
 82

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 24, No 1

Sofia 2024 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2024-0005

Checking Temporal Constraints of Events in EBS at Runtime

Thanh-Binh Trinh1, Hanh-Phuc Nguyen2, Dinh-Hai Nguyen3,

Van-Khanh To3, Ninh-Thuan Truong3

1Faculty of Computer Science Phenikaa University, Hanoi, Vietnam
2VMU – Vietnam Maritime University, Haiphong, Vietnam
3VNU University of Engineering and Technology, Hanoi, Vietnam

E-mails: binh.trinhthanh@phenikaa-uni.edu.vn phucnh@vimaru.edu.vn 19020278@vnu.edu.vn

khanhtv@vnu.edu.vn thuantn@vnu.edu.vn

Abstract: As a kind of software system, the Event-Based Systems (EBS) respond to

events rather than executing a predefined sequence of instructions. Events usually

occur in real time, so it is crucial that they are processed in the correct order and

within temporal constraints. The objective of this work is to propose an approach to

check if events of EBS at runtime preserve the specification of temporal constraints.

To form the approach by logic process, we have formalized the EBS model, through

which, we have proved that the complexity of the checking algorithms is only

polynomial. The approach has been implemented as a tool (VER) to check EBS at

runtime automatically. The results of the proposed method are illustrated by checking

a real-world Event Driven Architecture (EDA) application, an Intelligent

transportation system.

Keywords: Checking tool, Event-based systems, Runtime verification, Temporal

constraints.

1. Introduction

Software verification [4] is a crucial process in software engineering that involves

ensuring that a software system or component meets specified requirements and

behaves as intended. The goal of verification is to identify and fix issues early in the

development process, reducing the likelihood of defects and improving the overall

quality and reliability of the software. Runtime verification [3, 18] is a part of the

software verification. It is a computing system analysis and execution approach based

on extracting information from a running system and using it to detect and possibly

react to observed behaviors satisfying or violating certain properties. Some very

particular properties, such as data race and deadlock freedom, are typically desired to

be satisfied by all systems and may be best implemented algorithmically. Other

properties can be more conveniently captured as formal specifications. Runtime

verification can be used for many purposes, such as security or safety policy

monitoring, debugging, testing, verification, and validation.

mailto:binh.trinhthanh@phenikaa-uni.edu.vn
mailto:phucnh@vimaru.edu.vn
mailto:19020278@vnu.edu.vn
mailto:khanhtv@vnu.edu.vn
mailto:thuantn@vnu.edu.vn

 83

Event-based systems are often designed using Event-Driven Architecture

(EDA), which is a style of software architecture that emphasizes the use of events

and event processing. An EDA [5] can help organizations achieve a flexible system

that can adapt to changes and make decisions in real-time. Real-time situational

awareness means that business decisions, whether manual or automated, can be made

using all of the available data that reflects the current state of software systems.

Events are captured as they occur from event sources such as Internet of Things (IoT)

devices, applications, and networks, allowing event producers and event consumers

to share status and response information in real-time.

Apache Kafka (see [5]) is a distributed data streaming platform that is a popular

event processing choice. It can handle publishing, subscribing to, storing, and

processing event streams in real-time. Apache Kafka supports a range of use cases

where high throughput and scalability are vital, and by minimizing the need for point-

to-point integrations for data sharing in certain applications, it can reduce latency to

milliseconds.

The verification of event-based systems requires specialized techniques and

tools that are designed to handle the challenges of these systems. Actually, several

methods have been proposed for the verification of EBS systems with temporal

constraints specification. However, these methods mainly concentrate on system

models by defining a language design [10], or representing EBS using Petri nets [20];

these methods are without executing the program, also known as static verification.

The runtime verification of event-based systems is a challenging work. The reason is

that:

 Large-scale distributed systems: Many event-based systems are large-scale

distributed systems that involve multiple components running on different machines,

making it difficult to coordinate and verify the behavior of the system as a whole.

 Difficulty in getting the execution time of events: execution events are

considered as threads or processes in parallel programs. The execution environment

may provide limited or no built-in support for measuring the execution time of events,

requiring developers to implement their own timing mechanisms.

In this paper, we propose an approach to check the execution of events in the

system if it satisfies their specification (runtime verification). The specification here

includes the temporal constraints, precisely, the relationship on the occurrence of

events in the system. In this approach, we get log files of the start times and end times

of events when the system executes. We then give algorithms to check that the

execution of events satisfies the temporal constraints in the specification. The

implementation in a support tool helps us to check the events-based systems in an

automatic manner.

The rest of the paper is organized as follows. Section 2 presents foundational

knowledge of EDA and briefly introduces some related works. Our main approach

for checking temporal constraints of events in EBS at runtime is presented in

Section 3. To illustrate the approach, we have implemented a support tool and give a

case study in Section 4. We conclude the paper and give some directions for future

works in Section 5.

 84

2. Background and related works

Event-Driven Architecture (EDA) [5] is an approach to software design and

architecture that emphasizes the production, detection, and consumption of events.

Events are meaningful occurrences or changes in a system, such as a user action, a

sensor reading, or a database update. In an EDA, events are used to trigger and

coordinate the communication between various components or services within a

system.

EDA provides a loosely coupled, scalable, and resilient architecture that can

handle large amounts of data and processing. It is often used in modern applications

such as microservices, IoT, and cloud computing, where scalability and

responsiveness are essential. EDA allows services to be decoupled from each other,

making them easier to maintain and update, as well as enabling the creation of

complex workflows and business processes.

In EDA, components can act as event producers, event consumers, or both.

Event producers generate events and publish them to a message broker or event bus,

while event consumers subscribe to events and receive them as they occur. This

decoupling of components allows for asynchronous communication and processing,

which can improve performance and scalability. The source of an event can be from

internal or external inputs. Events can be generated from a user, like a mouse click or

keystroke, an external source, such as a sensor output, or come from the system, like

loading a program.

Timing and order of events can be relevant for the processing of events and are

of special interest in EDA. Timing constraints are requirements on the timing

characteristics of a software design, usually expressed in terms of maximum or

minimum values for delays, clock frequencies, setup times, hold times, etc. Timing

constraints are used to ensure that the design meets its performance requirements and

operates correctly.

In event processing applications, it is common to have temporal constraints on

events. Temporal constraints are constraints on the temporal relationship between

events in a system. They specify when events must occur in relation to each other,

such as “event A must occur before event B” or “event C must occur within 100

milliseconds of event D”. Temporal constraints are used to ensure that the system

behaves correctly and meets its timing requirements.

An event is defined as the state change of one or more entities over a period of

time. Events occur over intervals of time and are correlated by their temporal

relationships. According to Allen’s axiomatization of time periods [13], there are

thirteen atomic relations b, bi, m, mi, o, oi, s, si, d, di, f, fi, eq that can hold between

two events, and they, respectively, represent as before, meets, overlaps, starts,

during, finishes, equal, and their inverses, as shown in Table 1.

There are many methods of studying how to integrate Allen’s thirteen atomic

interval temporal relations into software systems. However, these methods often

check event-based systems with temporal constraints that are usually done at a static

level [10, 20].

 85

Table 1. Allen’s thirteen atomic interval temporal relations to represent the temporal relations between

two events E1 and E2

Relations Symbol Inverse Pictorial meaning

E1 before E2 b bi

E1 meet E2 m mi

E1 overlaps E2 o oi

E1 starts E2 s si

E1 during E2 d di

E1 finishes E2 f fi

E1 equal E2 eq eq

In article [1], the authors discuss several extensions to the Event-Condition-

Action (ECA) rule paradigm to support advanced applications, including alternative

actions for capturing security violations, generalization of events and rules for

modeling a wider range of applications, and event detection modes for capturing

complex policies or situations. They also propose an extension of rule detection

modes to ensure the correct enforcement of specified rules and discuss the extensions

made to event detection graphs to implement these extensions. Overall, the focus of

the paper is on using the access control domain to drive the extensions needed for

expressiveness, specification, and execution of policies using the ECA paradigm. The

authors cover alternative actions, generalized event specification and detection, event

detection modes, and extensions to event detection graphs.

Article [19] discusses the linking of security policy to event-based systems,

which allows for formal reasoning about information security. The applications

addressed in the article involve highly confidential data that must be shared

dynamically and for historical analysis. In these applications, principals with rights

to access the data may be widely distributed across a federation of independent

administrative domains. Domain managers are responsible for the data held within

domains and transmitted from them, and security policy must be specified and

enforced to meet these obligations. The article uses healthcare as a running example

because the confidentiality of healthcare data must be guaranteed over many years.

The authors first consider how to enforce authorization policy at the client level

through parametrized Role-Based Access Control (RBAC) [16], taking context into

account. They then discuss the additional requirements for secure information flow

through the infrastructure components that contribute to communication within and

between distributed domains. Finally, the article shows how this approach supports

reasoning about event security in large-scale distributed systems.

Paper [11] discusses the issue of event inference in event-based systems. While

some events are generated externally and flow across distributed systems, others must

be inferred by the system itself. The challenge is to balance the need for inferring

events with certainty using complete information and providing quick notification of

newly revealed events. However, the actual occurrences of events may not match the

 86

ability of event-based systems to accurately infer them due to uncertainty stemming

from unreliable data sources, networks, fuzzy terminology, or the inability to

determine with certainty whether a phenomenon has occurred. The article presents

the state-of-the-art in event processing over uncertain data, including a classification

of uncertainty, a model for event processing over uncertain data, algorithmic

solutions for handling uncertainty, and a simple pattern language that supports

uncertainty. The article also highlights open issues and challenges in this research

area.

In the article [14], the authors present an Event-Driven cloud Architecture

(REDA) that helps process a large volume of real-time application data generated by

connected devices in the Internet of Things (IoT) network. REDA utilizes

technologies such as AWS IoT [6], MQTT [8], Apache Kafka, and Java Spring to

build an event-based data processing environment that is capable of efficiently and

cost-effectively processing real-time data. The article [9] discusses the use of Event-

Driven Architectures (EDA) for traffic management systems, which need to handle a

large volume of events generated by sensors. Traditional software architectures are

not optimized for the efficient processing of continuous event streams, making EDA

a new paradigm for event-based applications. The authors propose a reference

architecture for event-driven traffic management systems that allow for the analysis

and processing of complex event streams in real time. This approach is particularly

useful for decision support in sensor-based traffic control systems. The authors

illustrate their proposal with a case study in the domain of road traffic management.

Specifically, they report on the redesign of An Intelligent Transportation

Management System (ITMS) prototype for the high-capacity road network in Bilbao,

Spain.

In the area of runtime verification, there are several visual tools such as

Tracealyser [17], TuningFork [4], WindView [12], Vampir [15], Zinsight [21], and

TraceCompass [7] that have been deployed to display traces and provide insights into

the behavior of programs. Most of these tools focus on presenting traces in a timeline

view, which allows users to follow the flow of a program and understand its behavior

over time. This timeline view is convenient for understanding individual program

executions. However, none of these tools, to the best of our knowledge, extend or

leverage timing analysis in event based systems.

Because event-based systems rely heavily on the ordering and timing of events,

these systems are designed to respond to events as they occur in real-time, so it is

crucial that the events are processed in the correct order and within the specified time

constraints. Therefore, it really makes sense to check temporal constraints at runtime

of event based systems. If an event is processed out of order or if it takes too long to

process, it can cause significant problems for the system. Imagine an event-based

system that processes online orders for a retail store. If the system processes the

“payment” event before the “add to cart” event, the order will fail because the system

does not have a record of the items the customer wants to purchase. Similarly, if the

system takes too long to process the “checkout” event, the customer may become

frustrated and abandon the purchase. However, the traditional verification methods

 87

are not considered for verifying the occurrence period of events in EDA at runtime

and may lead to overlooking errors that occur during execution.

3. Model formalization and checking approach

In this section, we present the approach to check the temporal constraints of events

in event-based systems. To form the approach by logic process, first of all, we will

formalize the model of event systems and its elements, we will then provide the

runtime verification method using checking algorithms.

3.1. Model formalization

In practice, there are several architectures for an Event Based System (EBS).

However, they all adhere to the same operating principles. In order to easily discuss

the model and its elements participating in the verification process, we provide formal

definitions of elements in EBS and their operations.

Definition 1 (Event based system). An Event Based System is a tuple
〈𝐸, 𝑃, 𝑆, 𝐵, SP〉 which composed of a set of Events E, a set of Publishers P, a set of

Subscribers S, a Broker B which maps events from publishers P to subscribers S, and

the SPecification of the system SP.

Events are crucial elements in EBS, as they enable real-time communication,

coordination, and responsiveness. By leveraging the power of events, EBS can

provide timely and accurate information, automate processes, and improve overall

system performance and scalability. We define events as the Definition 2.

Definition 2 (Event). An event in EBS is a tuple 〈en, 𝑎, 〉, denoted by

evt = 〈en, 𝑎, 〉 where:

 en is the event name

 a is the set of actions

 ∈ [startTime, endTime]
Causal relationship between events refers to the relationship between cause-and-

effect, where one event is the cause of another event. In this context, the causality

relationship specifies that one event must happen with another event in temporal

constraints and that the occurrence of the first event is what triggers the second event.

Definition 3 (Causal relationship). Two events evti and evtj are said to have a

causal relationship, denote by cr = 〈evt𝑖 , evt𝑗〉 or cr〈evt𝑖 , evt𝑗〉 if and only if evt𝑗

occurs as a result of evt𝑖 (activation, influence) or vice versa.

From the causal relationship between two events in Definition 3, we define the

Allen’s thirteen atomic interval temporal relations in an EBS as the following

definitions.

We say that an event occurs before another one if an instance of the first event

ends, then the second event is triggered, we formalize this relation as in Definition 4.

Definition 4 (Before relation). An event evt𝑖 has a before relation with event

evt𝑗, denote by before(evt𝑖 , evt𝑗) iff:

 cr〈evt𝑖 , evt𝑗〉

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime] validTimeInterval(𝑖)

 88

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime] validTimeInterval(𝑗)

 𝑖 . endTime ≤ 𝑗 . startTime

 validTimeInterval() ∶= ∈ [. startTime, . endTime] . startTime <
. endTime

Two events are met each other when the interval of the first ends exactly when

the interval of the second event starts, we formalize this relation as in Definition 5.

Definition 5 (Meet relation). Two events evt𝑖 and evt𝑗 meet each other,

denoted by meet(evt𝑖 , evt𝑗) iff:

 cr〈evt𝑖 , evt𝑗〉

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime] validTimeInterval(𝑖)

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime] validTimeInterval(𝑗)

 𝑖 . endTime𝑗 . startTime

 validTimeInterval() ∶= ∈ [. startTime, . endTime] . startTime <
. endTime

Two events overlap each other if the interval of the first has not ended

meanwhile the interval of the second event is triggered. We formalize this relation as

in Definition 6.

Definition 6 (Overlaps relation). Event 𝑒𝑣𝑡𝑖 is said to have an overlap relation

with event evt𝑗, denoted by overlap(evt𝑖 , evt𝑗) iff:

 cr〈evt𝑖 , evt𝑗〉

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime] validTimeInterval(𝑖)

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime] validTimeInterval(𝑗)

 ((𝑖 . startTime > 𝑗 . startTime)(𝑖 . endTime >

𝑗 . endTime))((𝑖 . startTime < 𝑗 . startTime)(𝑖 . endTime < 𝑗 . endTime))

 validTimeInterval() ∶= ∈ [. startTime, . endTime] . startTime <
. endTime

An event starts another if an instance of the first event starts at the same time as

an instance of the second event, but ends earlier. We formalize this relation as in

Definition 7.

Definition 7 (Starts relation). Event evt𝑖 is said to have a start relation with

event evt𝑗, denoted by start(evt𝑖 , evt𝑗) iff:

 cr〈evt𝑖 , evt𝑗〉

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime] validTimeInterval(𝑖)

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime] validTimeInterval(𝑗)

 (𝑖 . startTime𝑗 . startTime)(𝑖 . endTime ≤ 𝑗 . endTime)

 validTimeInterval() ∶= ∈ [. startTime, . endTime] . startTime <
. endTime

An event occurs during another event if the interval of the first is contained in

the interval of the second, we define this relation as in Definition 8.

Definition 8 (During relation). Event evt𝑖 is said to have a during relation with

event evt𝑗, denoted by during(evt𝑖 , evt𝑗) iff:

 cr〈evt𝑖 , evt𝑗〉

 89

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime] validTimeInterval(𝑖)

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime] validTimeInterval(𝑗)

 (𝑖 . startTime > 𝑗 . startTime)(𝑖 . endTime < 𝑗 . endTime)

 validTimeInterval() ∶= ∈ [. startTime, . endTime] . startTime <
. endTime

One event finishes another one if an occurrence of the first ends at the same time

as an occurrence of the second event, but starts later. We formalize this relation as in

Definition 9.

Definition 9 (Finishes relation). Event evt𝑖 is said to have a finish relation with

event evt𝑗, denoted by finish(evt𝑖 , evt𝑗) iff:

 cr〈evt𝑖 , evt𝑗〉

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime] validTimeInterval(𝑖)

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime] validTimeInterval(𝑗)

 (𝑖 . startTime > 𝑗 . startTime)(𝑖 . endTime𝑗 . endTime)

 validTimeInterval() ∶= ∈ [. startTime, . endTime] . startTime <
. endTime

Two events are equal if they happen right at the same time, they start and end

the execution together, we formalize the equal relation as in Definition 10.

Definition 10 (Equal relation). Event evt𝑖 is said to have an equal relation with

event evt𝑗, denoted by equal(evt𝑖 , evt𝑗) iff:

 cr〈evt𝑖 , evt𝑗〉

 𝑖 ∈ [𝑖 . startTime, 𝑖 . endTime] validTimeInterval(𝑖)

 𝑗 ∈ [𝑗 . startTime, 𝑗 . endTime] validTimeInterval(𝑗)

 (𝑖 . startTime𝑗 . startTime)(𝑖 . endTime𝑗 . endTime)

 validTimeInterval() ∶= ∈ [. startTime, . endTime] . startTime <
. endTime

The soundness of an event-based system refers to its ability to ensure that all

events in the system are valid and consistent with the system’s rules and constraints.

In other words, a sound event-based system will ensure that events are processed

correctly and that the system remains in a valid state at all times. In this paper, we

consider the soundness of EBS in the meaning that, the system must preserve

temporal constraints specification of events.

Definition 11 (Soundness of event-based system). An event-based system

EBS is sound at runtime if and only if with two events evt𝑖, evtj which have causal

relationship cr〈evt𝑖 , evt𝑗〉 and constrained in the specification SP,

SP ∶= before(evt𝑖 , evtj)meet(evt𝑖 , evt𝑗)start(evt𝑖 , evtj)overlap(evt𝑖 , evt𝑗)

 finish(evt𝑖 , evt𝑗) during(evt𝑖 , evt𝑗) equal(evt𝑖 , evt𝑗), then all executed

events evt𝑖, evt𝑗 must hold SP.

Proposition 1 (Checking the soundness of EBS). The correctness of an EBS

can be checked by demonstrating that all pairs of events (evt𝑖, evt𝑗) occurring before

a time point t (t < current_time) must hold SP.

 90

Proof. We know that programs are typically designed to be deterministic,

meaning that given the same inputs and initial state, they will produce the same

outputs. Determinism ensures that the program’s behavior remains consistent

regardless of when it is executed. In addition, consistency is facilitated by

maintaining a stable execution environment. This includes using a stable operating

system, hardware, and software dependencies. Changes in the environment can

introduce variability and potentially impact the behavior of the program.

As the determinism of the software programs and suppose that an EBS system

has a stable environment, instead of proving that EBS is soundness at all times, we

just need to prove that all events (evt𝑖, evt𝑗) taking place before a time point t

(t < current_time), they must hold SP.

With Proposition 1, if we detect the violation of the events executed in EBS with

its specification, then we conclude that the EBS is unsound, but if we have not

detected the violation yet, we cannot conclude anything about the soundness of the

EBS. Proposition 1 is the basis on which we build a tool to check automatically the

soundness of an EBS because the data in the log file that records the events’ execution

can be used for checking against temporal constraints specification.

Proposition 2 (Solvable algorithm). An event-based system can be checked

for soundness at runtime in polynomial time.

Proof. Suppose that, we have m constraints declared in SP, the log file of the

EBS has n tuples (event𝑅𝑘 , startTime𝑘 , endTime𝑘), 𝑘 = 1, … , 𝑛. The checking

program performs the following operations to check the soundness of EBS:

For each pair (eventS𝑖, eventS𝑗) in SP do: Check if ∃(eventR𝑖,

eventR𝑗) hold the specification (eventS𝑖, eventS𝑗), ∀𝑖, 𝑗 | 𝑖 ≤ 𝑛, 𝑗 ≤ 𝑛. /*this

requires at most n2 comparisons operations */

Thus, we can conclude that the time complexity of the checking program is

polynomial which is proportional to the square of the log file size and the number of

temporal constraints in the specification (𝑂(𝑚 × 𝑛2)).

3.2. Approach to checking EBS at runtime

From the analysis of the model formalization of EBS, we propose an approach to

verify the soundness of an event-based system concerning its specification at runtime.

The verification process (Fig. 1) can be described that, with an event-based

system running, we get the properties of executed events (event name, start time, end

time, etc.) of EBS into a log file. Data preprocessing uses techniques to prepare raw

data for establishing a table with three columns (event name, start time, and end time)

before writing it into a log file. From the data provided in the log file and specification

file of the EBS system, we implement algorithms to check the soundness of EBS (see

Proposition 1, Proposition 2).

 91

Fig. 1. Checking the soundness of Event Based Systems

Algorithm 1. Checking temporal relation before(evt𝑖, evt𝑗)

Input: Log data of events, specification before(evt𝑖, evt𝑗)

Ouput: Check if all events evt𝑖, evt𝑗 hold the specification

Extract all events type evt𝑖, into a set SE𝑖

Extract all events type evt𝑗 into a set SE𝑗

for each evt𝑗 ∈ SE𝑗 do

if ∄evt𝑖 ∈ SE𝑖 such that causality(evt𝑖, evt𝑗) then

 return FALSE

else

 if(evt𝑖 . endTime = UNDEFINED) (evt𝑖 . endTime ≥ evt𝑗 . startTime) then

 return FALSE

 end

end

end

return TRUE

We may consider an example of the algorithm to check the before relationship

between two events evt𝑖, evt𝑗. In the normal case, if the first event will end before

the occurrence of the second event, we log data and verify all the conditions of before

relation in Definition 4. In an exceptional case, suppose that, the log file of the system

is get before the moment t, event evt𝑖 is still running, we cannot determine when evt𝑖

will end, and when the event evt𝑗 will occur. Then, if the event evt𝑖 is logged, it has

already started but it has not ended yet, the end time of the event, in this case, is

interpreted by endTime = UNDEFINED. The algorithm checking the relation before

between two events evt𝑖, evt𝑗 presented in Algorithm 1, is of time complexity O(n2).

Note that, when building algorithms, for each pair of events (evt𝑖, evt𝑗) which

needs to check the temporal relation, we have defined a boolean function

causality(evt𝑖, evt𝑗) which aims at checking whether two events evt𝑖 and evt𝑗 have

the relation of causality (see Definition 3).

 92

Similarly, we can build other algorithms to check the remaining temporal

constraints in Allen’s thirteen atomic interval temporal relations.

4. A case study and a support tool

In this section, we present a case study of Intelligent Transportation System that is

deployed using Event Driven Architecture. We also introduce a support tool VER of

the approach proposed in the Section 3 and illustrate how the tool VER can check the

temporal constraints of events in the case study.

4.1. Intelligent transportation system

The Intelligent Transportation System (ITS) focusses on the aspects of Traffic

Control. Various architecture systems have been implemented depending on the

project’s requirements and the features needed in the system. However, the

architecture for Traffic Control Systems in this paper is deployed on the Event Driven

Architecture. This architecture allows components of the system (such as sensors,

mobile applications, servers, etc.) to send and receive traffic-related events such as

traffic flow information, road conditions, accidents, and traffic jams. The components

of the ITS architecture (Fig. 2) can be summarized as follows.

 Broker. It is the intermediate component between publishers and subscribers.

The broker receives events from publishers and forwards them to registered

subscribers. The broker can also perform tasks such as filtering and classifying events

before sending them to subscribers. Examples of popular broker technologies are

Apache Kafka, RabbitMQ, or AWS SNS.

 Publishers. These are components that create events and send them to pre-

registered channels (topics). In a road traffic monitoring system, publishers can be

sensors placed on the streets, mobile applications that allow users to report traffic

conditions, or intelligent license plate reading systems. The events that publishers

create can include information about road conditions, traffic flow, travel speed, etc.

 Subscribers. These are components that subscribe to receive events from

corresponding channels. In a road traffic monitoring system, subscribers can be

mobile applications that display traffic information to users, monitoring systems to

detect traffic accidents and issue warnings, or fleet management systems to update

traffic conditions. Subscribers can subscribe to receive events from multiple channels

to handle more complex situations.

 Channels. These are the channels through which events are sent. In a traffic

monitoring system, channels can be classified by road conditions, geographic

location, vehicle type, or by agents causing traffic situations such as accidents or

congestion. Channels help to classify events and deliver them to the corresponding

subscribers for processing.

 93

Fig. 2. Overview architecture of the Intelligent Transportation System

Besides, in an intelligent road traffic monitoring system, depending on the

system’s requirements and scale, there can be a variety of different events such as

Road accidents occur, Vehicles exceed the speed limit on the road, Vehicles run on

red lights, etc. We describe certain temporal relationships between events of the ITS

as follows.

 When a train runs in a residential area, the warning bell system will ring. To

achieve this purpose, the system must install sensors on the rails near the residential

area. When the sensors detect a train starting to enter the residential area, these

sensors will activate the warning bell system located in that specific area, so that other

vehicles know not to enter during this time. Therefore, the event of the warning bell

ringing must know the cause of the train running on which railway and in which area

it caused the warning.

 The event of the traffic light turning red occurs right before the event of the

traffic light turning green. At intersections, traffic light systems are installed. The

lights have three colors: green, yellow, and red, which constantly change states.

Vehicles must stop when they encounter a red light and are allowed to move when

the light changes to green.

 The event of detecting a vehicle running a red light triggers the event of

sending a notification to the system: Sensors and surveillance cameras are installed

at intersections to detect vehicles running red lights, and immediately send

information to the monitoring system for processing. The detection and notification

events occur simultaneously and carry information about each other to determine the

location and cause of the event.

 Event of card swiping at tollbooths occurs before the event of barrier gate

opening: The driver swipes the card at the tollbooth, and the system uses sensors or

license plate recognition systems to identify the vehicle approaching the tollbooth.

After the system successfully verifies the payment, the barrier gate will automatically

open for the vehicle to pass through. Each card-swiping event can only have one

barrier gate opening event, and they have information about each other.

The description of temporal relations between events of ITS can be summarized

in the Table 2.

 94

Table 2. The temporal relationship between events

Symbol Event name Relation

E1 Train running on the track E3 during E1

E2 Train running in residential area E2 equal E3

E3 Bell ringing E3 during E1

E4 Red traffic light E4 meet E5

E5 Green traffic light E5 start E1

E6 Vehicle running a red light E6 start E7

E7 Send a notification to the system E6 start E7

E8 Scan license plate E8 before E9

E9 Door open E8 before E9

4.2. A support tool

We have used Java programming language to build a support tool, named VER (The

source code of the tool can be found at https://github.com/Hai0612/VER). VER

helps system developers to analyze automatically and resolve errors that have

occurred during event-based system execution, locate the position of errors, and

provide solutions for fixing them. The overview architecture of VER is presented in

Fig. 1.

As we can see in Fig. 1, the core of VER is the verification module which

analyzes the events and contains algorithms to check the soundness of the EBS. The

inputs of the tool are the logging file and temporal constraints specification. The log

file gets the properties of executed events (event name, start time, end time, etc.). The

system's specification constrains temporal relations between events. If the system is

sound then there is no violation reported in the output screen. But in case the tool

detects the unsound of the system, the tool will point out report violations and indicate

the reason.

Applying the case study of ITS with the VER tool to the experimental results

shown in Table 3, we can see that, the events E2 and E3 have an “equal” relationship

in the specification but there exists an occurrence of event E2 with an end time not

equal to the one of event E3, then the VER tool must display a violation report.

Similarly, the “start” relationship between events E6 and E7 is described in the

specification but the start time of event E6 and event E7 is different. Then the

notification of violation reports of VER is shown as in Fig 3.

Table 3. Experimental results

Symbol Event name
Start,

ms

End,

ms

Relation

(specification)

Verification

result

E1 Train running on the track 167975649114 167975650733 E3 during E1 soundness

E2
Train running in residential

area
168079590482 168085653451 E2 equal E3 not sound

E3 Bell ringing 168079590483 169875650228 E3 during E1 soundness

E4 Red traffic light 167975652337 167975652841 E4 meet E5 soundness

E5 Green traffic light 167975652841 167975653342 E5 start E1 not sound

E6 Vehicle running a red light 168079589874 169075665008 E6 start E7 not sound

E7
Send a notification to the

system
168079590380 167975665509 E6 start E7 soundness

E8 Scan license plate 167975652340 167975652841 E8 before E9 soundness

E9 Door open 167975653043 167975653343 E8 before E9 soundness

 95

4.3. Analysis of results

The result of the VER tool determines whether the software system is currently

running in accordance with its specifications. In cases where the software deviates

from the specified requirements, the tool will identify the violations in the events that

do not adhere to the specified constraints. This tool serves as a means for system

developers to analyze and address errors that occur during program execution,

pinpoint the location of errors, and provide solutions for correction.

The VER tool is built on algorithms that analyze information from events, their

timing, and the sequence of their occurrences. Simultaneously, these algorithms are

designed to detect constraint violations between events in real time, helping minimize

damage in case of incidents.

We propose implementing an event-driven system as a smart traffic monitoring

system. It provides a flexible testing framework that allows users to test events in

various situations. This system enables recording and analyzing traffic-related events

such as traffic flow status, traffic light conditions, traffic accidents, traffic law

violations, and many other events. This system is not just a simulation program to

build a verification tool; it also holds significant practical value.

With this tool, developers can easily test and monitor events happening in the

system, helping them detect and rectify errors as well as improve the performance

and reliability of the application. Through testing on a simulated system, the

verification results are confirmed to be accurate and comprehensive. The verification

results will be evaluated and reported back to the system to help them better

understand the accuracy of events in the system.

Fig. 3. Violation reports of the support tool

Despite the positive results achieved above, the verification tool also has some

limitations and challenges. Due to the system’s use of the publish-subscribe

mechanism, handling and distributing events become challenging when the number

of events increases dramatically, leading to congestion in the system. This requires

enhancing processing capabilities and re-evaluating event processing algorithms in

the system.

 96

5. Conclusion and future works

In conclusion, this paper presented an approach for checking temporal constraints of

events in EBS at runtime. The properties of software systems should be analyzed and

checked to ensure that the running system is in compliance with its requirements,

including temporal constraints of events in EBS. The proposed approach uses the data

in the log file of event occurrence periods and the specification of temporal

constraints as inputs for the checking process. A series of algorithms are provided to

check the satisfaction of temporal constraints. The approach has been implemented

as a support tool that has been applied to a real-world EDA application, an intelligent

transportation system. The experimental results demonstrate its effectiveness in

detecting violations of temporal constraints.

However, like the software testing technique, we say that the system is not sound

if the checking approach detects violations of the running system with its

specification, we cannot ensure the soundness of the events system if we have not

found the violations.

Future work could explore the integration of the proposed approach with other

runtime verification and monitoring techniques, such as model-based testing and

runtime monitoring, to enhance the reliability and robustness of the system.

Additionally, the scalability and performance of the approach could be further

evaluated on larger and more complex systems; we are also improving algorithms in

the VER tool to work with the big log file. Overall, the proposed approach and its

tool offer a promising solution for ensuring the correctness of event-based systems

with other properties at runtime.

Acknowledgement: This research has been done under the research project QG.21.29 “Approaches in

Security Verification and Testing of Software Systems” of Vietnam National University, Hanoi.

R e f e r e n c e s

1. A d a i k k a l a v a n, R., S. C h a k r a v a r t h y. Generalization of Events and Rules to Support

Advanced Applications. – In: S. Helmer, A. Poulovassilis, F. Xhafa, Eds. Reasoning in Event-

Based Distributed Systems. Berlin, Heidelberg, Springer, 2011, pp. 173-193.
2. B a c o n, D., P. C h e n g, D. F r a m p t o n, D. G r o v e, M. H a u s w i r t h, V. R a j a n.

Demonstration: Online Visualization and Analysis of Real-Time Systems with Tuningfork. –

In: Compiler Construction. Berlin, Heidelberg, Springer, 2006, pp. 96-100.

3. B a r t o c c i, E., Y. F a l c o n e. Lectures on Runtime Verification. Introductory and Advanced

Topics. Springer, 10457, LNCS, pp. 1-240 (in press).

4. B l o e m, R., R. D i m i t r o v a, C. F a n, N. S h a r y g i n a. Software Verification. – In: Proc. of

13th International Conference, VSTTE 2021, New Haven, CT, USA, 2021.

5. B e n, S. Designing Event-Driven Systems. O’Reilly Media, 2018.

6. B l o k d y k, G. AWS IoT A Complete Guide. 5STARCooks, 2021.

7. T. Compass. Trace Compass, 2015.

https://projects.eclipse.org/projects/tools.tracecompass
8. C o p e, S. MQTT For Complete Beginners: Learn the Basics of the MQTT Protocol. Kindle Edition,

2020.

9. D u n k e l, J., A. F e r n a n d e z, R. O r t i z, S. O s s o w s k i. Event-Driven Architecture for

Decision Support in Traffic Management Systems. – In: Proc. of 11th International IEEE

Conference on Intelligent Transportation Systems, Beijing, China, 2008., pp. 7-13.

https://link.springer.com/book/10.1007/978-3-030-95561-8#author-1-0
https://link.springer.com/book/10.1007/978-3-030-95561-8#author-1-1
https://link.springer.com/book/10.1007/978-3-030-95561-8#author-1-2
https://link.springer.com/book/10.1007/978-3-030-95561-8#author-1-3
https://projects.eclipse.org/projects/tools.tracecompass

 97

10. E c k e r t, M. Complex Event Processing with XchangeEQ: Language Design, Formal Semantics,

and Incremental Evaluation for Querying Events. PhD Thesis, Ludwig Maximilians University

Munich, Germany, 2008.

11. G a l, A., S. W a s s e r k r u g, O. E t z i o n. Event Processing over Uncertain Data. – In: S. Helmer,

A. Poulovassilis, F. Xhafa, Eds. Reasoning in Event-Based Distributed Systems. Berlin,

Heidelberg, Springer, 2011, pp. 279-304.

12. H i s s a m, S., G. M o r e n o, D. P l a k o s h, I. S a v o, M. S t e l m a r c z y k. Predicting the

Behavior of a Highly Configurable Component Based Real-Time System. – In: Proc. of

Euromicro Conference on RealTime Systems, Prague, Czech Republic, 2008. pp. 57-68.

13. A l l e n, J. F. Maintaining Knowledge about Temporal Intervals. – Communications of the ACM,

Vol. 26, 1983, pp. 832-843.

14. K h r i j i, S., Y. B e n b e l g a c e m, R. C h ́e o u r, D. E. H o u s-S a i n i, O. K a n o u n. Design

and Implementation of a Cloud-Based Event-Driven Architecture for Real-Time Data

Processing in Wireless Sensor Networks. – The Journal of Supercomputing, 2022, pp. 1-28.

15. K n u p f e r, A., H. B r u n s t, J. D o l e s c h a l, M. J u r e n z, M. L i e b e r, H. M i c k l e r,

M. M u l l e r, W. N a g e l. The Vampir Performance Analysis Tool Set. – In: Tools for High

Performance Computing. Berlin, Heidelberg, Springer, 2008, pp. 139-155.

16. L i, N., Z. M a o. Administration in Role-Based Access Control. – In: Proc. of 2nd ACM Symposium

on Information, Computer and Communications Security (ASIACCS’07), ACM, 2007,

pp. 127-138.

17. M u n k, P. Visualization of Scheduling in Realtime Embedded Systems. PhD Thesis, University of

Stuttgart, 2013.

18. P a c e, G. J., C. C o l o m b o. Runtime Verification. Springer, 2022.

19. S h a n d, B., P. P i e t z u c h, I. P a p a g i a n n i s, K. M o o d y, M. M i g l i a v a c c a,

D. M. E y e r s, J. B a c o n. Security Policy and Information Sharing in Distributed Event-

Based Systems. – In: S. Helmer, A. Poulovassilis, F. Xhafa, Eds. Reasoning in Event-Based

Distributed Systems. Berlin, Heidelberg, Springer, 2011, pp. 151-172.

20. V a n d e r A a l s t, W. M. P. Formalization and Verification of Event-Driven Process Chains. –

Inf. Softw. Technol., Vol. 41, 1999, No 10, pp. 639-650.

21. W i m, P., H. S t e p h e n. Zinsight: A Visual and Analytic Environment for Exploring Large Event

Traces. – In: Proc. of 5th International Symposium on Software Visualization (SOFTVIS’10),

ACM, 2010, pp. 143-152.

Received: 11.09.2023; Second Version: 10.11.2023; Accepted: 28.11.2023

