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Abstract: The research explores applying hierarchical clustering methods, namely 

single linkage and complete linkage, in IoT Sensor Networks (ISNs). ISNs are 

distributed systems comprising numerous sensor nodes that collect data from the 

environment and communicate with each other to transmit the data to a base station. 

Hierarchical clustering is a technique that groups nodes into clusters based on 

proximity and similarity. This paper implements and compares the performance of 

single linkage and complete linkage methods in terms of cluster size, network lifetime, 

and cluster quality. The study’s findings provide guidance for ISN researchers and 

designers in selecting the appropriate clustering method that meets their specific 

requirements.  
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1. Introduction 

Sensor and Internet of Things (IoT) sensor networks share similarities but differ in 

scope and objectives. Sensor networks are typically designed for specific, dedicated 

applications, often with localized data collection. These networks consist of sensor 

nodes that monitor and gather data from a particular environment, with the primary 

goal of data collection and transmission for a defined purpose. In contrast, IoT sensor 

networks are a subset of the broader IoT ecosystem. IoT sensor networks also use 

sensors for data collection but are part of a more extensive, globally connected 

network. IoT sensor networks are characterized by their ability to share data across 

vast geographical areas and communicate with cloud-based services, allowing for 

more extensive data processing and analytics on a global scale. 

IoT Sensor Networks (ISNs) have emerged as a vital technology in various 

fields, including smart cities, environmental monitoring, surveillance, and healthcare. 

ISNs consist of numerous small, low-cost sensor nodes deployed in a specific area to 

collect and transmit data wirelessly [1-5]. Efficiently organizing the sensor data is 
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crucial to extract valuable insights and make informed decisions. Hierarchical 

clustering is a powerful technique used in machine learning to group similar data 

points into clusters [6-11]. 

One primary purpose of clustering is to ensure load balancing within the 

network. The network load is distributed more evenly by forming clusters, each with 

its Cluster Head (CH) responsible for data aggregation and communication. This 

allocation of responsibilities prevents specific sensor nodes from becoming 

overwhelmed with data processing and communication tasks while others remain 

underutilized. Consequently, load balancing enhances network performance and data 

reliability. 

Furthermore, clustering in ISNs seeks to minimize energy consumption, which 

is of paramount importance due to the limited battery power available to sensor 

nodes. By organizing the network into clusters and employing cluster heads for data 

aggregation and forwarding, nodes can engage in energy-efficient data 

communication. This optimization results in significant energy savings, extending 

the operational lifespan of individual sensor nodes and the entire network.   

Hierarchical clustering methods provide a hierarchical structure of clusters, 

allowing for a comprehensive exploration of the data at different levels of granularity. 

Two commonly used approaches in hierarchical clustering are single linkage and 

complete linkage. Single linkage clustering, also known as minimum distance 

clustering, merges clusters based on the minimum distance between any two points 

within each cluster. On the other hand, complete linkage clustering, also known as 

maximum distance clustering, merges clusters based on the maximum distance 

between any two points within each cluster. Exploring the performance and 

characteristics of single linkage and complete linkage hierarchical clustering methods 

in ISNs is crucial to understanding their effectiveness and applicability in this 

domain. By analyzing these methods, researchers can gain insights into their 

strengths and limitations, enabling them to make informed decisions when choosing 

the appropriate clustering technique for specific ISN applications [12-17]. 

Evaluating the performance and characteristics of single linkage and complete 

linkage clustering involves several aspects. The quality of the resulting clusters, such 

as their coherence and separation, is essential. These help assess the compactness, 

separation, and stability of the clusters formed by each method. ISNs often operate 

under resource-constrained environments, and the scalability and efficiency of 

clustering algorithms play a significant role. Understanding the requirements of 

single linkage and complete linkage clustering methods enables researchers to select 

the most suitable approach based on the available resources and the size of the ISN 

[18-23]. 

By exploring the performance and characteristics of single linkage and complete 

linkage hierarchical clustering methods in ISNs, researchers can enhance their 

understanding of each method's clustering behavior, advantages, and limitations. In 

this paper, we implement and investigate using single linkage and complete linkage 

hierarchical clustering methods in ISNs. We compare the performance of these 

methods in terms of cluster size, network lifetime, and cluster quality.   
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The primary purpose of this study is to provide a comprehensive understanding 

of the strengths and limitations inherent in single linkage and complete linkage 

hierarchical clustering methods as applied to ISNs. By offering insights into these 

clustering techniques, we aim to empower researchers and practitioners with the 

knowledge to make informed decisions when selecting clustering methods for their 

unique ISN applications. This knowledge will optimize data analysis, enhance 

decision-making processes, and maximize the utility of ISNs across diverse domains. 

2. Literature review 

In [24], authors propose a hybrid clustering algorithm to enhance sensor network 

energy efficiency. The algorithm incorporates two clustering techniques, one for 

initial network clustering and the other for identifying cluster leaders. Additionally, 

the authors present a novel hierarchical routing scheme that includes both flat and 

hierarchical routing. The algorithm modifies the cluster head selection and routing 

procedure dynamically based on the remaining energy of the nodes. This adaptive 

strategy aims to distribute energy consumption among nodes equitably, increasing 

the network’s lifespan. The authors assess the algorithm’s efficacy through 

exhaustive simulations and comparisons with existing protocols. The outcomes 

demonstrate considerable improvements in network lifetime, energy consumption, 

and data transmission effectiveness. The algorithm effectively distributes the energy 

load among nodes and reduces the number of transmissions, thereby enhancing the 

sensor network’s overall performance. The authors could consider conducting 

additional experiments on more extensive networks to understand algorithm 

performance comprehensively. 

The authors in [25] have presented a method for dynamic clustering in 

intelligent and eco-friendly Internet of Things applications. Their algorithm creates 

dynamic clusters by considering power demand and information volume. To form 

clusters, it follows a two-step process. First, it identifies and groups nodes that 

consume high amounts of energy. Second, it clusters nodes with low energy 

consumption based on their information volume. The simulation results demonstrate 

that this algorithm performs better than existing clustering methods in terms of energy 

efficiency, network lifetime, and network stability. 

In their study, A n u r a g  and T r i p a t h i  [26] have proposed a multi-tier based 

clustering framework for Wireless Sensor Network-assisted Internet of Things (IoT) 

networks. This algorithm addresses the challenges of scalability and energy 

efficiency in large-scale IoT deployments. The framework comprises three tiers: 

central, intermediate, and peripheral. In the central tier, a master cluster head is 

selected to oversee the entire network and facilitate communication between the tiers. 

The intermediate tier consists of cluster heads responsible for data aggregation and 

transmission within their respective clusters. The peripheral tier consists of ordinary 

sensor nodes that collect and transmit data to the cluster heads. The authors have 

evaluated the framework’s performance using simulations and compared it with other 

clustering methods. The results demonstrate that the proposed framework achieves 

better scalability, energy efficiency, and network lifetime than traditional clustering 
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methods. The authors should elaborate on factors like network size affecting cluster 

size decisions. 

A Fault-tolerant Algorithm is presented in [27] to address the issues related to 

maintaining fault tolerance and energy efficiency. The algorithm concentrates on 

extending the network’s lifecycle by organizing sensor nodes into clusters and 

utilizing a hierarchical data transmission structure. The algorithm employs a two-

level clustering mechanism to cluster nodes efficiently. Nodes at the first level are 

organized into primary clusters, each led by a primary cluster chief. These primary 

clusters are subsequently combined into superclusters at a secondary level. The chiefs 

of the supercluster are responsible for aggregating and transmitting data to the base 

station. To ensure defect tolerance, the algorithm employs a dynamic cluster head 

selection mechanism that considers both the nodes’ remaining energy and 

communication quality. This adaptive strategy enables the algorithm to modify the 

cluster head selection procedure in response to node failures or energy depletion, 

thereby ensuring uninterrupted network operation even in the presence of defects. 

The algorithm should be designed to handle node failures and changes in network 

topology. 

In [28], authors have proposed a routing protocol that addresses the challenges 

of link lifetime and energy consumption. The protocol incorporates link lifetime and 

energy consumption prediction models to estimate network links’ remaining lifetime 

and energy availability. It utilizes multi-path routing to enhance network reliability 

and load balancing by enabling simultaneous data transmission through multiple 

paths. By considering both link lifetime and energy consumption, the protocol 

dynamically selects the optimal path for data transmission based on these predictions. 

This approach aims to optimize resource utilization and improve the system’s overall 

performance.  

3. Methodology 

Hierarchical clustering is a popular unsupervised learning technique that can be used 

in IoT Sensor Networks for clustering similar sensor nodes together. Two widely 

used methods of hierarchical clustering are single linkage and complete linkage. 

Comparing these two methods can help us understand their strengths and weaknesses 

and choose the best method for a particular application. In this methodology, we will 

discuss the steps involved in implementing and comparing single linkage and 

complete linkage hierarchical clustering methods in ISNs. 

3.1. Data collection 

In IoT sensor networks, data collection is essential in performing hierarchical 

clustering. ISNs consist of many sensor nodes distributed over a geographical area to 

monitor environmental conditions in smart cities, such as temperature, humidity, and 

light intensity. The data collected by the sensor nodes is used for various applications 

such as environmental monitoring, traffic control, and security surveillance. The data 

collected by the sensor nodes is usually in the form of sensor readings, which are 

transmitted to a base station for further processing. 
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In addition to sensor readings, other information such as node location, time 

stamp, and battery level can also be collected. To collect data from sensor nodes, a 

Time Division Multiple Access Protocol (TDMA) has been implemented. This 

protocol defines how sensor nodes communicate with each other and how data is 

transmitted and received between nodes. Also, Carrier Sense Multiple Access 

(CSMA) has been implemented. This protocol defines how sensor nodes 

communicate with the base station. Data collection is a critical step in performing 

hierarchical clustering in ISNs. It involves collecting sensor readings and other 

relevant information from sensor nodes.  

3.2. Preprocessing 

In IoT sensor networks, preprocessing is crucial in preparing the data for hierarchical 

clustering. Including location information in the preprocessing stage can enhance the 

clustering performance and provide insights into the spatial distribution of the sensor 

nodes. 

When the sensor nodes are deployed in a specific area, location information 

becomes essential to the data. Including location information in the preprocessing 

stage can help to group sensor nodes that are geographically close to each other and 

identify the spatial patterns of the sensor readings. This information can be used to 

identify the regions where the sensor readings are similar or different, and it can 

provide insights into the physical processes that are taking place in the area. 

One common preprocessing technique that includes location information is 

spatial clustering. Spatial clustering involves grouping sensor nodes based on their 

geographical proximity. This technique can be used to identify clusters of sensor 

nodes located in the same region and to group sensor nodes with similar spatial 

patterns in their readings.  

Moreover, in ISNs, energy efficiency is a critical concern, as the sensor nodes 

have limited resources such as battery life and processing power. Therefore, 

preprocessing techniques that minimize the energy consumption of the sensor nodes 

should be used. The data aggregation technique has been used to reduce the amount 

of data transmitted, thereby reducing the energy consumption of the sensor nodes. 

Including location information in the preprocessing stage can enhance the clustering 

performance and provide insights into the spatial distribution of the sensor nodes.  

3.3. Clustering   

In this step, we will apply single linkage and complete linkage hierarchical clustering 

methods to cluster the sensor nodes based on their location information.  

To apply both clustering methods, we first need to calculate the pairwise 

distances between each pair of sensor nodes using the Euclidean distance measure. 

The distance matrix can then be used as input to the clustering algorithm. 

For single linkage clustering, Algorithm 1 starts by treating each sensor node as 

an individual cluster and then iteratively merges the two clusters with the closest pair 

of points, as shown in Fig. 1 (a). The next equation is responsible for handling this 

process. The process continues until all the sensor nodes belong to a single cluster,  

(1)   𝐷s(𝐶1, 𝐶2) = min{𝑑(𝑖 ∈ 𝐶1, 𝑗 ∈ 𝐶2)}, 

where 𝐶1 represents the first cluster, and 𝐶2 represents the second cluster. 
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For complete linkage clustering, Algorithm 2 starts by treating each sensor node 

as an individual cluster and then iteratively merges the two clusters with the farthest 

pair of points, as shown in Fig. 1 (b). The next equation is responsible for handling 

this process. The process continues until all the sensor nodes belong to a single 

cluster,  

(2)   𝐷c(𝐶1, 𝐶2) = max{𝑑(𝑖 ∈ 𝐶1, 𝑗 ∈ 𝐶2)}. 
 

 
(a)                                            (b) 

Fig. 1. Single linkage (a), complete linkage (b)  

 

Clustering the sensor nodes using single linkage and complete linkage 

hierarchical clustering methods can provide insights into the spatial patterns of the 

data. We can determine which method works better by comparing the results of both 

clustering methods. 

3.4. Single linkage hierarchical clustering 

The steps for performing single linkage hierarchical clustering on sensor nodes using 

Euclidean distance: 

Step 1. Calculate the distance matrix between all pairs of sensor nodes based on 

Euclidean distance. 

Step 2. Initialize each sensor node as a separate cluster. 

Step 3. Find the two clusters with the shortest distance and merge them into a 

new cluster. 

Step 4. Update the distance matrix to reflect the distances between the new 

cluster and the remaining clusters. 

Step 5. Repeat Steps 3-4 until all sensor nodes are in a single cluster or the 

desired number of clusters is reached. 

Step 6. Output the final clustering results. 

Note that Step 3 uses the single linkage criterion, which merges clusters based 

on the shortest distance between any two points in the clusters, as calculated by the 

Euclidean distance. Also, in Step 5, the desired number of clusters can be set as a 

parameter.  

Algorithm 1. Single Linkage Hierarchical Clustering 

Input: Sensor data from nodes 

Output: Clustered sensor nodes 

Step 1. Calculate the distance matrix between all pairs of sensor nodes based on 

Euclidean distance 

distance_matrix = calculate_distance_matrix(sensor_data) 

Step 2. Initialize each sensor node as a separate cluster 

clusters = initialize_clusters(sensor_data) 
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Step 3-5. Merge clusters based on the shortest distance until the desired number 

of clusters is reached 

while len(clusters) > 1: 

    # Find the two clusters with the shortest distance 

    𝐶1, 𝐶2  = find_shortest_distance(distance_matrix) 

    # Merge the two clusters into a new cluster 

    new_cluster = merge_clusters(clusters[𝐶1], clusters[𝐶2]) 

    # Update the distance matrix to reflect the distances between the new cluster 

and the remaining clusters 

    distance_matrix = update_distance_matrix(distance_matrix, clusters,𝐶1, 𝐶2 ) 

    # Remove the merged clusters from the list of clusters and add the new cluster 

    clusters.pop(𝐶1, 𝐶2) 

    clusters.push(new-cluster)      

Step 6. Output the final clustering results 

output_clusters(clusters) 

 

In Step 1, calculating the distance matrix between all pairs of sensor nodes based 

on Euclidean distance involves computing the pairwise distances between all sensor 

nodes based on their location. The Euclidean distance is a commonly used distance 

metric in machine learning and is defined as the straight-line distance between two 

points in Euclidean space, as shown in Fig. 2. 

 
Fig. 2. Euclidian distance 

To compute the distance matrix using Euclidean distance, the distance between 

i and j is denoted by 

(3)   𝑑(𝑖, 𝑗) =  √|𝑥1 − 𝑥2|2 + |𝑦1 −  𝑦2|2  . 
In Step 2, each sensor node is initially treated as its own cluster. This means that 

we start with as many clusters as sensor nodes in the network. This step is called 

initializing the clusters. By initializing each sensor node as a separate cluster, we are 

essentially creating a set of singleton clusters, where each cluster contains only one 

sensor node. The rationale behind this approach is to start with the simplest possible 

clustering, where each sensor node is considered unique and has no relationship to 

any other sensor node. 

Step 3, the next step after initializing the clusters, is to iteratively merge the two 

clusters that are closest to each other. This step involves finding the two clusters with 

the shortest distance and merging them into a new cluster. To find the two clusters 

with the shortest distance, we use the distance matrix that was calculated in the 

previous step. The distance matrix is a square matrix that contains the pairwise 
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distances between all the sensor nodes. Each row and column of the distance matrix 

corresponds to a single sensor node, and the value at the intersection of row and 

column represents the distance between these nodes. To find the two clusters with the 

shortest distance, we simply search the distance matrix for the smallest value. The 

indices of the smallest value correspond to the two clusters that are closest to each 

other. Once we have identified these two clusters, we merge them into a new cluster. 

The new cluster is created by combining the sensor nodes from the two old clusters. 

Merging two clusters involves defining a criterion for how to combine the sensor 

nodes from the two clusters. In single linkage clustering, the criterion is to simply 

take all the sensor nodes from both clusters and form a new cluster. This new cluster 

will be represented by a new row and column in the distance matrix, and the distances 

between this new cluster and all the other clusters need to be calculated and added to 

the distance matrix. 

Step 4, after combining two clusters into a new cluster, the distance matrix is 

updated to reflect the distances between the new cluster and the remaining clusters. 

When two clusters are integrated, the distance between them becomes irrelevant 

because they now belong to the same cluster. However, the distances between the 

new cluster and the other clusters must be updated to reflect that the new cluster now 

represents a group of sensor nodes instead of a single sensor node.  

The distance between the new cluster and each remaining cluster must be 

calculated to update the distance matrix. This can be accomplished through the use 

of a linkage criterion that defines the distance between two clusters based on the 

distances of their individual sensor nodes. Single linkage clustering defines the 

distance between two clusters as the minimal distance between any two sensor nodes, 

one from each cluster. 

To calculate the distance between the new cluster and each of the other clusters, 

we first determine the distance between each sensor node in the new cluster and each 

sensor node in the other clusters. The minimum of these distances is then used to 

determine the distance between the new cluster and the remaining cluster. These new 

distances are substituted for the distances previously associated with the merged 

clusters in the distance matrix. This process of updating the distance matrix is crucial 

because it guarantees that the distances between all clusters remain accurate 

throughout the clustering procedure. By updating the distance matrix appropriately, 

we can ensure that the two clusters with the shortest distance are always identified 

and merged at each iteration, resulting in a valid hierarchical clustering of the data. 

Step 5 involves iterating over steps 3 and 4 until a stopping criterion is met. The 

stopping criterion can be either of the following: 

• All sensor nodes are in a single cluster, indicating that the clustering process 

is complete. 

• The desired number of clusters is reached, indicating that the algorithm 

should stop clustering and output the results. 

By repeating Steps 3-4 until all sensor nodes are in a single cluster or the desired 

number of clusters is reached, the algorithm ensures that it has found the best possible 

hierarchical clustering based on the given distance metric and stopping criterion.  
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Step 6, the final output of the hierarchical clustering algorithm is the set of 

clusters formed as a result of merging individual sensor nodes or sub-clusters. The 

number of clusters formed will depend on the stopping criterion that was used, 

whether it was a pre-defined number of clusters or a hierarchical structure with a 

specific level of similarity. 

3.5. Complete linkage hierarchical clustering 

Complete linkage hierarchical clustering is another method for clustering sensor 

nodes, which is similar to single linkage clustering but uses a different distance metric 

to measure the similarity between clusters. The steps involved in complete linkage 

hierarchical clustering are as follows: 

Step 1. Calculate the distance matrix between all pairs of sensor nodes based on 

Euclidean distance. 

Step 2. Initialize each sensor node as a separate cluster. 

Step 3. Find the two clusters with the maximum distance, and merge them into 

a new cluster. 

Step 4. Update the distance matrix to reflect the distances between the new 

cluster and the remaining clusters. 

Step 5. Repeat Steps 3 and 4 until all sensor nodes are in a single cluster or the 

desired number of clusters is reached. 

Step 3 is different from single linkage clustering, as it calculates the maximum 

distance between any two sensor nodes from each cluster and merges the clusters 

with the maximum distance. This method tends to form more compact and spherical 

clusters than single linkage clustering. 

As with single linkage clustering, Step 5 involves iterating over Steps 3 and 4 

until a stopping criterion is met. The stopping criterion can be either of the following: 

• All sensor nodes are in a single cluster, indicating that the clustering process 

is complete. 

• The desired number of clusters is reached, indicating that the algorithm 

should stop clustering and output the results. 

The clusters formed using complete linkage clustering may differ from those 

formed using single linkage clustering, depending on the distance metric used. 

Single linkage and complete linkage hierarchical clustering are widely used 

methods for grouping nodes into clusters based on their proximity. These methods 

differ primarily in how they measure the distance between clusters. Single linkage 

clustering calculates the distance between clusters as the shortest distance between 

any two nodes in the respective clusters. This method tends to produce clusters 

connected by a chain of nodes. It may also merge close clusters.   

In contrast, complete linkage clustering measures the distance between clusters 

as the maximum distance between any two nodes in the clusters. It results in more 

compact clusters. Complete linkage tends to produce well-separated clusters. 

However, it can be computationally more intensive due to the need to calculate 

maximum distances. The choice between single linkage and complete linkage 

hierarchical clustering depends on the application.   
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Algorithm 2. Complete Linkage Hierarchical Clustering 

Input: Sensor data from nodes 

Output: Clustered sensor nodes 

Step 1. Calculate the distance matrix between all pairs of sensor nodes based on 

Euclidean distance 

distance_matrix = calculate_distance_matrix(sensor_data) 

Step 2. Initialize each sensor node as a separate cluster 

clusters = initialize_clusters(sensor_data) 

Step 3-5. Merge clusters based on the farthest distance until the desired number 

of clusters is reached 

while len(clusters) > 1: 

    # Find the two clusters with the farthest distance 

      𝐶1, 𝐶2 = find_ farthest _distance(distance_matrix) 

    # Merge the two clusters into a new cluster 

    new_cluster = merge_clusters(clusters[𝐶1], clusters[𝐶2]) 

    # Update the distance matrix to reflect the distances between the new cluster 

and the remaining clusters 

  distance_matrix = update_distance_matrix(distance_matrix, clusters,    𝐶1, 𝐶2) 

    # Remove the merged clusters from the list of clusters and add the new cluster 

    clusters.pop(𝐶1, 𝐶2) 

    clusters.push(new_cluster)  

Step 6. Output the final clustering results 

output_clusters(clusters)  

3.6. Determining the optimal number of clusters 

The optimal number of clusters must be determined after aggregating the sensor 

nodes using both single linkage and complete linkage hierarchical clustering 

algorithms. The optimal number of clusters can be determined using the elbow 

method, which is a method for determining the number of clusters based on the 

Within-Cluster Sum of Squares (WCSS) values. The WCSS value is the sum of the 

squared distances between each sensor node and its cluster centroid,   

(4)   WCSS(𝐶𝑘) = ∑ ( 𝑖 −  𝑚𝑘)2
𝑖∈𝐶𝑘

, 

where 𝑖 represents a sensor node belonging to the cluster Ck, and mk  is the mean value 

of the nodes assigned to the cluster Ck.   

The elbow method involves selecting the number of clusters at which the change 

in WCSS value begins to level off. To apply the elbow method, we first determine 

the WCSS value for cluster sizes ranging from one to the total number of sensor 

nodes. The WCSS values can then be plotted against the number of clusters to locate 

the elbow point.  

We can employ the elbow method independently to both single linkage and 

complete linkage clustering algorithms and then compare the results. As shown in 

Fig. 3, the optimal number of clusters can be determined by selecting the point where 

the curve begins to level off, and the improvement in the WCSS value is insignificant. 

Once the optimal number of clusters has been determined, the clustering algorithms 

can be re-executed using that number of clusters to produce the final clustering result. 
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Fig. 3. Determining the optimal number of clusters 

The steps for the elbow method in hierarchical clustering for sensor nodes are 

as Algorithm 3. 

Algorithm 3. Elbow Method in Hierarchical Clustering for Sensor Nodes 

Input: Sensor data from nodes 

Output: Clustered sensor nodes 

Step 1. Calculate the distance matrix 

distance_matrix = calculate_distance_matrix(sensor_nodes) 

Step 2. Initialize each sensor node as a separate cluster 

clusters = initialize_clusters(sensor_nodes) 

Step 3. Perform clustering until the maximum number of clusters is reached 

max_clusters_reached = False 

while not max_clusters_reached: 

    Step 3a. Merge the two clusters with the smallest distance 

    𝐶1, 𝐶2= find_clusters_with_smallest_distance(clusters, distance_matrix) 

    new_cluster = merge_clusters(clusters[𝐶1], clusters[𝐶2]) 

    Step 3b. Update the distance matrix 

    distance_matrix = update_distance_matrix(distance_matrix, clusters, 𝐶1, 𝐶2) 

    Step 3c. Calculate the sum of squared distances 

    sum_of_squared_distances = 

calculate_sum_of_squared_distances(sensor_nodes, new_cluster) 

    // Check if the maximum number of clusters has been reached 

    if len(clusters) == max_clusters: 

        max_clusters_reached = True 

Step 4. Plot the sum of squared distances against the number of clusters 

plot_sum_of_squared_distances(sum_of_squared_distances) 

Step 5. Identify the elbow point 

elbow_point = find_elbow_point(sum_of_squared_distances) 

Step 6. Choose the number of clusters at the elbow as the optimal number of 

clusters 

optimal_clusters = elbow_point 

Step 7. Perform clustering again using the optimal number of clusters 

final_clusters = perform_clustering(sensor_nodes, optimal_clusters) 

Step 8. Output the final clustering results 

output_clusters(final_clusters) 

In Step 3, the algorithm keeps merging the two clusters with the smallest 

distance until the maximum number of clusters is reached. The distance between 

clusters is calculated using complete linkage and Euclidean distance. 
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In Step 3c, we calculate the sum of squared distances between each data point 

and its corresponding cluster center. This is done to plot the sum of squared distances 

against the number of clusters in Step 4. 

In Step 4, we plot the sum of squared distances against the number of clusters. 

This plot is used to identify the elbow, which is the number of clusters where the rate 

of decrease in the sum of squared distances starts to level off. 

In Step 5, we identify the number of clusters at the elbow as optimal. This is 

where adding more clusters does not lead to a significant reduction in the sum of 

squared distances. 

Finally, in Step 7, we output the final clustering results based on the optimal 

number of clusters identified in Step 6. 

Looking at Fig 3, the dataset provided for determining the optimal number of 

clusters via the elbow method has been generated using a simulation process, the 

specifics of which will be comprehensively described in the subsequent section of 

our research paper. To determine the optimal number of clusters, we have applied the 

elbow method. This technique involves plotting the WCSS values against the number 

of clusters and identifying where the reduction in WCSS begins to slow significantly. 

Upon visual analysis of the data, we observed the following trend: As the 

number of clusters increases from 1 to 2, there is a significant reduction in WCSS. 

This reduction continues as we move from 2 to 3 clusters and from 3 to 4 clusters. 

However, the rate of decrease in WCSS starts to slow notably when transitioning 

from 4 to 5 clusters, and it becomes even less pronounced as we proceed to 6 clusters 

and beyond. Therefore, based on the elbow method, the optimal number of clusters 

for this dataset appears to be 4. This selection is made because it is at this point that 

the reduction in WCSS starts to level off significantly, indicating that adding more 

clusters does not yield a proportionate reduction in WCSS.  

4. Discussion 

In this section, we assess the effectiveness of both single linkage and complete 

linkage. The ISN and its sensor nodes are situated in a 100×100 m area. Therefore, 

we have conducted experiments to evaluate parameters such as cluster size, 

simulation time, network lifetime, and cluster quality. Table 1 outlines the parameters 

used during the simulation, and all experiments were carried out using the OMNET 

simulator [29]. 

Table 1. Simulation parameters 
Parameter Value 

Size of sensing field  100×100 m 

Number of sensor nodes From 50 up to 100 nodes  

The initial energy of each node 0.9 J  

Base station location 50175 

Eel 50 nJ per 1 bit 

fs 10 pJ per 1 bit per 1m2 

Size of a data packet 500 bytes 

Size of info packet 25 bytes 
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4.1. Radio model 

Our radio model is similar to the one presented in [30]. We have calculated the power 

consumption and transmission for n-bit data over a distance of d using the following 

equations. In these equations, ETx refers to the power used for Transmitting circuits, 

while ERx refers to the power used for Receiving circuits. EDA is the energy required 

for gathering Data. Each sensor node has a primary energy of 0.9 J. Based on the next 

equation, we have determined the amount of energy needed for each sensor node to 

send n-bit data over a distance of d,    

(5)   𝐸Tx(𝑛, 𝑑) = 𝑛𝐸elec + 𝑛 𝜀fs 𝑑2, 

where the term Eelec refers to electronic energy, while fs stands for free space power 

loss. 

To receive n-bit data from a sensor node over a distance of d, a certain amount 

of energy is required, 

(6)   𝐸Rx(𝑛) = 𝑛𝐸elec. 

The energy needed for data aggregation is 

(7)   𝐸DA = 5 nJ per 1 bit per 1 signal. 

4.2. Cluster size 

One simple method to evaluate the number of nodes in clusters is to examine the size 

of each cluster. A cluster that is too small may not be representative of the underlying 

structure of the network, while a cluster that is too large may be too general and 

obscure important patterns. By examining the size of each cluster, one can determine 

if the number of nodes in each cluster is appropriate. 

Fig. 4 shows the cluster sizes produced by the single linkage and complete 

linkage hierarchical clustering methods for different numbers of nodes in the sensor 

network. In the case of single linkage, the clusters produced vary in size with the 

number of nodes, with some clusters having significantly more nodes than others. For 

example, in the case of 50 nodes, the largest cluster has 31 nodes, while the smallest 

cluster has only 2 nodes. This suggests that single linkage may not be as effective at 

producing evenly-sized clusters. 
 

 
Fig. 4. Cluster size 

 

On the other hand, the clusters produced by complete linkage tend to be more 

evenly sized, with the number of nodes in each cluster being more evenly distributed. 
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For example, in the case of 75 nodes, each cluster has between 16 and 24 nodes. This 

suggests that complete linkage may be a better method for producing clusters of 

similar sizes.  

4.3. Simulation time 

Simulation time is the duration required to execute the entire network operation. It is 

a metric for measuring the time complexity of a recently developed and simulated 

model. Additionally, it indicates how quickly the proposed algorithm converges. 

We have evaluated the simulation time for single linkage and complete linkage 

hierarchical clustering methods for different sensor node configurations. Fig. 5 shows 

that the simulation time increases as the number of sensor nodes increases for both 

single linkage and complete linkage. 

 

 
Fig. 5. Simulation time 

 

For single linkage, the simulation time for 50 nodes was 73,665 ms; for 75 

nodes, it was 166,305 ms; and for 100 nodes, it was 168,429 ms. On the other hand, 

for complete linkage, the simulation time for 50 nodes was 41,867 ms; for 75 nodes, 

it was 57,445 ms; and for 100 nodes, it was 98,467 ms. 

These results indicate that complete linkage has a lower simulation time than 

single linkage for all sensor node configurations. This is because the single linkage 

considers the minimum distance between clusters. However, it is important to note 

that the difference in simulation time between the two methods is relatively small for 

smaller node configurations but becomes more significant as the number of nodes 

increases. Overall, the simulation time results provide valuable insights into the time 

complexity of the clustering algorithms and can help optimize the network 

performance. 

4.4. Network lifetime 

The network lifetime of a sensor network refers to the time duration until the first 

node dies or the time duration until most nodes die. This is an important metric to 

evaluate the performance of clustering algorithms since it determines how long the 

network can operate efficiently.   

Fig. 6 shows the network lifetime of sensor nodes using single linkage and 

complete linkage hierarchical clustering methods. For the single linkage method, the 

network lifetime decreases as the number of nodes increases. In the case of 50 nodes, 
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the network lifetime was 234 rounds before all the nodes died, while for 75 nodes 

and 100 nodes, the network lifetime decreased to 233 and 228 rounds, respectively. 

On the other hand, the complete linkage method showed a better network lifetime 

than the single linkage method. For instance, with 50 nodes, the network lifetime was 

236 rounds, which was better than the 234 rounds of single linkage. Similarly, for 75 

and 100 nodes, the network lifetime was 234 and 236 rounds, respectively, which 

were better than the corresponding values of single linkage. Overall, the complete 

linkage method showed a better network lifetime than the single linkage method. 
 

 
Fig. 6. Network lifetime 

4.5. Cluster quality 

The Silhouette coefficient is used to evaluate the quality of the clusters produced by 

hierarchical clustering methods for sensor nodes. The Silhouette coefficient measures 

how well each sensor node fits into its assigned cluster. 

To calculate the Silhouette coefficient for each sensor node, the distance 

between the node and all other nodes in its assigned cluster is calculated, as well as 

the distance between the node and all other nodes in the next nearest cluster. The 

Silhouette coefficient is then calculated as the difference between these two distances 

divided by the maximum of the two distances. 

For each node in the network, compute its distance to all other nodes in the same 

cluster. This results in a set of average distances, which are denoted as a for each 

node. Cohesion measures how closely related nodes are in a cluster. For each node, 

compute its distance to all nodes in the nearest neighboring cluster. This results in 

another set of average distances, which are denoted as b for each node. Separation 

measures how distinct or well-separated a cluster is from other clusters. 

Calculate the silhouette coefficient for each node using the formula:  

(8)   𝑆𝑖 =  
𝑏𝑖−𝑎𝑖

max (𝑎𝑖, 𝑏𝑖)
, 

where Si is the silhouette coefficient for node i, ai is the average distance between 

node i and all other nodes in the same cluster, and bi is the average distance between 

node i and all nodes in the nearest neighboring cluster. 

Compute the average silhouette coefficient across all nodes in the network to 

obtain a measure of the overall quality of the clustering result using the formula: 

(9)   𝑆̅ =  
1

𝑛
 ∑ 𝑆𝑖

𝑛
𝑖=1 , 

where n is the total number of nodes in the network. 
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A high Silhouette coefficient indicates that the node is well-matched to its 

assigned cluster, while a low Silhouette coefficient indicates that the node may be 

better matched to another cluster.   
 

 
Fig. 7. Cluster quality 

 

A value closer to 1 indicates that the node is well-matched to its cluster, while 

a value closer to –1 indicates that the node may belong to a different cluster. In this 

study, we used the Silhouette coefficient to evaluate the quality of the clusters 

produced by single linkage and complete linkage hierarchical clustering methods for 

sensor nodes. Fig. 7 shows that the average silhouette widths for the different 

methods and the number of nodes vary significantly. 

For the single linkage method, the average silhouette width is positive for 50 

and 100 nodes but negative for 75 nodes. This suggests that the clustering quality is 

relatively good for 50 and 100 nodes but not as good for 75 nodes. On the other hand, 

the complete linkage method shows consistently good clustering quality with positive 

average silhouette widths for all three number of nodes. The values for complete 

linkage are also consistently higher than those for single linkage, suggesting that it 

may be a more effective method for clustering sensor nodes. 

Overall, the results indicate that the complete linkage hierarchical clustering 

method produces better quality clusters for sensor nodes than the single linkage 

method, as indicated by the consistently higher Silhouette coefficients. 

5. Conclusion 

In conclusion, this study compares the performance of single linkage and complete 

linkage hierarchical clustering methods in ISN applications. The results show that 

both methods have their own strengths and limitations.  

Single linkage clustering has been found to be more suitable for ISN 

applications where the network topology is highly connected and densely populated, 

as it tends to produce smaller and more compact clusters. On the other hand, complete 

linkage clustering has been found to be more suitable for applications with sparser 

network topology, as it tends to produce larger and more distinct clusters. 

The study also shows that the performance of the clustering methods can be 

affected by the number of clusters, the size of the network, and the specific clustering 

algorithm used. Therefore, it is important to select the clustering method and 

algorithm based on the specific requirements and characteristics of the application. 
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Overall, the results of this study provide valuable insights into the strengths and 

limitations of different clustering methods for ISN applications. The future of ISNs 

presents opportunities for exploration. Researchers could develop energy-efficient 

routing protocols with machine learning. Improving the scalability and heterogeneity 

management of ISNs is vital for their evolution. 
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