
 21

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 24, No 1

Sofia  2024 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2024-0002

A Survey on Lightweight Cryptographic Algorithms in IoT

P. S. Suryateja, K. Venkata Rao

Dept. of CS&SE, AUCOE, Andhra University, Visakhapatnam, AP, India

E-mails: suryateja.pericherla@gmail.com professor_venkat@yahoo.com

Abstract: The Internet of Things (IoT) will soon penetrate every aspect of human life.

Several threats and vulnerabilities are present due to the different devices and

protocols used in an IoT system. Conventional cryptographic primitives or

algorithms cannot run efficiently and are unsuitable for resource-constrained devices

in IoT. Hence, a recently developed area of cryptography, known as lightweight

cryptography, has been introduced, and over the years, numerous lightweight

algorithms have been suggested. This paper gives a comprehensive overview of the

lightweight cryptography field and considers various popular lightweight

cryptographic algorithms proposed and evaluated over the past years for analysis.

Different taxonomies of the algorithms and other associated concepts were also

provided, which helps new researchers gain a quick overview of the field. Finally, a

set of 11 selected ultra-lightweight algorithms are analyzed based on the software

implementations, and their evaluation is carried out using different metrics.

Keywords: Lightweight cryptography, Lightweight cryptography algorithms, IoT

security, Cryptography in IoT, Lightweight cryptography in IoT, Ultra-lightweight

аlgorithms.

1. Introduction

IoT supports ubiquitous computing, which contains devices embedded with

microprocessors, microcontrollers, and other components to provide enhanced

services. The devices part of the IoT system can be divided into two categories. One

is the high-end devices, which contain devices like PCs, laptops, tablets, etc., and the

second is the low-end devices, which contain sensors, actuators, RFID tags, etc [1].

These devices often need more resources like processing power, RAM, ROM, battery

life, etc. So, there is a need to choose the communication protocols and other

underlying technologies carefully so that the performance of these devices does not

hinder the user experience [2]. The data communicated by these resource-constrained

devices in IoT must be protected to prevent unauthorized access or damage to the IoT

environment [3, 4]. So, it is inherent that various security mechanisms need to be

considered to find the best possible solution to secure those devices [5].

 22

Applying conventional cryptographic solutions to the resource-deprived devices

in IoT for securing the data is no longer an option as the system’s performance will

be degraded, and the lifetime of the devices will become less [1]. To overcome this,

researchers and institutes governing the standardization of various protocols and

algorithms introduced LightWeight Cryptography (LWC), which supports security

for the data and devices in IoT. This paper provides a comprehensive overview of

various popular lightweight cryptographic primitives or algorithms developed and

studied over the years. Different taxonomies are provided to aid the new researchers

in gaining a quick overview of the field. The contributions of this study are:

 A comprehensive survey of the existing lightweight cryptographic

algorithms.

 Various taxonomies to aid new researchers in getting an overview of the

LWC algorithms and associated concepts.

 A classification of existing LWC algorithms into ultra-lightweight, low-cost,

and lightweight algorithms, including the latest algorithms.

 An analysis of software-oriented ultra-lightweight algorithms.

 Security analysis of PRIDE, ITUbee, and IDEA ciphers.

2. Background

This section introduces the fundamentals related to lightweight cryptography, like the

metrics used to evaluate the performance of LWC algorithms, features, security

requirements to be satisfied, benchmarking tools, etc.

The resource-constrained devices in IoT are limited concerning different

resources like processing power, RAM, ROM, battery, storage, and connectivity.

Based on the capabilities of the devices, the implementations of LWC algorithms can

be divided into three categories: ultra-lightweight, low-cost, and lightweight [2]. The

ultra-lightweight implementations are for the most constrained devices like the

standard 8051 microcontroller and the ATtiny45. The low-cost devices are slightly

better than the ultra-lightweight devices and perform better, like the ATmega128.

Lightweight devices include the other devices that were reported in LWC. Hardware-

based implementations of LWC algorithms can be grouped based on the complexity

and chip area. Similarly, software implementations of LWC algorithms can be

grouped based on the RAM and ROM requirements. The summary of hardware and

software-based implementations categorization is given in Table 1.

Table 1. Categorization of hardware-based and software-based implementations

Implementation Hardware-based implementation Software-based implementation

Category Logic Gates Count ROM RAM

Ultra-Lightweight up to 1000 4 KB 256 Bytes

Low-cost up to 2000 4 KB 8 KB

Lightweight up to 3000 32 KB 8 KB

Designing and developing a new LWC algorithm requires a focus on three

features: security, cost, and performance [6]. To evaluate these features for LWC

algorithms, we need metrics. The cost can be measured using the physical area in

 23

terms of Gate Equivalent (GE), memory, and battery power. Performance can be

measured using latency and throughput. Finally, security can be measured in terms

of security level and various attack models [1]. Different metrics that can be used for

LWC algorithms are security level, hardware technology, throughput, latency, power

and energy consumption, RAM/ROM, efficiency, and figure of merit [1-3, 7, 8]. The

descriptions and corresponding formulae for evaluating the LWC algorithms are

given in Table 2.

Lightweight block ciphers can be developed by using smaller block sizes,

smaller key sizes, simpler or lesser number of rounds, and simpler key schedules than

those used in conventional cryptographic algorithms [9]. Developing new lightweight

hash functions can focus on reducing the output size and message sizes.

Table 2. Metrics for evaluating LWC algorithms

Metric Description

Security level

The security level is the logarithmic measure of the fastest known computational

attack and is measured in bits. In most cases, the security level is the length of the

key

Hardware

technology

It is measured using the Gate Equivalent (GE) metric or logic gates count, which is

calculated by dividing the layout area of implementation in m2 by the area of a

NAND2 gate

Throughput

It is measured in Kb per 1 s, the data processed by the encryption or decryption at a

specific processor frequency. In general, the frequency considered for hardware

implementation is 100 KHz, and for software implementation is 4 MHz

Latency
It is the number of clock cycles required for processing a single block by the

encryption or decryption operation

Power and

energy

consumption

The power is measured in W. Power is measured based on the hardware

technology used and the GE for hardware implementations. The average power of

0.004 W for 8-bit and 0.00135 W for 16-bit microcontrollers is considered for

software implementations.

Energy consumption per bit for both software and hardware implementations is

measured using the formula given below:

Energy = (Latency × Power) / (block size) (in J)

RAM/ROM

The amount of memory in RAM for storing the intermediate state is considered in

bytes. The amount of memory in ROM for storing the actual code of the

implementation is considered in bytes

Efficiency

It indicates the trade-off between the implementation size and performance. For

hardware implementations, efficiency is calculated using the formula given below:

Hardware Efficiency = Throughput / Complexity (in kg GE)

For software implementations efficiency is calculated using the formula given

below:

Software Efficiency = Throughput / Code Size (in KB)

Figure of merit

Figure of Merit (FOM) represents the system’s performance and includes the

power consumption. It is independent of the process involved. FOM can be

calculated using the formula given below.

FOM = T/A2,

where T is the throughput and A is the implementation area which is measured in

GE

Any LWC algorithm should satisfy four conditions: confidentiality, integrity,

authentication, and non-repudiation for accepting it as a perfectly secure algorithm

[5, 7, 10, 11]. Symmetric LWC algorithms can only guarantee the first three

conditions, whereas asymmetric LWC algorithms can also guarantee non-

 24

repudiation. Some major vulnerabilities in IoT are insufficient authentication and

authorization, insecure network services, absence of encryption and integrity

checking, insecure software and firmware, and lack of proper physical security [3]

[12]. Insecure system updates, privacy, and regulatory standards are significant IoT

challenges [1, 13]. Hence, there is a need to develop lightweight solutions to address

these vulnerabilities. Significant challenges for deploying various devices in IoT are

coordination among multiple networks supporting multiple protocols by integrating

them into an IP-based network and guaranteeing the security, privacy, and trust of

various entities [9].

There are different benchmarking tools for evaluating the performance of an

LWC implementation. The most widely used benchmarking tools are XBX,

ATHENA, BLOC, and FELICS [7]. After designing and implementing an LWC

algorithm, it must be studied or evaluated against different types of attacks. This

process of analyzing a cipher is known as cryptanalysis. The types of attacks can be

roughly classified into two categories: generic and non-generic attacks [7]. Some of

the attacks under these two categories are presented in Fig. 1. Finally, different

institutes, research groups, and vendors are continuously putting their efforts into

developing, evaluating, and standardizing the LWC algorithms. Some of the most

notable of these bodies are CryptoLux, ECRYPT NET, NSA, NIST LWC-Forum,

ISO/IEC, Cryptrec, Ecrypt, IETF, CryptoLUX, Google, Sony, and Intel [1] [7]. The

following section introduces a taxonomy of the existing LWC algorithms.

Fig. 1. Types of cryptanalysis attacks

3. Classification of LWC algorithms

This section presents different classifications of the existing LWC algorithms. First,

a general classification of LWC algorithms is given and then followed up by two new

classifications that are not present in the existing literature.

The LWC algorithms can be categorized into two groups based on the number

of keys being used. Algorithms using the same key (secret key or private key) for

encryption and decryption are called symmetric algorithms. Algorithms using

different keys (private and public keys), one for encryption and the other for

decryption, are called asymmetric algorithms. Symmetric algorithms provide

confidentiality, integrity, and authentication security services. In contrast,

asymmetric algorithms provide confidentiality and integrity by using the receiver’s

public key and authentication (in the form of a digital signature) and non-repudiation

 25

by using the sender’s private key. The downside of symmetric algorithms is the key

distribution, and for asymmetric algorithms, it is the usage of large keys (number of

bits) for encryption and decryption [1, 10]. The classification of LWC algorithms can

be visualized, as shown in Fig. 2.

The symmetric algorithms can be further divided into block and stream ciphers

based on how the plaintext is processed. A block cipher processes the plaintext as

fixed-size blocks and generates the ciphertext. On the other hand, a stream cipher

takes the plaintext as bits and performs operations on the bits to generate ciphertext.

The two fundamental operations performed by a block cipher are confusion and

diffusion. The confusion operation removes the dependencies between the key and

the generated ciphertext to prevent statistical analysis attacks. The diffusion operation

removes the dependencies between the plaintext and ciphertext to prevent statistical

analysis and guessing attacks. A block cipher uses both confusion and diffusion

operations. Whereas a stream cipher only uses confusion operations. So, the security

of a block cipher is more than a stream cipher. Another category of symmetric

algorithms is a hash function, which takes a variable length text and generates a fixed

size output, also called hash or digest. A hash is a one-way function; the generated

hash cannot be used to get the original plaintext. A hash is generally used for

enforcing integrity.

Fig. 2. Classification of LWC algorithms

A block cipher internally uses a specific structure for achieving security. In

general, the different structures that can be used are Substitution-Permutation

Network (SPN), Feistel Network (FN), General Feistel Network (GFN), Add-Rotate-

XOR (ARX), Non-Linear Feedback Shift Register (NLFSR), and Hybrid structure

[1]. An SPN processes the data by performing different operations using S-boxes

(Substitution Boxes) and permutation tables. An FN divides the text into equal

halves, and on one half, it applies diffusion. Also, at the beginning of each round, it

swaps the two halves. A GFN divides the plaintext into sub-blocks and performs

operations on the sub-blocks. It also applies a cyclic shift proportional to the number

of created sub-blocks. ARX structure uses addition, rotation, and XOR operations for

encryption and decryption. NLFSR uses the basic building blocks of a stream cipher.

A block’s current state is based on its previous state, which is a non-linear feedback

value. Finally, a hybrid structure uses a combination of the structures mentioned

above based on the application’s requirements.

Various lightweight block ciphers that were developed and analyzed over the

years are listed in Table 3, Table 4, and Table 5. Stream ciphers use structures like

 26

Linear Feedback Shift Register (LFSR), Counter bits (CT), SHift Registers (SHR),

Pseudo Random Number Generators (PRNGs), and Generalized NLFSR (GNLFSR).

Various lightweight stream ciphers that were developed and analyzed over the years

are listed in Table 3, Table 4, and Table 5. Various hash generation algorithms which

were developed over the years are listed in these tables. All the lightweight block

ciphers, stream ciphers, and hash algorithms can be categorized into different

generations [2] based on the year in which the algorithm was published. These

categories and associated algorithms are presented in Table 3, Table 4, and Table 5.

The format of the algorithm names consists of the algorithm name, followed by the

structure used by that algorithm and finally ending with the year in which that

algorithm was developed.

Table 3. Early light-weight generation algorithms (before 2005)
Type of algorithm Algorithm names

Block cipher

DES (FN 1977), DESX (FN 1984), KeeLoq (NLFSR 1985), GOST (FN 1989), IDEA

(ARX 1991), TEA (FN 1994), XTEA (FN 1997), 3DES (FN 1998), AES (SPN 1998),

XXTEA (FN 1998), Seed (FN 1999), Camellia (Hybrid 2000), KHAZAD (SPN 2000),

NOEKEON (SPN 2000), ICEBERG (SPN 2004)

Stream cipher A5/1 (LFSR 1987), Rabbit (CT 2003)

Hash Algorithm -

Table 4. First light-weight generation algorithms (2005-2012)
Type of algorithm Algorithm names

Block cipher

mCrypton (SPN 2005), HIGHT (Hybrid 2006), SEA (FN 2006), CLEFIA (GFN 2007),

DESL (FN 2007), DESXL (FN 2007), KASUMI (FN 2007), PRESENT (SPN 2007),

PUFFIN (SPN 2008), HB (Hybrid 2009), KATAN (NLFSR 2009), KTANTAN

(NLFSR 2009), MIBS (FN 2009), PUFFIN-2 (SPN 2009), TWIS (GFN 2009),

PRINTcipher (SPN 2010), EPCBC (SPN 2011), HB2 (Hybrid 2011), Klein (SPN

2011), LBlock (Hybrid 2011), LED (SPN 2011), Piccolo (GFN 2011), TWINE (GFN

2011), PICARO (SPN 2012), PRINCE (SPN 2012), SCREAM (SPN 2012)

Stream cipher

Salsa 20/r (ARX 2005), Grain (Hybrid 2005), Trivium (SHR 2005), Grain128a (Hybrid

2006), CHACHA (ARX 2008), MICKEY (Hybrid 2008), Sosemanuk (Hybrid 2008),

Encoro80 (PRNG 2008), Encoro128 (PRNG 2009), SNOW-3G (Hybrid 2010), A2U2

(Hybrid 2011), Quavium (SHR 2012)

Hash Algorithm
KECCAK (2010), Lesamanta (2010), Quark (2010), PHOTON (2011), SPONGENT

(2011), GLUON (2012)

Table 5. Second light-weight generation algorithms (2013 – present)

Type of algorithm Algorithm names

Block cipher

ITUbee (FN 2013), LEA (Hybrid 2013), SIMON (FN 2013), SPECK (FN 2013), Zorro

(SPN 2013), BEST-1 (ARX 2014), Chaskey (Hybrid 2014), Fantomas (Hybrid 2014),

FeW (FN 2014), Halka (NLFSR 2014), HISEC (GFN 2014), I-PRESENT (SPN 2014),

LAC (FN 2014), OLBCA (SPN 2014), PRESENT-GRP (Hybrid 2014), PRIDE (SPN

2014), RC5 (FN 2014), RECTANGLE (SPN 2014), Robin (Hybrid 2014), MIDORI

(SPN 2015), PICO (SPN 2015), ANU (FN 2016), LAX (Hybrid 2016), MANTIS (SPN

2016), QTL (FN 2016), RoadRunneR (FN 2016), SPARX (Hybrid 2016), DLBCA (FN

2017), GIFT (SPN 2017), LiCi (FN 2017), SIT (Hybrid 2017), SFN (Hybrid 2018),

ACE (ARX 2019), ASCON (SPN 2019), COMET (Hybrid 2019), ESTATE (SPN

2019), ForkAE (Hybrid 2019), GIFT-COFB (SPN 2019), Gimli (ARX 2019), ISAP

(SPN 2019), LOTUS-LOCUS (Hybrid 2019), mixFeed (SPN 2019), Oribatida (FN

2019), Pyjamask (SPN 2019), SAEAES (SPN 2019), Saturnin (Hybrid 2019), SKINNY

(SPN 2019), SPARKLE (Hybrid 2019), SPIX (Hybrid 2019), SpoC (Hybrid 2019),

SUNDAE-GIFT (SPN 2019), WAGE (Hybrid 2019)

Stream cipher
WG-8 (Hybrid 2013), Sprout (Hybrid 2015), Fruit-v2 (Hybrid 2016), Plantlet (Hybrid

2016), Espresso (GNLFSR 2017), Lizard (NLFSR 2017)

Hash Algorithm L-Hash (2013), Hash-One (2016), Neeva (2016)

 27

The aforementioned lightweight block cipher algorithms can also be classified

into ultra-lightweight, low-cost, and lightweight categories based on the measures

mentioned in Section 2. This classification of existing algorithms can help researchers

and manufacturers choose one or more ciphers for developing IoT devices or

protocols. For classifying the lightweight block ciphers, results from various

performance analysis papers were considered [1, 2, 8, 9, 12, 14-19]. Among the

implementations on different architecture types and devices, the maximum values for

GE, ROM, and RAM were considered for the classification. The performance of

algorithms proposed in recent years that were mentioned in Table 3, Table 4, and

Table 5, particularly in the second light-weight generation, was not evaluated on

resource-constrained devices. Instead, they were evaluated on robust systems like

Raspberry Pi, etc. So, those algorithms were not considered in this classification.

There is a need to evaluate the performance of the latest algorithms on resource-

constrained IoT devices.

Table 6. Classification of lightweight block ciphers

Category Metric Block ciphers

Ultra-

lightweight

GE KTANTAN

ROM/RAM PRIDE, LEA, ITUbee, Camellia, KASUMI, TEA, XTEA, NOEKEON, SEA,

DESL, mCrypton, IDEA, MIBS

Low-cost

GE
KTANTAN, GOST, KATAN, PUFFIN-2, QTL, SIMON, LBlock, EPCBC,

Piccolo, MIBS, SPECK, MIDORI, HISEC, RECTANGLE

ROM/RAM

PRIDE, GOST, KATAN, PUFFIN-2, QTL, SIMON, LBlock, EPCBC, Piccolo,

MIBS, SPECK, MIDORI, HISEC, RECTANGLE, SPECK, Piccolo,

PRESENT-GRP, Zorro, TWINE

Lightweight

GE

KTANTAN, GOST, KATAN, PUFFIN-2, QTL, SIMON, LBlock, EPCBC,

Piccolo, MIBS, SPECK, MIDORI, HISEC, RECTANGLE, PRESENT,

TWINE, PUFFIN, Klein, DESL, I-PRESENT, NOEKEON, HIGHT, DESXL,

LED, KASUMI, PRINCE, XTEA, TEA, mCrypton, SEA, LEA, ICEBERG,

CLEFIA, Camellia, AES

ROM/RAM

PRIDE, GOST, KATAN, PUFFIN-2, QTL, SIMON, LBlock, EPCBC, Piccolo,

MIBS, SPECK, MIDORI, HISEC, RECTANGLE, SPECK, Piccolo,

PRESENT-GRP, Zorro, TWINE, DES, DESX, CLEFIA, Robin, HB2, Klein,

Fantomas, PRINTcipher, LED, SIMON, KATAN, LBlock, PRESENT, HIGHT,

GOST, PRINCE, KTANTAN, DESXL, AES, HB

The classification of lightweight block ciphers is presented in Table 6. The

algorithms in the table are mentioned in the order of metric values from low to high.

For example, in the ultra-lightweight category, PRIDE has the lowest requirement for

ROM/RAM, and MIBS has the highest requirement.

The following section presents an analysis of the ultra-lightweight algorithms

identified in Table 6 based on the metrics given in Section 2.

4. Analysis of ultra-lightweight algorithms

This section analyses various ultra-lightweight algorithms identified in Section 3

concerning the metrics mentioned in Section 2.

Most of the IoT devices that upcoming innovators or micro-organizations create

use insecure or no encryption techniques in their communications [12], which can

lead to spoofing and traffic analysis attacks [3, 10]. There has yet to be a consensus

on which encryption or authentication algorithms will be used for IoT devices or

 28

networks to ensure security. Since 2015, NIST has been searching for suitable LWC

algorithms. In 2019, it started a process for standardizing LWC algorithms for

resource-constrained devices in IoT. In the second round, NIST announced 32

algorithms as candidates for final consideration [12]. Two features or characteristics

of LWC algorithms, namely cost and performance, are achieved using simple round

functions, simple keys, small block sizes, and simple key scheduling. The final

feature, security, can be achieved using the six internal structures: SPN, FN, GFN,

ARX, NLFSR, or hybrid [1]. According to a recent study conducted by NIST, all

existing LWC algorithms must satisfy cost, security, and performance features. So,

there is a need to analyze existing algorithms further or develop new LWC algorithms

[3].
The only ultra-lightweight algorithm based on the GE metric is KTANTAN.

The hardware implementation of KTANTAN requires 588 logic gates and is suitable

for resource-constrained devices like RFID devices. KTANTAN supports a key of

size 80 bits and blocks of 32, 48, and 64 bits size. The number of rounds is 254. The

key is hardwired, which enables KTANTAN to have a low footprint. Recovery of a

full 80-bit length key using a related key attack for KTANTAN was demonstrated,

making it insecure. Also, the software implementation of KTANTAN requires more

resources than other contemporary software-based ultra-lightweight algorithms. The

ultra-lightweight algorithms based on the ROM/RAM metric values from low to high

are PRIDE, LEA, ITUbee, Camellia, KASUMI, TEA, XTEA, NOEKEON, SEA,

DESL, mCrypton, IDEA, and MIBS. PRIDE is the best ultra-lightweight, software-

based implementation. It is an SPN-based algorithm that utilizes 20 rounds. It uses

keys of 128 bits in length and a block size of 64 bits. It requires only 266 bytes of

ROM. PRIDE is superior to many other algorithms regarding latency and energy

consumption.
LEA (Lightweight block Encryption Algorithm) is a software-based algorithm

developed based on ARX architecture. Encryption performed by LEA is very fast,

using 128, 192, and 256-bit keys for 24, 28, and 32 rounds, respectively. The block

size is 128 bits. LEA requires only 590 bytes of ROM and 32 bytes of RAM. LEA

became insecure when the 128-bit key retrieval was demonstrated. ITUbee is a block

cipher based on the FN structure. It does not contain a key schedule and uses round

constants. The key size and block size is 80 bits. It requires a ROM size of 716 bytes.

Camellia is a highly standardized software-based implementation. It is famous as it

has similar processing functionality to AES. It uses the same block and key sizes as

AES. It requires 1262 bytes of ROM and 12 bytes of RAM. KASUMI is a software-

based implementation using an FN structure to encrypt the plaintext. It is widely used

in GSM, GPRS, and UMTS. It uses a key size of 128 bits and a block size of 64 bits.

It uses eight rounds for processing. It requires 1264 bytes of ROM and 24 bytes of

RAM. TEA (Tiny Encryption Algorithm) is an efficient FN structure algorithm. It

requires 1350 bytes of ROM and only 13 bytes of RAM. The key size, block size,

and number of rounds in TEA are 128 bits, 64 bits, and 64, respectively. TEA has

weaknesses like equivalent key attacks and its unsuitability as a hash.
XTEA (eXtended TEA or Block TEA) was developed to overcome the

weaknesses of TEA. It uses a more complex key scheduling algorithm and can work

 29

on arbitrary block sizes. XTEA requires 1400 bytes of ROM and 11 bytes of RAM.

However, related-key attacks and other attacks have already been demonstrated on it

which makes it insecure. NOEKEON is a SPN-based block cipher whose key and

block size are 128 bits. It used 16 rounds for processing the data. NOEKEON requires

2780 bytes of ROM and only 34 bytes of RAM. SEA (Scalable Encryption

Algorithm) is a FN-based algorithm that is used in resource-constrained devices. The

main features of SEA are implementation in assembly language, on-the-fly derivation

of keys, and efficient encryption and decryption. SEA requires 2800 bytes of ROM

and only 24 bytes of RAM. DESL is a variant of DES that uses the same key and

block sizes and also several rounds. DESL reduces the gate complexity by reducing

the 8 S-boxes to only 1 S-box. DESL provides protection against linear, differential,

and Davis-Murphy attacks. DESL requires 3100 bytes of ROM.
mCrypton (miniature Crypton) is an SPN-based block cipher that uses a small

block size of 64 bits. It uses variable keys of sizes 64, 96, and 128 bits. It uses 13

rounds for processing the data. It is generally used in low-cost RFID tags and sensors.

mCrypton uses 3100 bytes of ROM and 28 bytes of RAM. IDEA (International Data

Encryption Algorithm) is an ARX-based algorithm that uses keys of size 128 bits and

a block size of 64 bits. It uses 8.5 rounds for processing the data. It does not use any

P-boxes or S-boxes. IDEA uses 3140 bytes of ROM and 23 bytes of RAM. MIBS is

an FN-based block cipher that uses keys of sizes 64 and 80 bits. The block size is 64

bits, and it uses 32 rounds for processing the data. MIBS utilizes the S-box of

mCrypton and key scheduling of PRESENT cipher. MIBS requires 3180 bytes of

ROM and 29 bytes of RAM.

The software implementations of the ultra-lightweight algorithms mentioned

above are compared based on the performance analysis performed on an 8-bit

microcontroller. The result of the comparison is shown in Table 7.

Table 7. Software implementation of ultra-lightweight algorithms on an 8-bit microcontroller

No
Algorithm

name
ROM (B) RAM (B)

Latency

(Cycles per 1

block)

Energy

(mJ per 1 bit)

TP at 4 MHz

(Kbps)

S/W Efficiency

(Kbps / KB)

1 PRIDE 266 0 1514 6 169 635.33

2 LEA - - - - - -

3 ITUbee 716 0 2937 11.7 122.7 272.5

4 Camellia 1262 12 68260 256 8 6.33

5 KASUMI 1264 24 11939 47.6 21.4 16.93

6 TEA 1140 0 6299 34.3 40.8 35.78

7 XTEA 1246 0 19936 70 33.7 40

8 NOEKEON 364 32 23517 95.9 21.7 59.61

9 SEA 2132 0 41604 173.7 47 98.21

10 DESL 3098 0 8365 34.5 31.3 6.86

11 mCrypton 1076 28 22656 68 15.5 14.4

12 IDEA 836 232 22792 34.3 94.8 159.06

13 MIBS - - - - - -

TP in the table refers to throughput. It is to be noted that performance analysis

of LEA and MIBS algorithms was not done using an 8-bit microcontroller. In the

case of multiple versions of the same algorithm, the maximum values were

considered for different metrics in the table. PRIDE and NOEKEON require the least

 30

bit of ROM. XTEA, Camellia, and KASUMI use approximately the same amount of

ROM. SEA and DESL require more ROM when compared to the other algorithms.

Camellia consumes the least amount of RAM, while IDEA consumes the

highest amount of RAM. PRIDE and ITUbee have the least amount of latency.

NOEKEON, IDEA, and mCrypton have approximately the same amount of latency.

The Camellia algorithm incurs the highest latency among all the algorithms. PRIDE

and ITUbee are the most energy-conserving algorithms. Whereas Camellia consumes

the most energy, followed by the SEA algorithm.

PRIDE algorithm gives the best throughput, followed by the ITUbee algorithm.

Camellia gives the worst throughput, followed by the mCrypton algorithm. PRIDE

algorithm gives the highest software efficiency, followed by the ITUbee algorithm.

Camellia, DESL, mCrypton, and KASUMI offer the least software efficiency.

PRIDE and ITUbee offer the best performance when considering all the metrics,

whereas Camellia and SEA have the worst. Although PRIDE and ITUbee are the best

ultra-lightweight algorithms, attacks have already been demonstrated against them,

making them insecure. Next, we discuss the various attacks on PRIDE, ITUbee, and

IDEA algorithms. These best-performing software-based ultra-lightweight

algorithms were selected based on the data provided in Table 7.
D a i and C h e n [20] performed related-key differential attacks to find 8

2-round iterative characteristics in the key scheduling algorithm. Based on the

18-round related-key differentials and other observations in the linear layer, they

presented an attack on the full PRIDE cipher. This attack was possible due to a

weakness in the key schedule algorithm and due to the linear layer in PRIDE.

Z h a o et al. [21] identified 16 different 2-round iterative characteristics using

differential attack. This was due to the weakness in the S-box and the linear layer of

the PRIDE algorithm. Based on these observed differentials, they were able to launch

a differential attack on the 18-round PRIDE cipher. No attack was reported by them

on the full 20-round PRIDE cipher.

Y a n g et al. [22] used an automatic search method to find 56 iterative

differential characteristics of PRIDE. Based on three of those characteristics, they

built a 15-round differential and performed a differential attack on a 19-round

PRIDE. Tezcan et al. claim that attacks on PRIDE done by authors previously didn’t

consider two properties, namely undistributed bits and differential factors. Due to

this, even though the report attacks are correct, the time complexity of the attacks is

much more than reported by the authors. L a l l e m a n d and R a s o o l z a d e h [23]

proposed a single key differential attack on 18-round PRIDE. They claimed that the

previous differential attacks were incorrect due to a miscomputation of the known

bits. The authors claim that their attack is the first single key differential attack that

was successful on the 18-round PRIDE cipher. H o u et al. [24] proposed a new

differential fault analysis attack that does not require any information on plaintext

and ciphertext. Their approach is a fully automated one that scans the assembly

implementation of the PRIDE cipher and recovers the last round key. The advantage

of this method is that it can be applied to with any input data.

S o l e i m a n y [25] identified several weaknesses in the round-reduced versions

of the ITUbee cipher. The author shows the existence of a deterministic related-key

 31

differential distinguisher for an 8-round version of the ITUbee cipher. These results

exploit the flaws in the key schedule and round constants used in ITUbee. F u et al.

[26] proposed a novel differential fault attack in combination with traditional

differential analysis on the ITUbee cipher. The authors found weaknesses in the

cipher structure and the round function of the ITUbee cipher. They simulated their

theoretical attack for recovering the encryption key. K a n g et al. [27] came up with

a new attack based on differential fault analysis and meet-in-the-middle attack. The

attacks were based on the observations of the cipher’s round function and its

structure. The authors claim that they were able to overcome the countermeasures

proposed in a previous work.

M e i e r [28] performed a differential analysis attack on a 2-round IDEA cipher.

The author exploited the new arithmetic properties of the basic operations used in the

round function of the IDEA cipher. B i h a m, D u n k e l m a n a n d K e l l e r [29]

proposed an attack on the 6-round IDEA cipher by exploiting its weak key schedule

algorithm. Their approach uses a combination of square-like techniques with linear

cryptanalysis. B i h a m, D u n k e l m a n and K e l l e r [30] devised multiple attacks

on reduced-round IDEA cipher. Authors performed a known plaintext 5-round attack,

a related-key rectangle attack on 7-round IDEA, and a related key attack on 7.5-round

IDEA cipher. These attacks were viable due to the linear key schedule of IDEA.

C l a v i e r, G i e r l i c h s and V e r b a u w h e d e [31] performed differential

fault analysis on the IDEA cipher and were successful in retrieving 93 out of 128 key

bits. It requires only 10 faults to be exploited. The attack was possible due to

weakness within the structure of the IDEA cipher. B i r y u k o v et al. [32] identified

a large weak-key class of IDEA cipher. This was because the non-linear part is based

on the multiplication with a chosen master key and due to the linear key schedule.

So, there is a need to redesign the key schedule of IDEA. The summary of the security

issues and attacks performed on PRIDE, ITUbee, and IDEA ciphers is listed in

Table 8.

Table 8. Summary of security issues and attacks on PRIDE, ITUbee, and IDEA ciphers
Cipher Type NR KS Type of attack Weakness

PRIDE SPN 20 128

Related-key differential attack on 20 rounds
Key schedule algorithm and a linear

layer of cipher

Differential attack on 18 rounds S-box and linear layer of cipher

Automated differential attack on 19 rounds S-box and linear layer of cipher

Single key differential attack on 18 rounds S-box and linear layer of cipher

Differential fault analysis attack on 20 rounds Cipher structure

ITUBEE FN 20 80

Related-key differential attack on 8 rounds Key schedule and round constants

Differential fault attack and differential

analysis on 20 rounds
Cipher structure and round function

Differential fault analysis and meet-in-the-

middle attack on 20 rounds
Cipher structure and round function

IDEA ARX 8.5 128

Differential analysis attack on 2 rounds
Arithmetic properties of the basic

operations used in the cipher

Square-like attack and linear cryptanalysis on 6

rounds
Key schedule algorithm

Related-key attack on 7.5 rounds Linear key schedule

Differential fault analysis attack for deducing

93 bits out of 128 in the key
Cipher structure

Weak-key classes
Linear key schedule and multiplication

operation

 32

In the above table, NR represents several rounds in the cipher and KS represents

the key size of the cipher in bits. The study of various attacks on the ciphers reveals

that the current trend of attacking the ciphers uses differential fault analysis and

hybrid attacks.

5. Conclusion

IoT amalgamates existing and new technologies with broad applications in many

areas. The devices used for sensing and communication are often resource-

constrained. Hence, there is a need to use existing LWC algorithms or develop new

algorithms based on the application to provide security and privacy. This paper

provides a brief survey of the existing LWC algorithms and a taxonomy that aids new

researchers in gaining insight into them. This paper also categorizes the existing

LWC algorithms into ultra-lightweight, low-cost, and lightweight algorithms, which

is not seen in previous research. Finally, based on the analysis of LWC algorithm

implementations, the best software-oriented algorithms in the ultra-lightweight

category were identified as PRIDE, ITUbee, and IDEA. As these algorithms are still

vulnerable to different attacks, the future research direction involves designing a new

LWC algorithm that outperforms them and resists different attacks.

R e f e r e n c e s

1. T h a k o r, V. A., M. A. R a z z a q u e, M. R. A. K h a n d a k e r. Lightweight Cryptography

Algorithms for Resource-Constrained IoT Devices: A Review, Comparison and Research

Opportunities. – IEEE Access: Practical Innovations, Open Solutions, Vol. 9, 2021,

pp. 28177-28193.

2. H a t z i v a s i l i s, G., K. F y s a r a k i s, I. P a p a e f s t a t h i o u, C. M a n i f a v a s. A Review of

Lightweight Block Ciphers. – Journal of Cryptographic Engineering, Vol. 8, 2018, No 2,

pp. 141-184.

3. D h a n d a, S. S., B. S i n g h, P. J i n d a l. Lightweight Cryptography: A Solution to Secure IoT. –

Wireless Personal Communications. 2020, pp. 1947-1980.

4. A l a z z a m, H., O. A b u A l g h a n a m, Q. M. A l-z o u b i, A. A l s m a d y, E. A l h e n a w i.

A New Network Digital Forensics Approach for Internet of Things Environment Based on

Binary Owl Optimizer. – Cybernetics and Information Technologies, Vol. 22, 2022, No 3,

pp. 146-160.

5. K h a n, M. N., A. R a o, S. C a m t e p e. Lightweight Cryptographic Protocols for IoT-Constrained

Devices: A Survey. – IEEE Internet of Things Journal, Vol. 8, 2021, No 6, pp. 4132-4156.

6. S a l l a m, S., B. D. B e h e s h t i. A Survey on Lightweight Cryptographic Algorithms. – In: Proc.

of IEEE Region 10 Conference (TENCON’18), IEEE, 2018.

7. J u l i a n O k e l l o, W., Q. L i u, F. A l i S i d d i q u i, C. Z h a n g. A Survey of the Current State

of Lightweight Cryptography for the Internet of Things. – In: Proc. of International Conference

on Computer, Information and Telecommunication Systems (CITS’17), 2017, pp. 292-296.

8. N a y a n c y, D. S., S. C h a k r a b o r t y. A Survey on Implementation of Lightweight Block

Ciphers for Resource Constraints Devices. – Journal of Discrete Mathematical Sciences &

Cryptography, Vol. 2020, pp. 1-22.

9. S i n g h, S., P. K. S h a r m a, S. Y. M o o n, J. H. P a r k. Advanced Lightweight Encryption

Algorithms for IoT Devices: Survey, Challenges and Solutions. – Journal of Ambient

Intelligence and Humanized Computing, 2017.

 33

10. M o u s a v i, S. K., A. G h a f f a r i, S. B e s h a r a t, H. A f s h a r i. Security of Internet of Things

Based on Cryptographic Algorithms: A Survey. – Wireless Networks, Vol. 27, 2021, No 2,

pp. 1515-1555.

11. M u s t a f a, G., R. A s h r a f, M. M i r z a, A. J a m i l, A. M u h a m m a d. A Review of Data

Security and Cryptographic Techniques in IoT Based Devices. – In: Proc. of 2nd International

Conference on Future Networks and Distributed Systems, ACM, New York, NY, USA, 2018.

12. F o t o v v a t, A., G. M. E. R a h m a n, S. S. V e d a e i, K. A. W a h i d. Comparative Performance

Analysis of Lightweight Cryptography Algorithms for IoT Sensor Nodes. – IEEE Internet of

Things Journal, Vol. 8, 2021, No 10, pp. 8279-8290.

13. S u d h a, K. S., N. J e y a n t h i. A Review on Privacy Requirements and Application Layer Security

in Internet of Things (IoT). – Cybernetics and Information Technologies, Vol. 21, 2021, No 3,

pp. 50-72.

14. B h a r d w a j, I., A. K u m a r, M. B a n s a l. A Review on Lightweight Cryptography Algorithms

for Data Security and Authentication in IoTs. – In: Proc. of 4th International Conference on

Signal Processing, Computing and Control (ISPCC’17), IEEE, 2017.

15. S u r e n d r a n, S., A. N a s s e f, B. D. B e h e s h t i. A Survey of Cryptographic Algorithms for IoT

Devices. – In: Proc. of IEEE Long Island Systems, Applications, and Technology Conference

(LISAT’18), IEEE, 2018.

16. G o y a l, T. K., V. S a h u l a, D. K u m a w a t. Energy Efficient Lightweight Cryptography

Algorithms for IoT Devices. – IETE Journal of Research, Vol. 2019, pp. 1-14.

17. D u t t a, I. K., B. G h o s h, M. B a y o u m i. Lightweight Cryptography for Internet of Insecure

Things: A Survey. – In: Proc. of 9th IEEE Annual Computing and Communication Workshop

and Conference (CCWC’19), IEEE, 2019.

18. G u n a t h i l a k e, N. A., W. J. B u c h a n a n, R. A s i f. Next Generation Lightweight Cryptography

for Smart IoT Devices: Implementation, Challenges and Applications. – In: Proc. of 5th IEEE

World Forum on Internet of Things (WF-IoT’19), IEEE, 2019.

19. G u n a t h i l a k e, N. A., A. A l-D u b a i, W. J. B u c h a n a. Recent Advances and Trends in

Lightweight Cryptography for IoT Security. – In: Proc. of 16th International Conference on

Network and Service Management (CNSM’20), IEEE, 2020.

20. D a i, Y., S. C h e n. Cryptanalysis of Full PRIDE Block Cipher. – Science China Information

Sciences, Vol. 60, 2017, No 5.

21. Z h a o, J., X. W a n g, M. W a n g, X. D o n g. Differential Analysis on Block Cipher PRIDE. – In:

Cryptology ePrint Archive. Vol. 2014.

22. Y a n g, Q., L. H u, S. S u n, K. Q i a o, L. S o n g, J. S h a n, X. M a. Improved Differential Analysis

of Block Cipher PRIDE. Information Security Practice and Experience. – In: Lecture Notes in

Computer Science. Cham, Springer International Publishing, 2015, pp. 209-219.

23. L a l l e m a n d, V., S. R a s o o l z a d e h. Differential Cryptanalysis of 18-Round PRIDE. Lecture

Notes in Computer Science. – In: Lecture Notes in Computer Science. Cham, Springer

International Publishing, 2017, pp. 126-146.

24. H o u, X., J. B r e i e r, F. Z h a n g, Y. L i u. Fully Automated Differential Fault Analysis on

Software Implementations of Block Ciphers. – In: IACR Transactions on Cryptographic

Hardware and Embedded Systems. Vol. 2019. pp. 1-29.

25. S o l e i m a n y, H. Self‐Similarity Cryptanalysis of the Block Cipher ITUbee. – IET Information

Security, Vol. 9, 2015, No 3, pp. 179-184.

26. F u, S., G. X u, J. P a n, Z. W a n g, A. W a n g. Differential Fault Attack on ITUbee Block Cipher.

– ACM Transactions on Embedded Computing Systems, Vol. 16, 2017, No 2, pp. 1-10.

27. K a n g, Y., Q. Y u, L. Q i n, G. Z h a n g. Meet-in-the-Middle Differential Fault Analysis on ITUbee

Block Cipher. – Symmetry, Vol. 15, 2023, No 6, p. 1196.

28. M e i e r, W. On the Security of the IDEA Block Cipher. Advances in Cryptology. – In:

EUROCRYPT 1993. Berlin, Heidelberg, Springer, 2007, pp. 371-385.

29. B i h a m, E., O. D u n k e l m a n, N. K e l l e r. A New Attack on 6-Round IDEA. Fast Software

Encryption. – In: Lecture Notes in Computer Science. Berlin, Heidelberg, Springer, 2007,

pp. 211-224.

30. B i h a m, E., O. D u n k e l m a n, N. K e l l e r. New Cryptanalytic Results on IDEA. Advances in

Cryptology – ASIACRYPT 2006. – In: Lecture Notes in Computer Science. Berlin,

Heidelberg, Springer, 2006, pp. 412-427.

 34

31. C l a v i e r, C., B. G i e r l i c h s, I. V e r b a u w h e d e. Fault Analysis Study of IDEA. Topics in

Cryptology – CT-RSA 2008. – In: Lecture Notes in Computer Science. Berlin, Heidelberg,

Springer, 2008, pp. 274-287.

32. B i r y u k o v, A., J. N a k a h a r a, B. J. P r e n e e l, J. V a n d e w a l l e. New Weak-Key Classes of

IDEA. Information and Communications Security. – In: Lecture Notes in Computer Science.

Berlin, Heidelberg, Springer, 2002, pp. 315-326.

Received: 23.10.2023; Second Version: 03.01.2024; Accepted: 15.01.2024 (fast track)

