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Abstract: Cognitive Radio Networks (CRNs) present a compelling possibility to 

enable secondary users to take advantage of unused frequency bands in constrained 

spectrum resources. However, the network is vulnerable to a wide range of jamming 

attacks, which adversely affect its performance. Several countermeasures proposed 

in the literature require prior knowledge of the communication network and jamming 

strategy that are computationally intensive. These solutions may not be suitable for 

many real-world critical applications of the Internet of Things (IoT). Therefore, a 

novel self-exploration approach based on deep reinforcement learning is proposed 

to learn an optimal policy against dynamic attacks in CRN-based IoT applications. 

This method reduces computational complexity, without prior knowledge of the 

communication network or jamming strategy. A simulation of the proposed scheme 

eliminates interference effectively, consumes less power, and has a better Signal-to-

Noise Ratio (SNR) than other algorithms. A platform-agnostic and efficient anti-

jamming solution is provided to improve CRN’s performance when jamming occurs. 

Keywords: Cognitive radio network, IoT, Jamming attack, Customized environment, 

Self exploration, Reinforcement learning.  

1. Introduction  

With the emergence of 5G technology, IoT devices can now leverage higher 

bandwidth, lower latency, and increased reliability, enabling various new 

applications and services [1]. However, the increased number of devices and the need 

for higher data rates require efficient utilization of the spectrum resources [2]. 

Cognitive Radio Network (CRN) can address these challenges by dynamically 

allocating and managing the spectrum resources to IoT devices based on their 

requirements and availability [3-5].  

However, the open nature of CRN and IoT makes them vulnerable to different 

types of attacks, including jamming attacks [6, 7]. Jamming attacks can significantly 

degrade the quality of communication and even render the network unusable, thereby 
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compromising critical operations [8]. Jamming attacks can take various forms, such 

as Continuous Wave (CW) jamming [9], random pulse jamming [10], and sweep 

jamming [11]. Attackers now use sophisticated jammers as a result of technological 

advancements that target particular channels that are challenging to identify due to 

their extremely unpredictable and dynamic character [12-13]. These jamming attacks 

can have severe consequences in CRN-critical IoT applications. For example, in 

healthcare monitoring applications, jamming attacks can prevent the transmission of 

vital signs data, leading to delayed medical treatment and potentially life-threatening 

situations. The adversary can also use jamming to interfere with the spectrum sensing 

process and provide false information to the cognitive radio devices. 

Among the traditional anti-jamming strategies that have been advocated for 

countering jamming attacks are frequency hopping [14], spread spectrum [15], and 

power management [16]. However, these strategies do not work against dynamic and 

sophisticated jammers, such as smart jammers. To combat intelligent jamming 

attacks, modern Machine Learning (ML) techniques have become increasingly 

popular with the rise of Artificial Intelligence (AI) [17]. The use of these 

methodologies enables countering jamming attempts and adapting to changing 

network conditions. While ML-based solutions can detect and counter dynamic 

jammers, there are many drawbacks, including high computational complexity and 

the need for large amounts of labeled training data. It has been shown that 

Reinforcement Learning (RL) techniques like Q-learning [18] and Deep Q-Network 

(DQN) generate effective anti-jamming rules [19]. For anti-jamming solutions based 

on Q-learning, extending the Q-table size causes computational overhead, and DQN’s 

slow learning rate makes it appropriate for low-dimensional, discrete action spaces. 

In order to overcome these disadvantages, more effective anti-jamming technology 

is needed.  

The proposed research manuscript presents a new self-exploration approach for 

developing optimal policies to defend against dynamic jamming attacks in CRN. The 

approach employs the Deep Deterministic Policy Gradient (DDPG) algorithm to train 

an anti-jamming agent that can adapt to fluctuating network conditions and 

effectively counter-jamming attacks. The agent learns from its own experiences 

without the need for labeled training data, thereby reducing the computational 

complexity and improving the performance against dynamic and intelligent jammers. 

The contribution of our proposed work can be summarized as follows: 

• This paper proposes a novel self-exploration scheme for learning optimal 

policies against dynamic jamming attacks in CRN using the DDPG algorithm. 

• A suitable and benchmarked environment modeling is done to execute the 

proposed DDPG agent algorithm.  

• The performance of the suggested anti-jamming solution is assessed against 

both sweep and smart jamming strategies.  

• The proposed intelligent anti-jamming technique is evaluated by comparing 

its outcomes with other ML models, considering factors such as power consumption 

and SNR over the progressive time slot. 
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2. Related work  

This section briefly discusses the existing works in the literature proposed by 

different researchers to address jamming attacks in CRN-driven networking 

applications.   

An anti-jamming solution based on game theory and the Markov Decision 

Process (MDP) has been reported in the work of S i n g h  and T r i v e d i  [20] against 

random jamming attacks in CRN. In this work, an analysis is done to examine the 

variation in jammer power adjustment strategies, and then RL algorithm is 

implemented to un-jam the network. N a l l a r a s a n  and K o t t r s a m y  [21] have 

modeled the CRN jamming problem as intrusion detection and presented a deep auto-

encoder-based solution to detect jamming attacks. However, this approach is limited 

only to attack detection and does not discuss the applicability of their approach in the 

case of an intelligent jammer capable of exploiting the dynamics of the environment. 

In response to this, I b r a h i m  et al. [22] discuss the strategies adopted by smart 

jammers and present a solution using the principle of MDP. In this work, the authors 

have employed the Q-learning technique to implement an agent as a solution against 

a smart jammer. However, the method presented in this work suffers from the 

scalability issue due to the fact that the Q-learning algorithm is subjected to a curse 

of dimensionality issue. X i a o  et al. [23] have investigated the anti-jamming power 

control problem. The Stackelberg equilibrium is derived for learning the power 

control strategy against a jammer. This model consists of a transmitter, receiver, and 

jammer. Moreover, a Q-learning is used to explore the best jamming resistance. 

S u d h a  and S a r a s v a t h i  [24] have presented an effective anti-jamming solution 

based on RL against rule-based jamming attacks, and in their next work, they 

consider a case scenario of a smart jammer [25]. Based on the simulation process, the 

effectiveness of their presented scheme has been demonstrated.  

T h i e n  et al. [26] suggest a method for preventing jamming assaults in multi-

channel CRN based on game theory. The authors utilize transfer learning and actor-

critic neural networks to identify the optimal communication channel for the 

transmitter to avoid jammers on the communication links. However, it may be 

subjected to biased outcomes toward selecting a single optimal action for a similar 

kind of jamming pattern. H u a n g  et al. [27] propose a channel-hopping-based 

jamming-free strategy that is designed to withstand different types of jamming 

attacks in a Cognitive Radio Network (CRN). This technology allows the system to 

hop between available channels without any pre-assignment role, which means that 

it does not require a fixed channel allocation plan.  

H a n a w a l  et al. [28] have developed a model in which the user and the jammer 

are viewed as two players in a zero-sum game. The concept tries to offer a robust 

defense against jamming assaults. G a o  et al. [29] have adopted a bimodal game 

strategy that involves interaction between the transmitter and the jammer. However, 

this method requires prior knowledge of jamming strategy and communication 

models. An application of the dual Q-learning technique is used by Z h a n g  et al. 

[30] to address joint channel and power minimization in a multi-user jamming-free 

environment. The cross-layer investigation of the cognitive radio-based jammers’ 
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and CRN’s anti-jamming capabilities is done by C a d e a u  et al. [31] using MDP. 

Table 1 summarizes the above-discussed literature to provide a quick insight to the 

readers.  

 
Table 1. Summary of the above-discussed literatures 

Citation Problem context Method Remark 

S i n g h  and 

T r i v e d i  [20], 

2012 

Anti-jamming in 

CRN 

Reinforcement 

learning 

algorithms 

_ 

N a l l a r a s a n  and 

K o t t u r s a m y  

[21], 2021 

High-level feature 

extraction 
Autoencoder 

Limited to attack detection and does 

not discuss the applicability of their 

approach in the case of an intelligent 

jammer capable of exploiting the 

dynamics of the environment 

I b r a h i m  et al. 
[22], 2021 

Combat intelligent 

jamming 

MDP and  

Q-learning 

May suffer from scalability issues 

due to the curse of dimensionality 

X i a o  et al. [23], 

2015 
Power optimization  

Cooperative 

reinforcement 

learning 

Need more optimization in 

computational complexity 

S u d h a  and 

S a r a s v a t h i  [24], 

2022 

Combating rule-

based jammer  
RL Effective against sweep jammer  

S u d h a  and 

S a r a s v a t h i  [25], 

2022 

Mitigate intelligent 

jammer impact on 

CRN communication  

Adversarial 

Learning 

Algorithm 

Achieved optimal outcome regarding 

signal quality and power usage 

T h i e n  et al. [26], 

2021 

Combating anti-

jamming in multi-

channel CRN 

Actor-critic 

learning 

framework 

May be subjected to biased outcomes 

toward selecting a single optimal 

action for a similar kind of jamming 

pattern 

H u a n g  et al. [27], 

2017 

Computational 

efficiency  

Channel-

hopping-based 

strategy 

Prone to dynamic jamming attacks  

H a n a w a l  et al. 

[28], 2016 

Combating rule-

based jammer 

Zero-sum game 

model 
Offers comprehensive security  

G a o  et al. [29], 

2018 

A trade-off in 

resource optimization 

and system 

performance 

Bimodal game 

strategy 

Requires prior knowledge of 

jamming strategy and communication 

models 

Z h a n g  et al. [30], 

2022 

Channel corporation 

and power 

optimization  

Dual Q-learning 
Not much suitable for continuous 

search pace  

C a d e a u  et al. [31], 

2014 

Performance and 

security trade-off  
MDP 

Achieved good security features but 

at the cost of higher computational 

resources 

 

Hence, it can be seen that several anti-jamming solutions have been proposed in 

the literature. However, most of them are rule-based and rely on predefined 

thresholds and heuristics. These solutions are not adaptive and cannot cope with 

unknown and dynamic jamming attacks. Besides, most of them focus on defending 

against a single type of jamming attack. Moreover, there is a lack of comprehensive 

evaluation of the performance of these solutions in terms of power consumption and 

SNR over different time slots. Therefore, there is a need for a comprehensive anti-
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jamming solution that can defend against different types of jamming attacks and can 

be evaluated in terms of power consumption and SNR. 

3. Proposed system 

In the proposed system, first, a simulation Environment (Env) is developed using 

OpenAI Gym, where a DDPG Agent (Ag) learns to choose the optimal transmission 

power to minimize the impact of the jamming signal. The simulation Env mimics the 

scenario of communication with sweep and smart jamming attacks, where the jammer 

tries to disrupt communication by transmitting a jamming signal. Ag selects the best 

transmission power based on the current State (ST) from the environment and a 

learned Policy (𝜋) for initiating Action (AT). Ag learns from its own experiences and 

does not require labeled training data, which reduces computational complexity and 

improves performance against dynamic and smart jamming attacks. The proposed 

solution aims to maximize the accumulated Reward RW by finding the optimal 

channel for the Secondary User (US), while also ensuring that Primary Users (UP) are 

not using the communication channels and Jammer (J) do not cause interference. The 

architecture of the proposed system is illustrated in Fig. 1.  

 

 
Fig. 1. Block-wise schematic architecture of the proposed system 

 

The implementation of the proposed system consists of two main blocks: i) Env, 

and ii) value-based model free agent Ag as an anti-jamming solution. The modeling 

of the environment is done in a systematic manner using the OpenAI Gym function 

to imitate the CRN communication scenario with jamming attacks. The proposed 

system consists of a total of 8 layers. The first is the input layer, which receives the 

input parameters, which include the Channel information (Ci), Modulation (Md) 

scheme, and the presence of a Jammer (J). The second is modulation layer which 

performs the Md on the input data, using the BPSK modulation scheme. The third 

one is the channel layer which simulates the wireless channel by adding noise and 

fading to the modulated signal. The fourth jammer layer simulates the presence of the 

J, either as a sweep jammer or an intelligent jammer. A fifth layer receives the AT 
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taken by the Ag, including frequency band selection and preference strategies. The 

sixth module is the observation layer that lets Ag to observe the STof the Env, 

including the jamming pattern, successful transmission rate, power consumption, and 

SNR. The seventh module is the feedback layer which provides feedback to the Ag 

based on the observed state, indicating the reward R𝑊+or penalty R𝑊−for the action 

taken and the final output layer provides the output of the Env, which includes the ST 

and feedback. 

The next block of the proposed system presents the design of a DDPG-based 

value-based intelligent and model-free Ag algorithm. The action taken by Ag is to 

select a frequency band that maximizes its successful transmission rate and avoids 

jamming signals. The STof the Env is the spectrum utilization and the presence of 

jamming signals. Ag gets ST ∈ Env and selects an AT based on its current Policy (Pi). 

The Reward RW factor is defined as the successful transmission rate minus a penalty 

for selecting a jammed frequency band. Here, Ag uses the DDPG algorithm to learn 

the optimal policy 𝜋(ST). The overall process can be mathematically expressed as 

follows:  

Let’s define the interaction between Ag and Env as a Markov Decision Process 

(MDP) defined by Tuple (T) such that: Ag ⇌ Env  T = (ST, AT, PT, R𝑊, 𝛾). Here, 

PT is the state transition probability function, and 𝛾 is the discount factor. The state 

of the environment ST is a function of the past observation past, i.e., 𝑠 =  𝑓(ℎ(𝑡)), 
where ℎ(𝑡) represents the history of the past 𝑡 observations. Ag takes an optimal ATo 

from the set of available AT. It is to be noted here that AT at time step 𝑡 leads to a 

transition to a new state ST+1 with Probability 𝑃(ST+1 |ST, AT). Therefore, ∀ AT  

Ag  RW(ST,  AT), i.e., reward for taking an action 𝑎 ∈ AT in state 𝑠 ∈ 𝑆T. The 

ultimate goal of Ag is to learn a 𝜋(ST) which capitalize on the expected RW over the 

progressive time. The most suitable action policy 𝜋(ST) is determined by iteratively 

estimating Q-value function, given as follows:  

(1)   𝑄(ST, AT)  =  𝐸[RW(𝑡 + 1)  +  𝛾 max 𝑄(ST+1,  AT′) | ST,  AT]. 
Here, 𝐸[. ] denotes the expected value ∀ ST+1, and AT′ represents the next action 

taken by the Ag in state ST+1. The algorithm updates the Q-value function iteratively 

using the Bellman optimality equation given as follows:  

(2)  𝑄(ST, AT)  = 𝑄(ST, AT)  + 𝛼[RW(𝑡 + 1) + 𝛾max (ST+1, AT′) − 𝑄(ST,  AT)] , 
where α is the learning rate. 

Upon updating the value function, the algorithm estimates the 𝜋(𝑠) ∀ ST. The 

policy 𝜋(𝑠) is defined as a deterministic mapping of observation from ST to AT, such 

that: AT  =  𝜇(ST). The algorithm updates the policy function iteratively using the 

following equation:  

(3)     𝑄(ST, AT) =  𝑅(ST,  AT) +  𝛾 𝑄 (ST+1, 𝜇(ST+1)) , 

where ST+1 is the next state, and 𝜇(ST+1) is the next action AT taken by the agent Ag 

in state ST+1. The agent uses the actor-critic method to estimate the optimal policy, 

where the actor estimates the policy function and the critic estimates the  

Q-value function. 
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3.1. Implementation of environment 

The process of building the OpenAI Gym environment for the proposed work 

involves defining the observation space, action space, and reward function. Let us 

discuss each of them in detail. 

• Observation Space. The observation space represents the state of the 

environment. In this case, the observation space includes the available frequency 

band and the presence of any jamming signals. We can represent the observation 

space as a vector: 

(4)    𝑂𝑡  =  [𝑓1, 𝑓2, . . ., 𝑓𝑛, 𝐽1, 𝐽2, . . ., 𝐽𝑛], 
where 𝑓𝑖 represents the availability of the i-th frequency band, and Ji represents the 

presence of a jamming signal in the i-th frequency band. 

• Action Space. The action space represents the possible actions that the agent 

can take. In this case, the action space includes selecting a frequency band to transmit. 

We can represent the action space as a vector: 

(5)    AT =  [𝑎1, 𝑎2, . . . , 𝑎𝑛], 
where 𝑎𝑖 represents whether the agent selects the i-th frequency band for transmission 

(𝑎𝑖 = 1) or not (𝑎𝑖= 0). 

• Reward Function. The reward function represents the goal of the agent. In 

this case, the goal is to maximize the successful transmission rate while minimizing 

power usage and avoiding jamming signals. We can represent the basis of deciding 

reward function as: 

(6)    RW =  ST −  𝑃𝑡  −  𝐽𝑡, 

where ST represents the Successful Transmission rate, P𝑡 represents the Power usage, 

and Jt represents the presence of Jamming signals.  

Considering the above basis, the Reward Rw for the agent in the proposed 

scheme can be numerically expressed as follows: 

(7)   RW =  𝑅SNR(AT)  −  𝑐(AT), 

where 𝑅SNR(AT) is the reward achieved by Ag for every successful transmissions, 

and 𝑐(AT) is the cost factor subjected communication quality associated with AT 

taken by Ag for channel switching.  

The criteria for transmission success are determined by the SNR factor at the 

receiver side. If the SNR of the received signal exceeds the demodulation threshold 

(Mdth), the transmission is considered to be successful, and the reward RW will be 

equal to 1. Otherwise, if the transmission fails, the Reward RW will be –1, 

numerically given as follows:  

(8)   RW  =  {(1  if  SNR_(Rx)  ≥  SNR_cutoff,  Otherwise − 1)}.  
SNRRx

 refers to the SNR of the received signal, which is used to compute the 

Reward RW. The proposed algorithm includes a control channel that is used to 

transmit signals temporarily to a Receiver, denoted by Rx. This control channel is 

designed to be secure, which means that it cannot be compromised or affected by a 

jamming attack. By having a secure control channel, the system can ensure that 

critical information or commands are transmitted reliably and without interference 

from jammers, which could potentially disrupt or compromise the operation of the 

system. As already discussed, that the proposed study develops an environment using 
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functionalities provided by Open-AI Gym. The above-defined factors the observation 

space, action space, and reward function, the environment is then fit with Gym 

function to train and evaluate reinforcement learning algorithms for the anti-jamming 

mechanism.  

3.2. Mathematical model for describing communication 

Let there be 𝑁 sub-bands available for transmission, each having a Bandwidth of B. 

Let 𝑀 be the total number of SUs in the network. The environment can be modeled 

as a set of tuples Env =  {ST, AT, PT,  RW}. The communication model in the 

environment can be represented as follows: 

• At each time step, the SUs explores the available sub-band channels to detect 

a spectrum hole. 

• Once a spectrum hole is detected, the SU chooses an available channel to 

transmit its data. 

• The Transmitter (Tx) modulates the data using BPSK and conveys it over the 

chosen channel. 

• The Receiver (Rx) demodulates and receives the signal from the transmitter. 

• The environment calculates the reward for the SU based on the SNR of the 

transmitted data and updates the state of the environment accordingly. 

• The process continues for the next time step. 

3.3. BPSK Modulation 

BPSK stands for Binary Phase Shift Keying, which is a type of modulation scheme 

used in wireless communication systems. In the context of the proposed study, BPSK 

is considered because it is a relatively simple and efficient modulation scheme that 

can be used for wireless communication over Wi-Fi channels. BPSK only uses two 

signal levels to represent the transmitted data, which simplifies the hardware 

requirements and reduces power consumption. Additionally, BPSK is less susceptible 

to errors caused by noise and interference compared to other modulation schemes 

like QPSK or 16-QAM. This makes BPSK a good choice for reliable communication 

in wireless environments with noise and interference. Mathematically, the overall 

process of BPSK can be described as follows:  

BPSK is a digital modulation scheme that represents binary 0 and 1 by shifting 

the phase of the carrier signal by 0 and π radians, respectively. Mathematically, the 

modulated signal can be represented as 

(9)   𝑠(𝑡)  =  A ∗  cos(2𝜋𝑓c 𝑡 +  𝜑), 

where A is the Amplitude of the carrier signal, 𝑓c is the frequency of the carrier signal, 

𝑡 is time, and 𝜑 is the phase shift. Here, the phase shift 𝜑 can take two values: 0 and 

π. Let the signal rate be Rs (i.e., the number of signals transmitted per second), and 

let the bit Rate be Rb (i.e., the number of bits transmitted per one second). Then, the 

relationship between the signal rate and the bit rate can be given as 

(10)   Rb  =  Rs  ∗  log2(𝑀), 

where M is the number of signals used in the modulation. For BPSK, 𝑀 =  2, and 

therefore, Rb  =  Rs. 
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Let the message signal to be transmitted be a binary sequence of bits {𝑏𝑘} of 

length N. The modulated signal for BPSK can be expressed as: 

for bit value 𝑏𝑘 = 1, 

(11)    𝑠(𝑡) =  𝐴 ∗  cos(2𝜋𝑓c𝑡 +  𝜋(1 −  𝑏𝑘)); 

for bit value 𝑏𝑘  =  0,  

(12)       𝑠(𝑡) =  𝐴 ∗ cos(2𝜋𝑓c𝑡 +  𝜋𝑏𝑘).  
At the receiver side, the obtained signal is demodulated by multiplying it with a 

locally generated carrier signal that is synchronized with the transmitted carrier 

signal. The received signal can be expressed as 

(13)    𝑟(𝑡)  =  𝑠(𝑡)  ∗  cos(2𝜋𝑓c 𝑡 +  𝜃)  +  𝑛(𝑡), 

where θ is the phase difference between the transmitted and received carrier signals, 

and 𝑛(𝑡) is the Gaussian noise with zero mean and variance 𝑁0/2. 

The received signal is then passed through a matched filter to obtain the 

baseband signal, which is compared with a threshold value to decide the transmitted 

bit value. The decision can be made as 

(14)   𝑏𝑘  =  1  if  𝑟(𝑡) >  0, 𝑏𝑘  =  0  if  𝑟(𝑡)  <  0. 

3.4. Self-Exploration based on Model-free agent 

Our proposed intelligent anti-jammer DDPG agent is trained to make decisions based 

on its past experiences to minimize the impact of sweep jammers. The agent's training 

process involves repeatedly interacting with the environment, observing the state, 

taking action, receiving a reward, and updating its neural network to learn the optimal 

policy. 

• Example scenario. A sweep jammer is transmitting a jamming signal in a 

frequency sweep from 2.4 GHz to 2.5 GHz, and the agent is trying to find a jamming-

free channel to communicate. The agent starts by exploring the available channels 

and sensing the environment’s state. It then uses its neural network to determine the 

best action to take, which is to switch to a different channel. The agent takes this 

action and receives a positive reward, as the communication is now jamming-free. 

The agent continues to monitor the environment and takes appropriate actions to 

maintain the communication link. The DDPG algorithm is employed to train the 

agent, which is a value-based, model-free actor-critic neural network. The actor-

network is responsible for learning how to choose an action based on the current state, 

while the critic network assesses the effectiveness of the selected action. The agent 

learns from experience, which is stored in a replay buffer and used for training. Once 

the agent is trained, it can be deployed in a real-time environment to defend against 

sweep jammer. The agent observes the current state of the environment, selects an 

action and receives a reward based on its action. The agent continues to learn and 

improve based on its experience in the real-time environment. 

The algorithmic steps for implementing the proposed anti-jamming solution are 

discussed as follows: 

• The input parameters to the algorithm are: 

i. E (Episodes): The number of times the agent will go through the training 

process. 

ii. I (Iterations): The number of iterations to be performed in each episode. 
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iii. α (Learning rate): The rate at which the agent learns from its experiences. 

iv. γ (Discount): The discount factor used to discount future rewards. 

• The output of the algorithm is the selection of a jamming-free signal. 

• The algorithm initializes random weights (𝑤) for the current actor (𝜇) and 

critic (𝑄) network as well for target networks. The algorithm then starts the training 

process, which consists of going through multiple episodes. 

• For each episode, the algorithm initializes the state of the system (ξ) and starts 

iterating through the process. 

• The algorithm chooses an action (𝑎𝑢) for the user based on the current state. 

Algorithm 5. Anit-Jammer 

Initialize random weights 𝜃 for the current network: [𝜇(actor), 𝑄(critic)] 

Initialize random weights 𝜃′ for target network: [𝜇′(actor), 𝑄(criitc)′] 

Initialize memory buffer b 

Set exploration rate r  

For all State S and user Action A and Jammer action J 

Set state to initial observation 

For each episode =  1: EP do 

 For Iteration in range I: 

 Choose action a: 𝜇(𝑠) + E × N(0, 1) 

Perform frequency hopping 

Sense frequency spectrum   
Select channel i as per current policy  

 Action 𝑎𝑢
→ initiate transmission 

Get reward 𝑅(𝑠, 𝑎𝑢)  

Get next state (s+1) 

Get Tuple [𝑠, 𝑎𝑢, 𝑅, 𝑠 + 1] into experience pool 𝜓 

If |𝜓| ≥ 𝐵 do 

Randomly select B from 𝜓 

Endif 

For each experience in B do 

Compute value for 𝜇′ and 𝑄′ 

Update 𝑄θ(𝑠, 𝑎𝑢)by minimizing the loss ℒ(θ) 

Update the 𝜇(𝑠)based on policy gradient using 

Update 𝜇′ and 𝑄′  

End for 

𝑠𝑠 + 1 and 𝑎𝑢
𝑎𝑢+1 

End while 

If 𝑎 = 𝑎𝑗 then 

Signal jammed, and Smart Jammer gets reward    

else  

 Transmission successful, agent rewarded  

End if 

End 
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• The algorithm further performs frequency hopping to perceive the 

communication channel. The algorithm also selects channel (i) from the available 

Channels (C) and the Primary user according to the current policy. 

• The algorithm initiates the transmission by selecting action (𝑎𝑢). Then the 

algorithm calculates the Reward factor (R) for the current state and action using the 

equation (1 if B(𝑓𝑢)≅B(𝑓𝑗): True Otherwise: 0 ). 

• The algorithm then moves to the next state (s+1) and adds the tuple 

[𝑠, 𝑎𝑢, 𝑅, 𝑠 + 1] to the experience pool (ψ). If the number of experiences in the pool 

is greater than or equal to the Batch size (B), the algorithm randomly selects a batch 

of experiences from the pool. 

• For each experience in the batch, the algorithm computes the target value 

(𝑦𝑘) using the current and target networks. The algorithm then updates the Q-value 

function (𝑄𝜃) using the loss function. The algorithm then updates the actor (μ) based 

on the policy gradient using the equation. The algorithm then updates the target 

networks (𝜇′ and 𝑄′) using the soft update rule. The algorithm checks whether the 

selected action (a) is the same as the jammer’s action (𝑎𝑗). If the signal is jammed, 

the jammer gets a reward. Otherwise, the transmission is successful, and the proposed 

agent gets a positive reward. 

• The algorithm then moves to the next state (s+1) and the next action  

(𝑎𝑢 + 1) to start the next iteration. The algorithm repeats steps until the end of the 

episode. The algorithm repeats steps for each episode until the end of the training 

process. Finally, the algorithm outputs the selection of a jamming-free signal. 

4. Implementation and experiments 

In this section, the results of applying the proposed self-exploration scheme against 

sweep jamming and smart jamming attacks are presented. The performance 

evaluation is based on the power consumption and SNR. The proposed anti-jamming 

solution is developed using Python and executed in an Anaconda development 

environment installed on Windows 10 Intel i7. Table. 2 presents the simulation 

parameters used in the proposed system. 

Table. 2. Simulation parameters 

Parameters Value 

WiFi Frequency band  2.4 GHz  

Number of communication channels 11  

Jamming model Sweep jammer  

Jamming power 30 dB. m  

Transmitter signal power 25 − 45 dB. m  

Bandwidth of the Transmitter signal 20 MHz  

Bandwidth of the Jamming signal 20 MHz  

Demodulation cut-off 10 dB  

Data rate 2 Mbps  

Digital modulation technique BPSK  

Channel switching Cost 0.2  

Discount factor 0.96  

Minibatch size 32  
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The experimental setup involves a communication scenario with a transmitter 

and receiver (Tx/Rx), as well as a sweep jamming algorithm operating within the 

2.5 GHz frequency band of a Wireless Fidelity channel, utilizing a 20 MHz 

bandwidth. The jamming power is set at 30 dB, and the Tx signal power ranges from 

20 to 50 dB. The demodulation threshold is 8 dB, and the carrier signal frequency is 

5GHz, with a data rate of 2 Mbps and BPSK modulation. A channel switching cost 

of 0.2 is considered, along with a discount factor of 0.96 and a minibatch size of 64. 

Fig. 2 illustrates the scenario of environment rendering with a sweep jammer 

following different channels over different time intervals.  

 

Fig. 2. Rendering of environment with user (transmitter) and sweep jammer 

4.1. Implementation of sweep jamming attack   

In sweep jamming, the jammer emits signals that sweep across a range of frequencies, 

disrupting any communication that uses those frequencies. The mathematical 

modeling for sweep jamming can be shown as follows: 

Let the jamming signal be denoted by 𝑥(𝑡), and the received signal be denoted 

by 𝑦(𝑡). Assume that the received signal 𝑦(𝑡) is the sum of the transmitted signal 

𝑥(𝑡) and 𝑛(𝑡), given as follows:  

(15)    𝑦(𝑡)  =  𝑥(𝑡)  +  𝑛(𝑡). 

The jammer’s signal 𝑥(𝑡) is swept across a range of frequencies, which can be 

represented as a function of time f(t). The frequency sweep can be modeled as a linear 

chirp signal given by 

(16)  𝑓(𝑡)  =  𝑓0  +  𝑘𝑡, 

where 𝑓0 is the starting frequency, k is the sweep rate, and t is time. The jamming 

signal x(t) can be obtained by modulating a carrier signal with the frequency sweep 

𝑓(𝑡) using BPSK modulation. Mathematically, this can be represented as 
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(17)    𝑥(𝑡)  =  𝐴 cos(2𝜋𝑓(𝑡)𝑡 +  𝜑), 

where 𝐴 denotes amplitude, and 𝜑 denotes the phase of the carrier signal. An example 

of sweep jamming can be demonstrated as follows: Assume that a communication 

system uses a frequency band of 2.5 GHz. The jammer sweeps across this frequency 

band with a sweep rate of 20 MHz/μs, starting from 2.5 GHz. The jammer’s 

transmitted signal x(t) can be obtained by modulating a carrier signal with the 

frequency sweep using BPSK modulation. Any communication using frequencies 

within the 2.5 GHz band is disrupted by the transmission of the jamming signal. 

4.2. Implementation of smart jamming attack   

The proposed study has adopted the same mechanism, i.e., DDPG which is employed 

in the implementation of the proposed anti-jamming scheme. However, the difference 

is the basis of the reward function. The agent, designed to jam the signal, aims to 

maximize its reward by disrupting the signal. The mathematical equation used to 

determine the Reward factor is as follows:  

(18)   𝑅t2 = −1 × 𝑅t1. 

The agent responsible for the jamming process receives a positive reward, 

whereas the agent responsible for the anti-jamming process receives a negative 

reward. In this proposed study, two agents are used – an intelligent jammer and an 

intelligent anti-jammer. The agent assigned to the smart jamming task seeks to 

maximize its reward by disrupting the signal, while the agent assigned to the anti-

jamming process aims to minimize the reward value for the jamming agent by 

developing a new action policy to counter the signal disruption. The reward function 

for the jamming agent is positive, while the reward function for the anti-jamming 

agent is negative. This creates a non-cooperative interaction between the two agents, 

where each agent tries to maximize its own reward at the expense of the other agent. 

 

 
Fig. 3. Adversarial learning scenario 

 

Fig. 3 depicts an example scenario with two agents in a game, Agent-1 and 

Agent-2. Agent-1 wants to score a goal, while Agent-2 wants to stop Agent-1 from 

scoring. In this case, Agent-1’s reward function will be positive if he or she score a 

goal, while Agent-2’s reward function will be negative if Agent-1 scores a goal. This 

creates a competitive environment where each agent tries to outsmart the other to 

achieve his or her individual goals. In the proposed study, the jamming agent and 
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anti-jamming agent both act rationally to maximize their respective rewards based on 

their actions, resulting in an adversarial learning scenario. Following are the real-time 

operational flow process: 

• Sensing the Environment. As the cognitive radio operates, it continually 

monitors its RF environment. This real-time data forms the state input for our DDPG 

agent. 

• Action Decision. The integrated DDPG agent processes the state information 

and predicts the best action based on its training. Such actions could include 

switching channels, modulating transmission power, or any other anti-jamming 

strategy. 

• Action Execution. The proposed action is then executed in real-time. For 

instance, if the agent decides to switch channels, the software-defined components of 

the radio make the switch immediately. 

4.3. Performance analysis   

Performance evaluation is done with respect to power factor and SNR over 

progressive time slots. The study also has conducted a comparative analysis 

considering other variants of reinforcement learning algorithms.  

The time-frequency analysis for sweep jamming and transmitter inside the 

suggested simulation environment is shown in Fig. 4. The channel that the jammer is 

aiming to block is depicted in blue in the illustration, while data transmission is 

shown in orange. The red signal in the diagram is the jammed signal, and it implies 

that any data packets sent across the jammed channel will suffer a reduction in SNR, 

which will result in transmission errors. 

The time-frequency analysis in Fig. 5 shows how both transmitters and 

intelligent jammers strive to maximize the use of sub-band channels for the 

accomplishment of their individual goals. The transmitter must be aware of potential 

sub-channels in order to prevent jamming, while the jammers continuously predict 

their sub-band channels. The received signal’s SNR will drop if a user tries to send 

data packets over the jammed channel, which will result in transmission errors. 

 

 
Fig. 4. Time-frequency analysis of sweep jammer and transmission 
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Fig. 5. Time-frequency analysis of smart jammer and transmission 

Table 3. Quantified values for power analysis 

Time steps Q-learning DQN DDPG Adversarial learning (proposed) 

1 1.97 1.03 1.01 1.01 

10 0.50 0.41 0.37 0.14 

20 0.14 0.21 0.14 0.02 

30 0.21 0.11 0.06 0.01 

40 0.79 0.05 0.03 0.00 

50 0.30 0.03 0.02 0.00 

60 0.28 0.06 0.00 0.00 

70 0.19 0.09 0.01 0.01 

80 0.22 0.10 0.01 0.01 

90 0.01 0.08 0.00 0.00 

100 0.11 0.00 0.00 0.00 

 

Table 3 presents the quantified outcome of power consumption for the 

performance analysis of different agent learning techniques such as Q-learning, 

DQN, DDPG, and proposed agent mechanism trained dynamically (i.e., trained 

against sweep jamming and smart jamming as adversarial learning mechanisms). The 

graphical representation of the proposed scheme is illustrated in Fig. 6.   

 

 
Fig. 6. Analysis of the power cost 
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As shown in Fig. 6, the DQN and DDPG demonstrate minor differences in their 

performance, with DQN being more effective than Q-learning due to its utilization of 

neural networks to maximize action value for a specific task. However, DDPG is 

considered more reliable in terms of performance and is better suited to continuous 

action spaces due to the use of actor and critic neural networks. 

In the proposed adversarial learning method, two DDPG algorithms, one for smart 

jamming and the other for anti-jamming are trained to learn from one another and 

create better rules. The algorithm’s instability and energy consumption are decreased 

as a result of this strategy. 

Table 4. Quantified values for SNR analysis 

Time steps Q-learning DQN DDPG Adversarial learning (proposed) 

1 3.17 3.76 3.7 4.48 

10 4.63 6.02 6.01 6.74 

20 5.6 6.71 6.78 7.4 

30 6.0 7.18 7.15 7.8 

40 6.19 7.42 7.4 8.0 

50 6.61 7.6 7.65 8.3 

60 6.57 7.8 7.83 8.4 

70 6.89 8.02 7.98 8.6 

80 6.39 8.0 8.09 8.81 

90 6.59 8.2 8.28 8.93 

100 7.02 8.3 8.35 9.05 

 

Table 4 presents the quantified outcome of power consumption for the 

performance analysis of different agent learning and its graphical outcome has been 

demonstrated in Fig. 7. The suggested algorithm’s capacity to continually enhance 

performance through a competitive learning process between smart jammer and anti-

jamming agents makes it special. The suggested algorithm also adjusts to dynamic 

jamming circumstances and modifies policies as necessary. Table 5 indicates that the 

proposed system exhibits greater improvement in reducing power consumption, and 

enhancing signal quality. 

 

 
Fig. 7. Analysis of the SNR 
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Table 5. Comparison in outcome 
Anti-jamming algorithm Improvement in power  Improvement in SNR  Processing time  

Q-learning 35.81% 81.59% 0.98791 s 

DQN 76.29% 82.63% 0.59851 s 

DDPG 87.57% 98.41% 0.26619 s 

Proposed ~88% ~90% 0.3645 s 

 

The proposed study also considers the analysis of processing time complexity 

as an important parameter, which shows the computational efficiency, and action 

response speed, which is highly desirable in real-world context. The time and space 

complexity of each model are discussed as follows:  

The time and space complexity for Q-learning can be described  
𝑂(|States| × |Action|) for each episode. This complexity arises because Q-learning 

must update its Q-table for every state-action combination. In our experiments,  

Q-learning exhibited a processing time of 0.98791 s. The main computational cost in 

DQN arises from forward and backward passes through the neural network. For a 

neural network with 𝐿 layers, each having 𝑁 neurons and the weights of the neural 

network, hence the complexity can be described as 𝑂(𝐿 × 𝑁2). The experimental 

analysis shows DQN demonstrated a processing time of 0.59851 s. Like DQN, DDPG 

uses neural networks for both the actor and the critic. If both networks have 𝐿 layers 

with 𝑁 neurons the time complexity is 𝑂(𝐿 × 𝑁2). DDPG achieved a processing time 

of 0.26619 s in our experiments. This is indicative of the efficiency of the model after 

it has been trained. The training involves two DDPG agents (anti-jamming and 

jammer). Therefore, the time complexity is roughly double that of a single DDPG, 

i.e., 𝑂(2 × 𝐿 × 𝑁2). Our proposed Adversarial Learning approach recorded a 

processing time of 0.3645 s. Despite the involvement of two DDPG agents during 

training, the processing time remains efficient. This efficiency in real-world scenarios 

stems from the model’s comprehensive training against dynamic jamming strategies, 

allowing the anti-jamming agent to formulate a highly responsive action policy.  

5. Conclusion 

A model-free, off-policy agent based self-exploration mechanism is presented as an 

effective and clever anti-jamming strategy in the proposed system. The proposed 

solution not only eliminates the unnecessary overhead associated with continuous 

action space but also demonstrates greater intelligence than previous efforts and has 

a significant positive impact on the environment. The simulation results demonstrate 

that our proposed reinforcement learning-based anti-jamming solution can 

effectively defend against sweep and smart jamming attacks. The DDPG agent learns 

to choose the optimal transmission power to minimize the impact of the jamming 

signal and achieves a high SNR even in the presence of jamming signals. Our 

proposed method proves to be robust against rule-based and intelligent jammers and 

offers optimal power consumption and improved SNR. Based on simulation results, 

the proposed anti-jamming approach has been demonstrated to be more effective than 

popular approaches such as Q-learning and DQN. 
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