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Abstract: As a kind of software system, the Event-Based Systems (EBS) respond to 

events rather than executing a predefined sequence of instructions. Events usually 

occur in real time, so it is crucial that they are processed in the correct order and 

within temporal constraints. The objective of this work is to propose an approach to 

check if events of EBS at runtime preserve the specification of temporal constraints. 

To form the approach by logic process, we have formalized the EBS model, through 

which, we have proved that the complexity of the checking algorithms is only 

polynomial. The approach has been implemented as a tool (VER) to check EBS at 

runtime automatically. The results of the proposed method are illustrated by checking 

a real-world Event Driven Architecture (EDA) application, an Intelligent 

transportation system.  

Keywords: Checking tool, Event-based systems, Runtime verification, Temporal 

constraints. 

1. Introduction 

Software verification [4] is a crucial process in software engineering that involves 

ensuring that a software system or component meets specified requirements and 

behaves as intended. The goal of verification is to identify and fix issues early in the 

development process, reducing the likelihood of defects and improving the overall 

quality and reliability of the software. Runtime verification [3, 18] is a part of the 

software verification. It is a computing system analysis and execution approach based 

on extracting information from a running system and using it to detect and possibly 

react to observed behaviors satisfying or violating certain properties. Some very 

particular properties, such as data race and deadlock freedom, are typically desired to 

be satisfied by all systems and may be best implemented algorithmically. Other 

properties can be more conveniently captured as formal specifications. Runtime 

verification can be used for many purposes, such as security or safety policy 

monitoring, debugging, testing, verification, and validation. 
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Event-based systems are often designed using Event-Driven Architecture 

(EDA), which is a style of software architecture that emphasizes the use of events 

and event processing. An EDA [5] can help organizations achieve a flexible system 

that can adapt to changes and make decisions in real-time. Real-time situational 

awareness means that business decisions, whether manual or automated, can be made 

using all of the available data that reflects the current state of software systems. 

Events are captured as they occur from event sources such as Internet of Things (IoT) 

devices, applications, and networks, allowing event producers and event consumers 

to share status and response information in real-time. 

Apache Kafka (see [5]) is a distributed data streaming platform that is a popular 

event processing choice. It can handle publishing, subscribing to, storing, and 

processing event streams in real-time. Apache Kafka supports a range of use cases 

where high throughput and scalability are vital, and by minimizing the need for point-

to-point integrations for data sharing in certain applications, it can reduce latency to 

milliseconds. 

The verification of event-based systems requires specialized techniques and 

tools that are designed to handle the challenges of these systems. Actually, several 

methods have been proposed for the verification of EBS systems with temporal 

constraints specification. However, these methods mainly concentrate on system 

models by defining a language design [10], or representing EBS using Petri nets [20]; 

these methods are without executing the program, also known as static verification. 

The runtime verification of event-based systems is a challenging work. The reason is 

that:  

 Large-scale distributed systems: Many event-based systems are large-scale 

distributed systems that involve multiple components running on different machines, 

making it difficult to coordinate and verify the behavior of the system as a whole.  

 Difficulty in getting the execution time of events: execution events are 

considered as threads or processes in parallel programs. The execution environment 

may provide limited or no built-in support for measuring the execution time of events, 

requiring developers to implement their own timing mechanisms.  

In this paper, we propose an approach to check the execution of events in the 

system if it satisfies their specification (runtime verification). The specification here 

includes the temporal constraints, precisely, the relationship on the occurrence of 

events in the system. In this approach, we get log files of the start times and end times 

of events when the system executes. We then give algorithms to check that the 

execution of events satisfies the temporal constraints in the specification. The 

implementation in a support tool helps us to check the events-based systems in an 

automatic manner. 

The rest of the paper is organized as follows. Section 2 presents foundational 

knowledge of EDA and briefly introduces some related works. Our main approach 

for checking temporal constraints of events in EBS at runtime is presented in  

Section 3. To illustrate the approach, we have implemented a support tool and give a 

case study in Section 4. We conclude the paper and give some directions for future 

works in Section 5. 
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2. Background and related works 

Event-Driven Architecture (EDA) [5] is an approach to software design and 

architecture that emphasizes the production, detection, and consumption of events. 

Events are meaningful occurrences or changes in a system, such as a user action, a 

sensor reading, or a database update. In an EDA, events are used to trigger and 

coordinate the communication between various components or services within a 

system. 

EDA provides a loosely coupled, scalable, and resilient architecture that can 

handle large amounts of data and processing. It is often used in modern applications 

such as microservices, IoT, and cloud computing, where scalability and 

responsiveness are essential. EDA allows services to be decoupled from each other, 

making them easier to maintain and update, as well as enabling the creation of 

complex workflows and business processes. 

In EDA, components can act as event producers, event consumers, or both. 

Event producers generate events and publish them to a message broker or event bus, 

while event consumers subscribe to events and receive them as they occur. This 

decoupling of components allows for asynchronous communication and processing, 

which can improve performance and scalability. The source of an event can be from 

internal or external inputs. Events can be generated from a user, like a mouse click or 

keystroke, an external source, such as a sensor output, or come from the system, like 

loading a program. 

Timing and order of events can be relevant for the processing of events and are 

of special interest in EDA. Timing constraints are requirements on the timing 

characteristics of a software design, usually expressed in terms of maximum or 

minimum values for delays, clock frequencies, setup times, hold times, etc. Timing 

constraints are used to ensure that the design meets its performance requirements and 

operates correctly. 

In event processing applications, it is common to have temporal constraints on 

events. Temporal constraints are constraints on the temporal relationship between 

events in a system. They specify when events must occur in relation to each other, 

such as “event A must occur before event B” or “event C must occur within 100 

milliseconds of event D”. Temporal constraints are used to ensure that the system 

behaves correctly and meets its timing requirements. 

An event is defined as the state change of one or more entities over a period of 

time. Events occur over intervals of time and are correlated by their temporal 

relationships. According to Allen’s axiomatization of time periods [13], there are 

thirteen atomic relations b, bi, m, mi, o, oi, s, si, d, di, f, fi, eq that can hold between 

two events, and they, respectively, represent as before, meets, overlaps, starts, 

during, finishes, equal, and their inverses, as shown in Table 1. 

There are many methods of studying how to integrate Allen’s thirteen atomic 

interval temporal relations into software systems. However, these methods often 

check event-based systems with temporal constraints that are usually done at a static 

level [10, 20]. 
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Table 1. Allen’s thirteen atomic interval temporal relations to represent the temporal relations between 

two events E1 and E2 

Relations Symbol Inverse Pictorial meaning 

E1 before E2 b bi 
 

E1 meet E2 m mi 
 

E1 overlaps E2 o oi 
 

E1 starts E2 s si 
 

E1 during E2 d di 
 

E1 finishes E2 f fi 
 

E1 equal E2 eq eq 
 

 

In article [1], the authors discuss several extensions to the Event-Condition-

Action (ECA) rule paradigm to support advanced applications, including alternative 

actions for capturing security violations, generalization of events and rules for 

modeling a wider range of applications, and event detection modes for capturing 

complex policies or situations. They also propose an extension of rule detection 

modes to ensure the correct enforcement of specified rules and discuss the extensions 

made to event detection graphs to implement these extensions. Overall, the focus of 

the paper is on using the access control domain to drive the extensions needed for 

expressiveness, specification, and execution of policies using the ECA paradigm. The 

authors cover alternative actions, generalized event specification and detection, event 

detection modes, and extensions to event detection graphs. 

Article [19] discusses the linking of security policy to event-based systems, 

which allows for formal reasoning about information security. The applications 

addressed in the article involve highly confidential data that must be shared 

dynamically and for historical analysis. In these applications, principals with rights 

to access the data may be widely distributed across a federation of independent 

administrative domains. Domain managers are responsible for the data held within 

domains and transmitted from them, and security policy must be specified and 

enforced to meet these obligations. The article uses healthcare as a running example 

because the confidentiality of healthcare data must be guaranteed over many years. 

The authors first consider how to enforce authorization policy at the client level 

through parametrized Role-Based Access Control (RBAC) [16], taking context into 

account. They then discuss the additional requirements for secure information flow 

through the infrastructure components that contribute to communication within and 

between distributed domains. Finally, the article shows how this approach supports 

reasoning about event security in large-scale distributed systems. 

Paper [11] discusses the issue of event inference in event-based systems. While 

some events are generated externally and flow across distributed systems, others must 

be inferred by the system itself. The challenge is to balance the need for inferring 

events with certainty using complete information and providing quick notification of 

newly revealed events. However, the actual occurrences of events may not match the 
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ability of event-based systems to accurately infer them due to uncertainty stemming 

from unreliable data sources, networks, fuzzy terminology, or the inability to 

determine with certainty whether a phenomenon has occurred. The article presents 

the state-of-the-art in event processing over uncertain data, including a classification 

of uncertainty, a model for event processing over uncertain data, algorithmic 

solutions for handling uncertainty, and a simple pattern language that supports 

uncertainty. The article also highlights open issues and challenges in this research 

area. 

In the article [14], the authors present an Event-Driven cloud Architecture 

(REDA) that helps process a large volume of real-time application data generated by 

connected devices in the Internet of Things (IoT) network. REDA utilizes 

technologies such as AWS IoT [6], MQTT [8], Apache Kafka, and Java Spring to 

build an event-based data processing environment that is capable of efficiently and 

cost-effectively processing real-time data. The article [9] discusses the use of Event-

Driven Architectures (EDA) for traffic management systems, which need to handle a 

large volume of events generated by sensors. Traditional software architectures are 

not optimized for the efficient processing of continuous event streams, making EDA 

a new paradigm for event-based applications. The authors propose a reference 

architecture for event-driven traffic management systems that allow for the analysis 

and processing of complex event streams in real time. This approach is particularly 

useful for decision support in sensor-based traffic control systems. The authors 

illustrate their proposal with a case study in the domain of road traffic management. 

Specifically, they report on the redesign of An Intelligent Transportation 

Management System (ITMS) prototype for the high-capacity road network in Bilbao, 

Spain. 

In the area of runtime verification, there are several visual tools such as 

Tracealyser [17], TuningFork [4], WindView [12], Vampir [15], Zinsight [21], and 

TraceCompass [7] that have been deployed to display traces and provide insights into 

the behavior of programs. Most of these tools focus on presenting traces in a timeline 

view, which allows users to follow the flow of a program and understand its behavior 

over time. This timeline view is convenient for understanding individual program 

executions. However, none of these tools, to the best of our knowledge, extend or 

leverage timing analysis in event based systems. 

Because event-based systems rely heavily on the ordering and timing of events, 

these systems are designed to respond to events as they occur in real-time, so it is 

crucial that the events are processed in the correct order and within the specified time 

constraints. Therefore, it really makes sense to check temporal constraints at runtime 

of event based systems. If an event is processed out of order or if it takes too long to 

process, it can cause significant problems for the system. Imagine an event-based 

system that processes online orders for a retail store. If the system processes the 

“payment” event before the “add to cart” event, the order will fail because the system 

does not have a record of the items the customer wants to purchase. Similarly, if the 

system takes too long to process the “checkout” event, the customer may become 

frustrated and abandon the purchase. However, the traditional verification methods 
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are not considered for verifying the occurrence period of events in EDA at runtime 

and may lead to overlooking errors that occur during execution. 

3. Model formalization and checking approach 

In this section, we present the approach to check the temporal constraints of events 

in event-based systems. To form the approach by logic process, first of all, we will 

formalize the model of event systems and its elements, we will then provide the 

runtime verification method using checking algorithms. 

3.1. Model formalization 

In practice, there are several architectures for an Event Based System (EBS). 

However, they all adhere to the same operating principles. In order to easily discuss 

the model and its elements participating in the verification process, we provide formal 

definitions of elements in EBS and their operations. 

Definition 1 (Event based system). An Event Based System is a tuple 
〈𝐸, 𝑃, 𝑆, 𝐵, SP〉 which composed of a set of Events E, a set of Publishers P, a set of 

Subscribers S, a Broker B which maps events from publishers P to subscribers S, and 

the SPecification of the system SP.     

Events are crucial elements in EBS, as they enable real-time communication, 

coordination, and responsiveness. By leveraging the power of events, EBS can 

provide timely and accurate information, automate processes, and improve overall 

system performance and scalability. We define events as the Definition 2. 

Definition 2 (Event). An event in EBS is a tuple 〈en, 𝑎, 〉, denoted by  

evt = 〈en, 𝑎, 〉 where: 

 en is the event name 

 a is the set of actions 

  ∈ [startTime, endTime] 
Causal relationship between events refers to the relationship between cause-and-

effect, where one event is the cause of another event. In this context, the causality 

relationship specifies that one event must happen with another event in temporal 

constraints and that the occurrence of the first event is what triggers the second event. 

Definition 3 (Causal relationship). Two events evti and evtj are said to have a 

causal relationship, denote by cr = 〈evt𝑖 , evt𝑗〉 or cr〈evt𝑖 , evt𝑗〉 if and only if evt𝑗 

occurs as a result of evt𝑖 (activation, influence) or vice versa. 

From the causal relationship between two events in Definition 3, we define the 

Allen’s thirteen atomic interval temporal relations in an EBS as the following 

definitions. 

We say that an event occurs before another one if an instance of the first event 

ends, then the second event is triggered, we formalize this relation as in Definition 4. 

Definition 4 (Before relation). An event evt𝑖 has a before relation with event 

evt𝑗, denote by before(evt𝑖 , evt𝑗) iff: 

 cr〈evt𝑖 , evt𝑗〉 

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime]  validTimeInterval(𝑖) 
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 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime]  validTimeInterval(𝑗) 

 𝑖 . endTime ≤ 𝑗 . startTime 

 validTimeInterval() ∶=  ∈ [. startTime, . endTime]  . startTime <
. endTime 

Two events are met each other when the interval of the first ends exactly when 

the interval of the second event starts, we formalize this relation as in Definition 5. 

Definition 5 (Meet relation). Two events evt𝑖 and evt𝑗 meet each other, 

denoted by meet(evt𝑖 , evt𝑗) iff: 

 cr〈evt𝑖 , evt𝑗〉 

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime]  validTimeInterval(𝑖) 

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime]  validTimeInterval(𝑗) 

 𝑖 . endTime𝑗 . startTime 

 validTimeInterval() ∶=  ∈ [. startTime, . endTime]  . startTime <
. endTime 

Two events overlap each other if the interval of the first has not ended 

meanwhile the interval of the second event is triggered. We formalize this relation as 

in Definition 6. 

Definition 6 (Overlaps relation). Event 𝑒𝑣𝑡𝑖 is said to have an overlap relation 

with event evt𝑗, denoted by overlap(evt𝑖 , evt𝑗) iff: 

 cr〈evt𝑖 , evt𝑗〉 

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime]  validTimeInterval(𝑖) 

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime]  validTimeInterval(𝑗) 

 ((𝑖 . startTime > 𝑗 . startTime)(𝑖 . endTime >

𝑗 . endTime))((𝑖 . startTime < 𝑗 . startTime)(𝑖 . endTime < 𝑗 . endTime)) 

 validTimeInterval() ∶=   ∈ [. startTime, . endTime]  . startTime <
. endTime 

An event starts another if an instance of the first event starts at the same time as 

an instance of the second event, but ends earlier. We formalize this relation as in 

Definition 7. 

Definition 7 (Starts relation). Event evt𝑖 is said to have a start relation with 

event evt𝑗, denoted by start(evt𝑖 , evt𝑗) iff: 

 cr〈evt𝑖 , evt𝑗〉 

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime]  validTimeInterval(𝑖) 

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime]  validTimeInterval(𝑗) 

 (𝑖 . startTime𝑗 . startTime)(𝑖 . endTime ≤ 𝑗 . endTime) 

 validTimeInterval() ∶=   ∈ [. startTime, . endTime]  . startTime <
. endTime 

An event occurs during another event if the interval of the first is contained in 

the interval of the second, we define this relation as in Definition 8. 

Definition 8 (During relation). Event evt𝑖 is said to have a during relation with 

event evt𝑗, denoted by during(evt𝑖 , evt𝑗) iff: 

 cr〈evt𝑖 , evt𝑗〉 
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 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime]  validTimeInterval(𝑖) 

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime]  validTimeInterval(𝑗) 

 (𝑖 . startTime > 𝑗 . startTime)(𝑖 . endTime < 𝑗 . endTime) 

 validTimeInterval() ∶=   ∈ [. startTime, . endTime]  . startTime <
. endTime 

One event finishes another one if an occurrence of the first ends at the same time 

as an occurrence of the second event, but starts later. We formalize this relation as in 

Definition 9. 

Definition 9 (Finishes relation). Event evt𝑖 is said to have a finish relation with 

event evt𝑗, denoted by finish(evt𝑖 , evt𝑗) iff: 

 cr〈evt𝑖 , evt𝑗〉 

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime]  validTimeInterval(𝑖) 

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime]  validTimeInterval(𝑗) 

 (𝑖 . startTime > 𝑗 . startTime)(𝑖 . endTime𝑗 . endTime) 

 validTimeInterval() ∶=   ∈ [. startTime, . endTime]  . startTime <
. endTime 

Two events are equal if they happen right at the same time, they start and end 

the execution together, we formalize the equal relation as in Definition 10.  

Definition 10 (Equal relation). Event evt𝑖 is said to have an equal relation with 

event evt𝑗, denoted by equal(evt𝑖 , evt𝑗) iff: 

 cr〈evt𝑖 , evt𝑗〉 

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime]  validTimeInterval(𝑖) 

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime]  validTimeInterval(𝑗) 

 (𝑖 . startTime𝑗 . startTime)(𝑖 . endTime𝑗 . endTime) 

 validTimeInterval() ∶=   ∈ [. startTime, . endTime]  . startTime <
. endTime 

The soundness of an event-based system refers to its ability to ensure that all 

events in the system are valid and consistent with the system’s rules and constraints. 

In other words, a sound event-based system will ensure that events are processed 

correctly and that the system remains in a valid state at all times. In this paper, we 

consider the soundness of EBS in the meaning that, the system must preserve 

temporal constraints specification of events. 

Definition 11 (Soundness of event-based system). An event-based system 

EBS is sound at runtime if and only if with two events evt𝑖, evtj which have causal 

relationship cr〈evt𝑖 , evt𝑗〉 and constrained in the specification SP,  

SP ∶= before(evt𝑖 , evtj )meet(evt𝑖 , evt𝑗 )start(evt𝑖 , evtj )overlap(evt𝑖 , evt𝑗 ) 

 finish(evt𝑖 , evt𝑗 )  during(evt𝑖 , evt𝑗 ) equal(evt𝑖 , evt𝑗 ), then all executed 

events evt𝑖, evt𝑗 must hold SP. 

Proposition 1 (Checking the soundness of EBS). The correctness of an EBS 

can be checked by demonstrating that all pairs of events (evt𝑖, evt𝑗) occurring before 

a time point t (t < current_time) must hold SP. 
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Proof. We know that programs are typically designed to be deterministic, 

meaning that given the same inputs and initial state, they will produce the same 

outputs. Determinism ensures that the program’s behavior remains consistent 

regardless of when it is executed. In addition, consistency is facilitated by 

maintaining a stable execution environment. This includes using a stable operating 

system, hardware, and software dependencies. Changes in the environment can 

introduce variability and potentially impact the behavior of the program. 

As the determinism of the software programs and suppose that an EBS system 

has a stable environment, instead of proving that EBS is soundness at all times, we 

just need to prove that all events (evt𝑖, evt𝑗) taking place before a time point t  

(t < current_time), they must hold SP. 

With Proposition 1, if we detect the violation of the events executed in EBS with 

its specification, then we conclude that the EBS is unsound, but if we have not 

detected the violation yet, we cannot conclude anything about the soundness of the 

EBS. Proposition 1 is the basis on which we build a tool to check automatically the 

soundness of an EBS because the data in the log file that records the events’ execution 

can be used for checking against temporal constraints specification. 

Proposition 2 (Solvable algorithm). An event-based system can be checked 

for soundness at runtime in polynomial time. 

Proof. Suppose that, we have m constraints declared in SP, the log file of the 

EBS has n tuples (event𝑅𝑘 , startTime𝑘 ,  endTime𝑘), 𝑘 =  1, … , 𝑛. The checking 

program performs the following operations to check the soundness of EBS: 

For each pair (eventS𝑖, eventS𝑗) in SP do: Check if  ∃(eventR𝑖, 

eventR𝑗) hold the specification (eventS𝑖, eventS𝑗), ∀𝑖, 𝑗 | 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑛.   /*this  

requires at most n2 comparisons operations */ 

Thus, we can conclude that the time complexity of the checking program is 

polynomial which is proportional to the square of the log file size and the number of 

temporal constraints in the specification (𝑂(𝑚 × 𝑛2)). 

3.2. Approach to checking EBS at runtime 

From the analysis of the model formalization of EBS, we propose an approach to 

verify the soundness of an event-based system concerning its specification at runtime. 

The verification process (Fig. 1) can be described that, with an event-based 

system running, we get the properties of executed events (event name, start time, end 

time, etc.) of EBS into a log file. Data preprocessing uses techniques to prepare raw 

data for establishing a table with three columns (event name, start time, and end time) 

before writing it into a log file. From the data provided in the log file and specification 

file of the EBS system, we implement algorithms to check the soundness of EBS (see 

Proposition 1, Proposition 2). 
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Fig. 1. Checking the soundness of Event Based Systems 

Algorithm 1. Checking temporal relation before(evt𝑖, evt𝑗) 

Input: Log data of events, specification before(evt𝑖, evt𝑗) 

Ouput: Check if all events evt𝑖, evt𝑗  hold the specification 

Extract all events type evt𝑖, into a set SE𝑖  

Extract all events type evt𝑗  into a set SE𝑗  

for each evt𝑗 ∈ SE𝑗 do 

if ∄evt𝑖 ∈ SE𝑖 such that causality(evt𝑖, evt𝑗) then  

  return FALSE 

else 

 if(evt𝑖 . endTime = UNDEFINED)  (evt𝑖 . endTime ≥ evt𝑗 . startTime) then 

     return FALSE 

  end 

end 

end 

return TRUE 

We may consider an example of the algorithm to check the before relationship 

between two events evt𝑖, evt𝑗. In the normal case, if the first event will end before 

the occurrence of the second event, we log data and verify all the conditions of before 

relation in Definition 4. In an exceptional case, suppose that, the log file of the system 

is get before the moment t, event evt𝑖 is still running, we cannot determine when evt𝑖 

will end, and when the event evt𝑗 will occur. Then, if the event  evt𝑖 is logged, it has 

already started but it has not ended yet, the end time of the event, in this case, is 

interpreted by endTime = UNDEFINED. The algorithm checking the relation before 

between two events evt𝑖, evt𝑗 presented in Algorithm 1, is of time complexity O(n2). 

Note that, when building algorithms, for each pair of events (evt𝑖, evt𝑗) which 

needs to check the temporal relation, we have defined a boolean function 

causality(evt𝑖, evt𝑗) which aims at checking whether two events evt𝑖 and evt𝑗  have 

the relation of causality (see Definition 3).  
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Similarly, we can build other algorithms to check the remaining temporal 

constraints in Allen’s thirteen atomic interval temporal relations. 

4. A case study and a support tool 

In this section, we present a case study of Intelligent Transportation System that is 

deployed using Event Driven Architecture. We also introduce a support tool VER of 

the approach proposed in the Section 3 and illustrate how the tool VER can check the 

temporal constraints of events in the case study. 

4.1. Intelligent transportation system 

The Intelligent Transportation System (ITS) focusses on the aspects of Traffic 

Control. Various architecture systems have been implemented depending on the 

project’s requirements and the features needed in the system. However, the 

architecture for Traffic Control Systems in this paper is deployed on the Event Driven 

Architecture. This architecture allows components of the system (such as sensors, 

mobile applications, servers, etc.) to send and receive traffic-related events such as 

traffic flow information, road conditions, accidents, and traffic jams. The components 

of the ITS architecture (Fig. 2) can be summarized as follows. 

 Broker. It is the intermediate component between publishers and subscribers. 

The broker receives events from publishers and forwards them to registered 

subscribers. The broker can also perform tasks such as filtering and classifying events 

before sending them to subscribers. Examples of popular broker technologies are 

Apache Kafka, RabbitMQ, or AWS SNS. 

 Publishers. These are components that create events and send them to pre-

registered channels (topics). In a road traffic monitoring system, publishers can be 

sensors placed on the streets, mobile applications that allow users to report traffic 

conditions, or intelligent license plate reading systems. The events that publishers 

create can include information about road conditions, traffic flow, travel speed, etc. 

 Subscribers. These are components that subscribe to receive events from 

corresponding channels. In a road traffic monitoring system, subscribers can be 

mobile applications that display traffic information to users, monitoring systems to 

detect traffic accidents and issue warnings, or fleet management systems to update 

traffic conditions. Subscribers can subscribe to receive events from multiple channels 

to handle more complex situations. 

 Channels. These are the channels through which events are sent. In a traffic 

monitoring system, channels can be classified by road conditions, geographic 

location, vehicle type, or by agents causing traffic situations such as accidents or 

congestion. Channels help to classify events and deliver them to the corresponding 

subscribers for processing. 
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Fig. 2. Overview architecture of the Intelligent Transportation System 

Besides, in an intelligent road traffic monitoring system, depending on the 

system’s requirements and scale, there can be a variety of different events such as 

Road accidents occur, Vehicles exceed the speed limit on the road, Vehicles run on 

red lights, etc. We describe certain temporal relationships between events of the ITS 

as follows. 

 When a train runs in a residential area, the warning bell system will ring. To 

achieve this purpose, the system must install sensors on the rails near the residential 

area. When the sensors detect a train starting to enter the residential area, these 

sensors will activate the warning bell system located in that specific area, so that other 

vehicles know not to enter during this time. Therefore, the event of the warning bell 

ringing must know the cause of the train running on which railway and in which area 

it caused the warning. 

 The event of the traffic light turning red occurs right before the event of the 

traffic light turning green. At intersections, traffic light systems are installed. The 

lights have three colors: green, yellow, and red, which constantly change states. 

Vehicles must stop when they encounter a red light and are allowed to move when 

the light changes to green. 

 The event of detecting a vehicle running a red light triggers the event of 

sending a notification to the system: Sensors and surveillance cameras are installed 

at intersections to detect vehicles running red lights, and immediately send 

information to the monitoring system for processing. The detection and notification 

events occur simultaneously and carry information about each other to determine the 

location and cause of the event. 

 Event of card swiping at tollbooths occurs before the event of barrier gate 

opening: The driver swipes the card at the tollbooth, and the system uses sensors or 

license plate recognition systems to identify the vehicle approaching the tollbooth. 

After the system successfully verifies the payment, the barrier gate will automatically 

open for the vehicle to pass through. Each card-swiping event can only have one 

barrier gate opening event, and they have information about each other. 

The description of temporal relations between events of ITS can be summarized 

in the Table 2. 
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Table 2. The temporal relationship between events 

Symbol Event name Relation 

E1 Train running on the track E3 during E1 

E2 Train running in residential area E2 equal E3 

E3 Bell ringing E3 during E1 

E4 Red traffic light E4 meet E5 

E5 Green traffic light E5 start E1 

E6 Vehicle running a red light E6 start E7 

E7 Send a notification to the system E6 start E7 

E8 Scan license plate E8 before E9 

E9 Door open E8 before E9 

4.2. A support tool 

We have used Java programming language to build a support tool, named VER (The 

source code of the tool can be found at https://github.com/Hai0612/VER). VER 

helps system developers to analyze automatically and resolve errors that have 

occurred during event-based system execution, locate the position of errors, and 

provide solutions for fixing them. The overview architecture of VER is presented in 

Fig. 1. 

As we can see in Fig. 1, the core of VER is the verification module which 

analyzes the events and contains algorithms to check the soundness of the EBS. The 

inputs of the tool are the logging file and temporal constraints specification. The log 

file gets the properties of executed events (event name, start time, end time, etc.). The 

system's specification constrains temporal relations between events. If the system is 

sound then there is no violation reported in the output screen. But in case the tool 

detects the unsound of the system, the tool will point out report violations and indicate 

the reason. 

Applying the case study of ITS with the VER tool to the experimental results 

shown in Table 3, we can see that, the events E2 and E3 have an “equal” relationship 

in the specification but there exists an occurrence of event E2 with an end time not 

equal to the one of event E3, then the VER tool must display a violation report. 

Similarly, the “start” relationship between events E6 and E7 is described in the 

specification but the start time of event E6 and event E7 is different. Then the 

notification of violation reports of VER is shown as in Fig 3. 

Table 3. Experimental results 

Symbol Event name 
Start, 

ms 

End, 

ms 

Relation 

(specification) 

Verification 

result 

E1 Train running on the track 167975649114 167975650733 E3 during E1 soundness 

E2 
Train running in residential 

area 
168079590482 168085653451 E2 equal E3 not sound 

E3 Bell ringing 168079590483 169875650228 E3 during E1 soundness 

E4 Red traffic light 167975652337 167975652841 E4 meet E5 soundness 

E5 Green traffic light 167975652841 167975653342 E5 start E1 not sound 

E6 Vehicle running a red light 168079589874 169075665008 E6 start E7 not sound 

E7 
Send a notification to the 

system 
168079590380 167975665509 E6 start E7 soundness 

E8 Scan license plate 167975652340 167975652841 E8 before E9 soundness 

E9 Door open 167975653043 167975653343 E8 before E9 soundness 
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4.3. Analysis of results 

The result of the VER tool determines whether the software system is currently 

running in accordance with its specifications. In cases where the software deviates 

from the specified requirements, the tool will identify the violations in the events that 

do not adhere to the specified constraints. This tool serves as a means for system 

developers to analyze and address errors that occur during program execution, 

pinpoint the location of errors, and provide solutions for correction. 

The VER tool is built on algorithms that analyze information from events, their 

timing, and the sequence of their occurrences. Simultaneously, these algorithms are 

designed to detect constraint violations between events in real time, helping minimize 

damage in case of incidents. 

We propose implementing an event-driven system as a smart traffic monitoring 

system. It provides a flexible testing framework that allows users to test events in 

various situations. This system enables recording and analyzing traffic-related events 

such as traffic flow status, traffic light conditions, traffic accidents, traffic law 

violations, and many other events. This system is not just a simulation program to 

build a verification tool; it also holds significant practical value. 

With this tool, developers can easily test and monitor events happening in the 

system, helping them detect and rectify errors as well as improve the performance 

and reliability of the application. Through testing on a simulated system, the 

verification results are confirmed to be accurate and comprehensive. The verification 

results will be evaluated and reported back to the system to help them better 

understand the accuracy of events in the system.  

 
Fig. 3. Violation reports of the support tool 

Despite the positive results achieved above, the verification tool also has some 

limitations and challenges. Due to the system’s use of the publish-subscribe 

mechanism, handling and distributing events become challenging when the number 

of events increases dramatically, leading to congestion in the system. This requires 

enhancing processing capabilities and re-evaluating event processing algorithms in 

the system. 
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5. Conclusion and future works 

In conclusion, this paper presented an approach for checking temporal constraints of 

events in EBS at runtime. The properties of software systems should be analyzed and 

checked to ensure that the running system is in compliance with its requirements, 

including temporal constraints of events in EBS. The proposed approach uses the data 

in the log file of event occurrence periods and the specification of temporal 

constraints as inputs for the checking process. A series of algorithms are provided to 

check the satisfaction of temporal constraints. The approach has been implemented 

as a support tool that has been applied to a real-world EDA application, an intelligent 

transportation system. The experimental results demonstrate its effectiveness in 

detecting violations of temporal constraints. 

However, like the software testing technique, we say that the system is not sound 

if the checking approach detects violations of the running system with its 

specification, we cannot ensure the soundness of the events system if we have not 

found the violations. 

Future work could explore the integration of the proposed approach with other 

runtime verification and monitoring techniques, such as model-based testing and 

runtime monitoring, to enhance the reliability and robustness of the system. 

Additionally, the scalability and performance of the approach could be further 

evaluated on larger and more complex systems; we are also improving algorithms in 

the VER tool to work with the big log file. Overall, the proposed approach and its 

tool offer a promising solution for ensuring the correctness of event-based systems 

with other properties at runtime. 
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