JAFFE 100 100 100 100 100 100 

CK+ 100 100 100 100 100 100 

Oulu-CASIA 100 100 100 100 100 100 

KDEF 99.80 100 100 100 99.90 99.94 

RAF-DB 83.18 - - - - 83.18 
 

Fig. 7 presents some misclassified images from the testing data. The first row 

displays three misclassified images from the KDEF dataset, while the subsequent 

rows show such images from the RAF-DB dataset. Each image’s title indicates the 

target emotion and the predicted emotion, separated by the symbol “>”. These 

misclassified images also prove to be challenging for intuitive recognition.  

For details of Fig. 7. In the first row, the images have faces oriented towards the 

left or right, where only one side's features are extracted, making it difficult for FER. 

On the other hand, the images in the RAF-DB dataset exhibit various challenging 

conditions. For example, in the second row, the first two images have distorted faces, 

making it nearly impossible to discern facial expressions. The last image is marred 

by white streaks and significant noise, further complicating the recognition of facial 

expressions. In the last row, the first image is partially obscured by the lower part of 

the face, and the middle image is blurred, presenting additional challenges for 

observation and identification. The last image features are relatively clear facial 

characteristics, but the determination of facial expressions remains problematic due 

to their unclear visibility. These examples underscore the greater difficulty of the 

FER task when dealing with real-world, uncontrolled images compared to lab-

controlled ones. 

In the FCSDNet model, the operations of the DBs with a fusion of channel and 

spatial attention play a crucial role in feature extraction for FER. To visually represent 

the DBs’ operations, gradient-based localization is employed. This method highlights 

the areas in the images where the model concentrates or shows interest when 

extracting features, often referred to as a heat map of activated neurons on the image. 

In Fig. 8, heat maps of the model are presented for various facial expressions in some 

images of the KDEF (a) and RAF-DB (b) datasets. These images clearly illustrate 

that the heat maps predominantly focus on areas crucial for representing facial 

expressions, such as the nose, mouth, and eyes. This intuitive demonstration 

emphasizes that the FCSDNet model prioritizes important image regions for 

extracting descriptive features for FER. Conversely, when these image areas are not 

considered, it becomes challenging to correctly identify the intended facial 

expression. 
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Fig. 7. Misclassified images on testing data 

 

 (a) 

 (b) 

Fig. 8. Heatmap of the FCSDNet model for FER on some images 
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t-SNE is employed, following the approach in [24], for a feature visualization 

study on the FCSDNet model’s learned features. The results are presented in Fig. 9, 

with the findings for the KDEF (a) dataset shown in the upper part and those for  

RAF-DB (b) in the lower part of Fig. 9. The labels of facial expressions are shortened 

to the first two letters to fit the figure. This visualization reveals that the proposed 

model forms compact feature clusters, with notably few outliers, as highlighted by 

the red circles, particularly for the KDEF dataset. This observation provides evidence 

that the FCSDNet model is efficient in learning highly distinctive features. It serves 

to reduce intra-class feature variations while enhancing inter-class feature 

distinctions. 

 
(a) 

 

  

(b) 

Fig. 9. t-SNE visualization of the FCSDNet model on KDEF (a) and RAF-DB (b) 
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To illustrate overall of the FCSDNet model’s performance, we have constructed 

confusion matrices based on results from all runs using two datasets: KDEF and 

RAF-DB, as shown in Fig. 10. Each row in these matrices represents a target emotion 

label in the dataset, while each column corresponds to a predicted facial expression 

label generated by the model. 

In a typical run of the trained model, we apply it to recognize all images within 

the testing dataset, aggregating the results across all runs. Looking at the confusion 

matrix in subfigure (a) for the KDEF dataset, it’s evident that the model achieved 

perfect classification on the emotion label of “happiness”, with no misclassifications 

for both predicted and being predicted by the model. This suggests a clear distinction 

between these facial expressions from others. Similarly, the “anger” and “neutral” 

emotion labels were all correctly predicted. However, each of these labels had one 

case of misclassification, being predicted from “fear” and “disgust”, respectively. In 

subfigure (b) for the RAF-DB dataset, the highest number of misclassifications is 56, 

where “neutral” is predicted to be “sadness”. Every cell in this matrix has a nonzero 

value, and three cases involved only one misclassification, where “disgust”, 

“neutral”, or “sadness” was predicted to be “fear”. For instance, the first image in the 

middle row of Fig. 7 is one of eight misclassified images from the cell in the second-

to-last row and the first column in Fig. 8. Once again, this matrix highlights the 

challenges associated with FER when dealing with real world, life-wild images. 
 

  
(a)                                                                (b) 

Fig. 10. Confusion matrices on KDEF (a) and RAF-DB (b) datasets 

 

Table 5 provides a comparison of the experimental results of the FCSDNet 

model with those of other studies. All methods in the comparison used CNN-based 

models and conducted experiments in various data scenarios, as indicated in 

parentheses next to the method name along with the model size in the number of 

parameters (“M” representing million, “F” stands for fold). The symbol “*” presents 

the method that has utilized pre-trained models on large-scale datasets, and the 

symbol “-” indicates cases where no experimental data were reported. The best 

accuracies are highlighted in bold. The FCSDNet model achieved a perfect accuracy 

of 100% in three cases: JAFFE, CK+, and OuluCASIA. Another perfect accuracy  
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of 100% was also achieved in the OuluCASIA dataset [1]. Despite its relatively low 

complexity, with the fourth-lowest number of model parameters, the FCSDNet model 

outperformed the other models in all cases for the JAFFE, CK+, OuluCASIA, and 

KDEF datasets. For the KDEF dataset, the proposed model achieved the highest 

accuracy of 99.94%, surpassing [17] by 0.04% and outperforming [31] by 12.17%. 

The proposed model achieved the fourth-highest accuracy in five cases for the  

RAF-DB dataset. However, it’s worth noting that the three models with better 

performance above used pre-trained models on very large-scale datasets for 

conducting their experiments, which makes these cases not fair for comparison. 

Table 5. Comparison of accuracies on testing data 

Method (model-size, num-fold) JAFFE CK+ Oulu CASIA KDEF RAF-DB 

W u  et al. [3]* (-, -) 92.90 99.75 - - 90.06 

D e v a r a m  and C e s t a  [11] (1.6M, 5F) 80.09 84.27 - 99.90 - 

Y u  and X u  [18]* (11M, 10F) - 98.33 87.32 - 85.22 

K o l l i a s, S h a r m a n s k a  and Z a f e i r i o u  [27]* (-, -) - - - - 78.00 

F a r z a n e h  and Q i  [28]* (11M, -) - - - - 87.78 

Z h o u, L i a n g  and S h i  [26] (0.06M, -) - - - 87.71 - 

M i n g  et al. [29] (39M, 10F) - 99.50 89.60 - - 

L o n g, T u n g  and D u n g  [1] (2.4M, 5F) 99.08 99.90 100 - - 

L o n g  [2] (23.5M, 5F) 96.20 99.68 98.47 - - 

Proposed FCSDNet (4.27M, 5F) 100 100 100 99.94 83.18 

5. Conclusion 

In this paper, a novel CNN-based model is introduced for FER known as FCSDNet. 

This model leverages state-of-the-art architectures, specifically dense connected 

networks and a fusion of channel and spatial attention, to improve performance while 

maintaining a moderate model complexity. FCSDNet consists of three dense blocks 

with attention mechanisms to emphasize features crucial for FER. It comprises a total 

of 18 convolutional layers designed for feature extraction. Despite its medium 

number of layers, FCSDNet has a relatively low parameter count, approximately 4.27 

million parameters, making it less complex compared to contemporary CNN models 

employed in image classification tasks. This reduction in parameters is achieved by 

using compact kernel sizes in the convolutional operations within the dense blocks. 

In the experiments, five popular datasets are employed, following a 5-fold cross-

validation scenario except for the RAF-DB dataset, which is organized differently. 

FCSDNet exhibits impressive accuracy, achieving results ranging from 99.94% to 

100% in FER across four lab-controlled datasets. However, it demonstrates a lower 

accuracy of 83.18% on the real-world RAF-DB dataset, although it is higher when 

compared fairly to other methods. It’s important to note that these results are obtained 

under certain computing limitations, resulting in relatively short training times and 

the use of moderately sized datasets. When the model is trained at a deeper level with 

larger datasets, it can anticipate even higher performance. 

Future work should improve accuracy and efficiency, especially for real-world 

datasets characterized by diverse and uncontrolled conditions. One potential avenue 

for enhancement is the incorporation of well-established network architectures. 
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Additionally, broadening the model’s scope to encompass tasks like face 

identification and head-pose estimation holds promise for further research and 

development. 
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