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Abstract: A novel proposed Binary Volleyball Premier League algorithm (BVPL) has 

shown some promising results in a Parkinson’s Disease (PD) dataset related to 

fitness and accuracy [1]. This paper evaluates and provides an overview of the 

efficiency of BVPL in feature selection compared to various metaheuristic 

optimization algorithms and PD datasets. Moreover, an improved variant of BVPL 

is proposed that integrates the opposite-based solution to enlarge search domains 

and increase the possibility of getting rid of the local optima. The performance of 

BVPL is validated using the accuracy of the k-Nearest Neighbor Algorithm. The 

superiority of BVPL over the competing algorithms for each dataset is measured 

using statistical tests. The conclusive results indicate that the BVPL exhibits 

significant competitiveness compared to most metaheuristic algorithms, thereby 

establishing its potential for accurate prediction of PD. Overall, BVPL shows high 

potential to be employed in feature selection. 

Keywords: Binary Volleyball Premier League, Feature Selection (FS), k-Nearest 

Neighbor (kNN), Parkinson’s Disease (PD), MetaHeuristic optimization Algorithms 

(MHA). 

1. Introduction  

Currently, there is a significant amount of research being conducted on the issue of 

feature selection. Various techniques, including filter, wrapper, and embedding 

methods, have been utilized and suggested over time to address the issue of feature 

selection. The selection of features in filter methods is independent of the choice of 

a machine learning classifier, whereas wrapper methods rely on the performance of 

the classifier algorithm when evaluating different subsets of features. Lastly, 

embedded methods incorporate feature selection as an integral part of the classifier 

algorithm. Details of them have been discussed in previous review papers [2-4]. 

Nevertheless, it is worth noting that there exists a distinct category known as 

metaheuristics, which has gained significant popularity in the field of Feature 

Selection (FS) over the past few decades [5-8]. This preference can be explained by 

the good things about metaheuristics, like their ability to work without gradients, their 
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adaptability, their simplicity, and the fact that they don’t depend on the specific 

problem [9]. In recent decades, there has been a boom of novel Metaheuristic 

Optimization Algorithms (MHAs) as well as enhancements to existing ones, along 

with an increasing number of hybrid methods. Yet, a significant portion of 

contemporary algorithms developed by the younger generation exhibits a lack of 

originality and bear a resemblance to pre-existing algorithms, such as Particle Swarm 

Optimization (PSO), Genetic Algorithm (GA), Differential Algorithm (DE), Ant 

Colony Optimization (ACO), and Artificial Bee Colony (ABC) [10]. Accuracy, 

stability, scalability, and computing cost are the main difficulties that researchers 

encounter when using metaheuristics [5, 8]. 

The process of FS, which aims to identify and retain only the most useful 

features while discarding noisy, non-informative, irrelevant, and redundant 

information, can improve machine-learning models. Metaheuristics typically produce 

continuous values, making them unsuitable to be applied directly for Feature 

Selection (FS). In their study, C r a w f o r d  et al. [11] have looked at a lot of different 

ways to turn continuous MHAs into discrete or binary ones. One often employed 

methodology is known as the two-step binarization technique, which involves the 

utilization of Transfer Functions (TF) to transform continuous values within the range 

of 0 to 1, and then methods as standard, or complement converts them in binary 

values, 0 or 1. In FS 1 means that the feature is selected; otherwise, it is not selected. 

These methodologies facilitate the utilization of continuous metaheuristics without 

necessitating any modifications to the operators. In addition to the S-shaped and  

V-shaped TFs [12], there are other types such as the X-shaped [13], U-shaped [14], 

and linear [15] TFs. The utilization of quadratic functions has also been suggested 

[16].  Nevertheless, it cannot be assured that just one metaheuristic will be able to 

identify the optimal subset of features from various domains. Given the 

aforementioned concerns, it is plausible that the utilization of novel metaheuristics in 

feature selection could yield improved outcomes. Several binary metaheuristics have 

been developed recently, employing various approaches to TFs. These include moth-

flame optimization [17], quadratic Harris hawk optimization [16], seagull optimizer 

[18], gradient-based optimizer [19], ant lion [20], Artificial Algae Algorithm [21], 

atom search optimization [22], bamboo forest growth optimization [23], Giza 

pyramids construction [24], golden eagle optimizer [25], gaining-sharing knowledge-

based optimization [26], and Manta ray foraging optimization [27], horse herd 

optimization [28], among others. The Volleyball Premier League (VPL) Algorithm 

is an MHA that draws inspiration from the competitive nature of volleyball teams 

participating in a league over the course of a season [29]. The first proposal of the 

binary VPL Algorithm has been documented in [1]. In order to assess its robustness, 

the algorithm will now be tested on a large number of datasets and in conjunction 

with other MHAs. An Opposition-Based BVPL (OBL_BVPL) Algorithm is proposed 

also to improve the exploration of the optimum. The primary aim of this research is 

to strengthen the utilization of metaheuristics in the domain of feature selection, 

specifically focusing on the identification of the most significant features. The main 

focus of this investigation is on datasets related to Parkinson’s Disease (PD), aiming 
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to develop a model that can improve the accuracy of predicting people affected by 

PD. 

The article is organized into five sections. Following the introductory part 

Section 2, the next section provides a concise overview of the BVPL, opposition-

based learning, and k-Nearest Neighbor Algorithm. Section 3 outlines the 

experimental conditions covering the methodology, the datasets, the binary 

metaheuristics employed for comparative analysis, and the assessment measures. 

Section 4 summarizes the results of the metrics for all the MHAs and the eight TFs. 

The final results are completed along with convergence curves and statistical tests. 

Additionally, the distinction between BVPL and OBL_BVPL in performance is 

emphasized. The Conclusion Section 5 presents the most significant findings of these 

experiments. 

2. Materials and methods 

2.1. Binary Volleyball Premier League (BVPL) Algorithm 

The foundational algorithm of this work is the Volleyball Premier League Algorithm, 

which M o g h d a n i  and S a l i m i f a r d  [29] first created. VPL is considered a 

human-based algorithm that is inspired by the volleyball league. The composition of 

players consists of active players, who are those who participate in a game or 

competition from the initial stages, and passive players, who are substitutes who have 

the potential to enhance the team’s overall performance and are selected by the coach. 

In VPL, a league represents a population, a team represents a solution, an iteration is 

a season, a week means the schedule, and the winning team at the end of each season 

represents the best solution. The VPL Algorithm encompasses 11 distinct steps. The 

initial phase involves the initialization process, which starts with the utilization of 

two matrices named formation and substitution with random values. Their 

dimensions are the team’s number of players and the dataset’s number of features. 

The second phase consists of the setting of the match schedule, which determines the 

schedule and order of the competitions among the participating teams. In this 

competitive setting, two teams compete with each other and afterwards, a winner is 

determined. Following this, both the winning and losing teams proceed to form new 

formations and implement four strategies accordingly. The implementation of three 

strategies, namely knowledge sharing, repositioning, and substitution, might be seen 

as advantageous for a team experiencing a decline in performance, as these strategies 

have the potential to enhance the overall quality of the team. Conversely, a winning 

team may choose to follow the leading role approach to maintain their success. The 

subsequent stage involves the implementation of a learning phase, during which the 

remaining teams are restructured based on the top three performing teams. The three 

concluding stages employed to enhance the efficacy of the proposed solutions are 

season transfers, promotions, and relegations. The original study written by the 

researchers explains in depth the mathematical details associated with each phase. 

The binary version of BVPL is constructed by selecting an appropriate S- or  

V-shaped transfer function for each dataset. Additionally, the application of a 

suggested cost function determines the evaluation of team quality. This function 
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assesses the solution’s quality by considering the accuracy of the k-NN machine 

learning method. The following is a general pseudocode illustration. 

Algorithm 1. BVPL Algorithm 

Input: t = 0, parameters, cost function 

Output: mean, and standard deviation of fitness, average of selected features, 

average accuracy 

Initialization  

For nruns = 1 to nruns 

t =1;  

  While t < max_iteration 

         Generate a league schedule 

         For i = 1: (N – 1) 

   Best team =Select best team according to the cost function 

     // ---TF is applied each time that the fitness of the team is calculated ---// 

    // --- Cost function is applied each time that the fitness of the team is 

calculated -// 

        For (each match in schedule table of week i) 

    Apply Competition procedure between team A, and B 

    Determine loser and winner teams  

    Apply different strategies for loser and winner teams 

    Update Best team 

    Apply learning phase 

         End For  

 i=i+1 

         End For 

    Apply promotion and relegation process  

    Apply season transfer process  

    t = t + 1 

    End While 

End For 

2.2. Opposition-based learning 

T i z h o o s h  [30] was the first to propose the technique known as Opposition-Based 

Learning (OBL) in the field of intelligence computation. The main principle of OBL 

is to evaluate simultaneously the fitness values of the current solution and its 

corresponding opposite solution, then retain the dominant individual to continue with 

the next iteration, thus effectively strengthening population diversity. Therefore, 

OBL has been widely implemented to enhance the optimization performance of many 

basic metaheuristics. In our case, OBL equation is implemented in the final phase of 

BVPL, where after the best solution is provided so far, it will also be the opposite 

solution. The solution with the best fitness will be selected for the next iteration. OBL 

is integrated with the aim of searching for a better solution than that provided by the 

BVPL. The mathematical equation for OBL is presented as follows, where  𝑥op_sol is 

the opposite solution, and 𝑥act_sol is the actual solution found better so far: 

(1)        𝑥op_sol = lower boundary + upper boundary − 𝑥act_sol.  
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2.3. K-Nearest Neighbor (k-NN) 

A popular and widespread supervised learning technique for feature selection is  

k-Nearest Neighbor [8, 7, 31]. It is a non-parametric, supervised learning algorithm 

that employs distance to classify or predict how a particular data point will be 

grouped. The parameter k in the k-NN Algorithm specifies how many neighbors will 

be examined to determine an instance classification. In our situation, k-NN is 

employed as an evaluator of the team’s fitness in order to determine whether a person 

has PD or not. 

3. Experiment design 

3.1. Methodology 

In this section, a description of the applied experiments is given. 

• Firstly, certain assessments are employed to determine the most suitable 

transfer function that aligns with BVPL in each dataset.  

• Secondly, BVPL is compared with 20 other popular metaheuristics listed in 

Table 2. The two-step binarization method has not been applied to GA, DE, and ACO 

as they provide themselves binary outcomes. 

• At last, an innovative approach is introduced that integrates OBL into BVPL, 

yielding highly favorable outcomes in comparison to BVPL itself.  

To avoid overfitting, k-fold cross-validation with k-fold = 5 was used, which 

divides datasets into k-folds. The classifier used the k – 1 folds for training data and 

the 1-fold for test data. As a fitness function for our evaluation, we have used  

k-nearest neighbor classifier accuracy with an Euclidean distance metric and  

k-neighbor = 5 to measure the quality of the solutions. Every execution has been 

implemented on a PC with an Intel(R) Core(TM) i5-8365U CPU @ 1.60 GHz and 

1.90 GHz and 16 GB of RAM. All the codes have been executed in the RStudio 

environment.  

3.2. The PD datasets 

Our experiments are entirely focused on Parkinson’s disease, and we base our 

analysis on nine publicly available PD datasets [32, 33], and one PPMI dataset [34] 

(Dataset D8 used in preparation of this article has been obtained on August 01, 2022 

from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-

info.org/access-data-specimens/download-data), RRID: SCR 006431. For up-to-

date information on the study, visit www.ppmi-info.org). The names of the datasets 

and feature names correspond with the same names as in the origin sites. The 

following dataset is associated with three categories of Parkinson’s disease: speech 

(vocal), writing tests, and gait processes. All the features of the datasets are 

normalized between 0 and 1 using a min-max normalization. Columns that identify 

patients, that have null values, or for which there is no data for healthy subjects have 

been removed from the analysis. A summary of the dimensions and number of classes 

is shown in Table 1. The number in brackets for the third column shows the final 

features used for the computations in each dataset. The selected datasets can be 
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categorized into low, medium, or high dimensions, spanning the scalability analysis 

of BVPL. 

Table 1. Summarized information about the PD datasets  
Dataset name ID Dimension Class 

Parkinson D1 195×23 (23) 2 

HandPD spiral D2_S 368×16 (13) 2 

HandPD meander D2_M 368×16 (13) 2 

NewHandPD spiral D3_S 264×16 (13) 2 

NewHandPD meander D3_M 264×16 (13) 2 

Early biomarkers of PD based on naturally connected speech D4 130×65 (27) 3 

Parkinson’s disease classification speech-based D5 756×754 (754) 2 

Replicated acoustic features of Parkinson D6 240×48 (46) 2 

Parkinson dataset with multiple types of sound recordings D7 1040×29 (27) 2 

Gait data arm swing D8 148×58 (55) 2 

3.3. The binary metaheuristics optimization algorithms parameters 

Each binary MHA has its own parameters, which are important in the evaluation of 

their performance. The parameters are presented in Table 2.  

Table 2. MHAs parameters 

Algorithm Reference Parameters 

General – nRuns = 20; maxiter = 100, population = 6; alpha_cost = 0.99, k=5-fold 

BVPL – fall_rate=0.15, transport_rate = 0.5, β=2, b is from β to 0 

ACO [35]  =1,  = 1,  = 1,  = 0.1,  = 0.2 

ABC [36] Acceleration coefficient a =1 

ALO [20] - 

ASO [37] Vmax = 6,  = 0.001, Depth weight  = 50, multiplier weight  = 0.2 

BA [38] Loudness A = 0.25, pulse rate r = 0.1, Qmin=0, Qmax=2 

DE [39] Crossover probability CR = 0.9 

DF [40] Dmax = 6 

FA [41] 
Light absorption coefficient  = 1, Attraction coefficient 0 = 2,  
Mutation coefficient  = 0.2, Mutation coefficient damping ratio  
alpha_damp = 0.98 

GWO [42] a linearly decreases from 2 to 0, C1, C2, and C3 are random numbers 

HHO [16]  = 1.5 

MFO [43] a linearly decreases from –1 to –2  

PSO [44] 
Cognitive factor C1 =2, Social factor C2 = 2, Wmax = 0.9, Wmin = 0.4, 
Vmax = 6 

SSA [45] C2, C3 = rand 

TGA [46] 
Number of trees in first group N1 = 3, Number of trees in second group 
N2 = 5, Number of trees in fourth group N4 = 3, Tree reduction rate  
 = 0.8, Parameter controls nearest tree  = 0.5  

WOA [47] 
a decreases linearly from 2 to 0, a2 linearly decreases from –1 to –2,  
r1, r2, p are random numbers in interval (0, 1), b =1 

EOA [48] Thres = 0.5, V = 1, a1 =2, a2=1, GP = 0.5 

GA [49] Crossover Rate CR = 0.8, Mutation Rate MR = 0.3 

SCA [50] r1, decreases linearly from  to 0,  = 2, r2, r3, r4 are random numbers  

TLBO [51] - 

GOA [52] cmax=1, cmin=0.00004 
 

In order to see the detailed performance of BVPL, we have compared it with 20 

other binary MHAs. The selected algorithms are the binary variants of: ACO, ABC, 

Ant Lion Optimization (ALO), Atom Search Optimization (ASO), Bat Algorithm 
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(BA), DE, Dragon Fly (DF), Firefly Algorithm (FA), Grey Wolf Optimization 

(GWO), Harris Hawk Optimization (HHO), Moth Flame Optimization (MFO), PSO, 

Salp Swarm (SSA), Tree Growth Algorithm (TGA), Whale Optimization Algorithm 

(WOA), Equilibrium Optimizer Algorithm (EOA), GA, Sine-Cosine Algorithm 

(SCA), Teaching Learning-Based Optimization (TLBO), and Grasshopper 

Optimization Algorithm (GOA) algorithms. The parameters are chosen as in the 

reference works or cited papers. 

3.4. The performance metrics 

To validate the performance of the BVPL vs. the eight TFs and the other 

metaheuristics, some well-known metrics have been used. In general, the FS problem 

has two conflicting objectives, such as choosing the smallest number of features 

while maintaining the highest classification accuracy. The fitness function is used to 

find a balance between the number of selected features and classification accuracy. 

The formula is as below: 

(2)        Fitness =  0.99 ∗ CE + 0.01 ∗ 𝑛f /𝑛t , 
where 𝑛f is the number of selected features, 𝑛t is the number of total features, and 

CE is the classification error = 1 – accuracy (generated by the selected features of the 

test dataset of the KNN Algorithm). Due to the stochastic nature of metaheuristics, 

for each method, 20 independent runs were performed (each run includes 100 

iterations), then the average value of the performance metrics was recorded over the 

20 runs. The other metrics are formulated below:  

• Classification accuracy. It is a metric that defines how accurate a 

classification model is for a given set of features. It is calculated as: 

(3)        Average accuracy =  
1

nruns
∑

1

𝑁
nruns
𝑗=1 ∑ match(𝐶𝑖, 𝐿𝑖)𝑁

𝑖=1 , 

where N is the number of test points, Ci denotes the output label for data point i, 

match denotes the comparator that returns 0 when two labels are not identical, and 1 

when they are same, and Li denotes the reference label for i. 

• Average number of selected features. It represents the average of the 

number of selected features (nf) over nruns times and is defined as follows: 

(4)       Average no features =  
1

nruns
∑ 𝑛𝑓(𝑖)nruns

𝑖=1  .  

• Average fitness. It represents the mean of each best fitness where fi is the 

fitness in each run,  

(5)   Average fitness =
1

nruns
∑ 𝑓𝑖

nruns
𝑖=1 .   

The last metric used, standard deviation describes the variation of the optimal 

fitness in all runs.  

4. Experiment results  

4.1. Results from the S-shaped and V-shaped Transfer Function (TF) 

This subsection presents the optimal outcomes attained by BVPL utilizing eight 

transfer functions for each dataset. Tables 9-12 in Appendix A show the results for 

the mean and standard deviation of fitness, the average accuracy, and the average 

number of selected features. The objective was to identify the most prominent TF for 
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the BVPL based on the average fitness, as presented in Table 9. When the average 

fitness is equal, the subsequent criterion considered is the maximum average 

accuracy, which is shown in Table 11. The successful transfer functions for each 

dataset are as follows: D1 (V3), D2_S (V3), D2_M (S2), D3_S (S3), D3_M (S3), D4 

(S2), D5 (S3), D6 (V4), D7 (S2), and D8 (V3). The TF mentioned is utilized for the 

subsequent experiments in the other MHAs.  

4.2. Comparison of BVPL and metaheuristics on the datasets 

The results from the metrics for the MHAs are presented in Tables 3-7. The optimal 

outcomes are shown through the utilization of both italics and bold formatting. In 

these tables, we will henceforth refer to the metrics as average fitness (favg), the 

standard deviation of the fitness (fsd), average accuracy (accavg), and the average 

number of features (featavg). In general, it can be observed that BVPL produces a 

smaller number of features compared to the other methods, particularly in the cases 

of D1, D2_M, D3_S, D3_M, and D7. It is important to note that BVPL has a 

predetermined minimum number of features, with the maximum being half of the 

total number of features in each dataset.  

In reference to D1 (Table 3), it can be shown that ACO outperforms BVPL in 

all metrics, with the exception of the average number of features. BVPL is among the 

third-best algorithms after ACO and GA. According to the information presented in 

Table 3 for the D2_S dataset, it is evident that the BVPL Algorithm ranks as the 

second most effective approach, surpassed only by the ACO Algorithm.  

Table 3. The results of 6 metrics for D1 (left) and D2_S (right) 

MHA favg  (fsd) accavg featavg favg (fsd) accavg featavg 

BVPL 0.05338 0.01874 0.94723 2.5 0.06385 0.01782 0.93724 2.05 

ACO 0.04030 0.02004 0.96379 9.95 0.05837 0.01429 0.94495 4.75 

ABC 0.11009 0.02708 0.89052 2.95 0.12738 0.04765 0.87294 2.05 

ALO 0.05949 0.02450 0.94310 6.75 0.08581 0.04358 0.91606 2.8 

ASO 0.06754 0.02601 0.93621 9.65 0.07619 0.017780 0.92569 3.15 

BA 0.07099 0.03129 0.93362 11.6 0.09661 0.02855 0.90734 5.85 

DE 0.05733 0.02612 0.94741 11.6 0.07337 0.01636 0.93119 6.3 

DF 0.08042 0.02547 0.92414 11.7 0.08423 0.02352 0.92064 6.8 

FA 0.10744 0.03267 0.89310 3.55 0.12738 0.05275 0.87294 1.9 

GWO 0.05761 0.02221 0.94741 12.2 0.07440 0.01922 0.93028 6.45 

HHO 0.06503 0.02657 0.93707 6 0.08095 0.02206 0.92156 3.95 

MFO 0.07499 0.02574 0.92586 3.5 0.09121 0.04623 0.90963 2.1 

PSO 0.07726 0.02155 0.92759 12.25 0.08802 0.02536 0.91606 5.9 

SSA 0.10635 0.03638 0.89483 3.05 0.17589 0.04722 0.82431 2.05 

TGA 0.05684 0.02242 0.94828 12.4 0.06544 0.01638 0.93853 5.5 

WOA 0.05721 0.02530 0.94483 5.7 0.06641 0.01579 0.93532 2.85 

EOA 0.08080 0.03317 0.91983 9.7 0.11483 0.05546 0.88578 6.05 

GA 0.04904 0.01659 0.95517 10.25 0.06713 0.01844 0.93670 5.35 

SCA 0.07658 0.01947 0.92414 2.7 0.09888 0.03708 0.90180 2.1 

TLBO 0.09030 0.02952 0.91035 3.4 0.12556 0.05023 0.87477 1.9 

GOA 0.09256 0.02409 0.90862 4.6 0.10967 0.04740 0.89174 3 
 

The ACO Algorithm demonstrates superior performance in terms of average 

fitness and accuracy. BVPL Algorithm exhibits a high level of rivalry in terms of 
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accuracy when compared to TGA, WOA, and GA. There is a slight distinction 

between BVPL and FA, as well as TLBO, in terms of the number of features. 

In relation to the D2_M dataset, as illustrated in Table 4, it can be established 

that BVPL gives the greatest average fitness, along with average accuracy and the 

selected features. The ACO remains highly competitive. According to the data 

presented in Table 4 (D3_S), BVPL Algorithm exhibits substantially better outcomes 

in terms of average fitness and accuracy compared to ACO. Their results are better 

than those of the other MHAs.  
 

Table 4. The results of 6 metrics for D2_M (left), and D3_S (right) 

MHA favg fsd accavg featavg favg fsd accavg featavg  

BVPL 0.05716 0.01763 0.94433 2.45 0.14256 0.03281 0.85924 3.85  

ACO 0.05977 0.02083 0.94358 4.85 0.14590 0.03043 0.85823 6.8  

ABC 0.10143 0.03725 0.90138 4.65 0.20743 0.02453 0.79557 5.4  

ALO 0.07313 0.01890 0.93211 7.15 0.16586 0.03436 0.83987 8.6  

ASO 0.06607 0.02793 0.93532 2.45 0.17314 0.03374 0.82848 4  

BA 0.08402 0.02626 0.92064 6.55 0.17735 0.02515 0.82595 6.05  

DE 0.07990 0.02709 0.92523 7.05 0.16929 0.03239 0.83481 6.9  

DF 0.06998 0.01959 0.93440 6.05 0.18040 0.03475 0.82279 5.95  

FA 0.11725 0.04133 0.88578 5 0.22355 0.04155 0.77911 5.85  

GWO 0.07577 0.02597 0.92890 6.45 0.15396 0.03695 0.85063 7.3  

HHO 0.07436 0.02302 0.92982 5.85 0.15467 0.03317 0.84873 5.9  

MFO 0.11023 0.05208 0.89312 5.3 0.17004 0.03198 0.83354 6.3  

PSO 0.08836 0.03218 0.91606 6.3 0.20972 0.04757 0.79367 6.55  

SSA 0.15769 0.04766 0.84312 4.35 0.29933 0.06355 0.70063 5.5  

TGA 0.06899 0.01860 0.93486 5.4 0.15542 0.03411 0.84937 7.55  

WOA 0.06738 0.01862 0.93716 6.2 0.15609 0.02941 0.84747 6.1  

EOA 0.08653 0.04672 0.91697 5.4 0.17861 0.04447 0.82468 4.45  

GA 0.06915 0.02361 0.93486 5.6 0.15684 0.03629 0.84684 6.25  

SCA 0.10139 0.04792 0.90184 4.45 0.17618 0.03727 0.82722 5.8  

TLBO 0.08632 0.02717 0.91697 4.95 0.18345 0.04716 0.81962 5.85  

GOA 0.10469 0.04931 0.89817 4.65 0.18884 0.04317 0.81392s 5.55  

 

According to the findings presented in Table 5 of D3_M, the SCA method 

demonstrates superior performance in terms of accuracy and fitness. According to the 

ranking, ACO is considered the second most favorable alternative, followed by 

BVPL. The results from the D4 dataset, which are shown in Table 5, show that BVPL 

does better than the other MHs on all of the criteria that have been looked at. ACO is 

the second-best one, and the others are far away from this result.  

The results from the seventh dataset, D5 (Table 6), provide further confirmation 

that BVPL outperforms the other MHAs. The competition between ACO, BA, and 

WOA is evident across various indicators. In the D6 dataset, as presented in Table 6, 

it can be observed that BVPL presents greater performance in terms of average 
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fitness. However, ACO demonstrates higher average accuracy. ALO reveals strong 

concurrence with ACO in terms of metrics.  

Table 5. The results of 6 metrics for D3_M (left), and D4 (right) 

MHA favg fsd accavg featavg favg fsd accavg featavg 

BVPL 0.13584 0.02114 0.86557 3.3 0.34154 0.03427 0.65643 3.65 

ACO 0.12869 0.02737 0.87532 6.45 0.37252 0.04392 0.62821 12 

ABC 0.18324 0.03017 0.81962 5.45 0.481 0.05230 0.51795 9.55 

ALO 0.16381 0.02369 0.84177 8.85 0.42017 0.03796 0.58333 19.7 

ASO 0.16077 0.03347 0.84051 3.45 0.43267 0.04637 0.56410 2.95 

BA 0.18696 0.04335 0.81646 6.3 0.43515 0.05336 0.56539 12.7 

DE 0.16645 0.03761 0.83797 7.25 0.42367 0.05521 0.57821 15.85 

DF 0.16327 0.02266 0.84051 6.45 0.43883 0.04639 0.56154 12.35 

FA 0.22121 0.05310 0.78101 5.3 0.49485 0.04527 0.50384 9.5 

GWO 0.15166 0.03789 0.85317 7.55 0.416 0.04499 0.58590 15.7 

HHO 0.14385 0.02511 0.86013 6.45 0.40635 0.04903 0.59359 10.4 

MFO 0.15421 0.03190 0.84937 6.1 0.41321 0.03936 0.58590 8.45 

PSO 0.19677 0.03463 0.80696 6.8 0.49506 0.05337 0.50513 13.35 

SSA 0.25526 0.06306 0.74494 4.7 0.46537 0.05410 0.53205 10.15 

TGA 0.14953 0.02683 0.85443 6.5 0.40173 0.03892 0.6 14.9 

WOA 0.14573 0.02331 0.85823 6.45 0.39673 0.03614 0.60513 15.1 

EOA 0.16766 0.02287 0.83544 5.2 0.40215 0.04229 0.59744 10.9 

GA 0.14707 0.02602 0.85633 5.8 0.43825 0.04543 0.56154 10.85 

SCA 0.11151 0.04781 0.89220 5.25 0.40267 0.04265 0.59744 11.4 

TLBO 0.18228 0.04361 0.82025 5.2 0.43529 0.03697 0.56410 9.75 

GOA 0.17113 0.03209 0.83165 5.35 0.43435 0.04199 0.56410 7.3 

Table 6. The results of 6 metrics for D5 (left), and D6 (right) 

MHA favg fsd accavg featavg favg fsd accavg featavg 

BVPL 0.08522 0.01227 0.91593 149.8 0.10983 0.02630 0.89040 5.95 

ACO 0.09819 0.01492 0.90553 351.7 0.11227 0.01997 0.89097 19.7 

ABC 0.12731 0.01741 0.87589 331.6 0.16207 0.02344 0.83819 8.2 

ALO 0.10986 0.01564 0.89712 605.4 0.11520 0.01930 0.8875 16.9 

ASO 0.10473 0.01292 0.89602 134.6 0.15249 0.02125 0.84792 8.7 

BA 0.09687 0.01310 0.90708 367.7 0.15248 0.02947 0.85069 21 

DE 0.10996 0.01631 0.89513 462.3 0.13757 0.02791 0.86667 25.1 

DF 0.11513 0.01214 0.88872 373.3 0.17192 0.02570 0.83125 21.9 

FA 0.12204 0.01559 0.88120 332.9 0.16833 0.02649 0.83194 8.8 

GWO 0.09813 0.01367 0.90774 511.9 0.13015 0.02325 0.87431 25.7 

HHO 0.10991 0.01650 0.89381 359.9 0.13889 0.02635 0.86181 9.4 

MFO 0.10492 0.01664 0.89845 330 0.12981 0.01735 0.87083 8.7 

PSO 0.12457 0.01712 0.87920 374.7 0.16834 0.02626 0.83472 21.2 

SSA 0.11879 0.01712 0.88252 336.6 0.15796 0.02849 0.84306 8.2 

TGA 0.10641 0.01481 0.89867 459.3 0.13511 0.01844 0.86944 26.4 

WOA 0.10327 0.01346 0.90155 436.9 0.13913 0.02421 0.86042 4.25 

EOA 0.10829 0.01556 0.89513 295.1 0.12934 0.01938 0.87083 16.45 

GA 0.10979 0.01378 0.89381 350.5 0.13516 0.02037 0.86806 20.4 

SCA 0.10739 0.01431 0.89624 351.3 0.12829 0.02698 0.87153 3.4 

TLBO 0.11524 0.01484 0.88805 331.9 0.14520 0.02107 0.85486 6.8 

GOA 0.11153 0.01648 0.89071 251.2 0.15037 0.02646 0.85070 11.5 
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In D7 (Table 7), it can be observed that BVPL indicates weak efficiency, while 

ACO yields superior outcomes in terms of average fitness and accuracy. The ALO, 

GWO, HHO, TGA, and WOA exhibit significant competition with the ACO. In the 

final dataset (Table 7), it can be observed that BVPL implies better performance 

across all measures, with the exception of the number of features, where SCA 

displays the most positive outcomes. For the same dataset, ACO and ALO indicate a 

considerable level of similarity. 

Table 7. The results of 6 metrics for D7 (left), and D8 (right)  

MHA favg fsd accavg featavg favg fsd accavg featavg 

BVPL 0.32260 0.01530 0.67564 3.85 0.15493 0.03445 0.84429 4.2 

ACO 0.29192 0.01316 0.71026 13.5 0.16540 0.04240 0.8375 24.6 

ABC 0.33930 0.01734 0.66122 10 0.24681 0.05044 0.75227 8.1 

ALO 0.30902 0.01684 0.69615 21.35 0.16177 0.05892 0.83977 17.1 

ASO 0.31488 0.01947 0.68478 7.3 0.22156 0.05046 0.77727 5.7 

BA 0.31183 0.02068 0.69022 13.4 0.21408 0.05738 0.78864 26.1 

DE 0.31067 0.01824 0.69311 17.8 0.20351 0.05208 0.8 29.8 

DF 0.31903 0.01359 0.68301 13.6 0.25707 0.05711 0.74546 27.4 

FA 0.34018 0.01799 0.66010 9.6 0.24349 0.05011 0.75568 8.7 

GWO 0.30059 0.01698 0.70272 16.4 0.19273 0.04837 0.81136 32.3 

HHO 0.30341 0.01564 0.69792 11.3 0.21054 0.05312 0.78864 6.95 

MFO 0.31164 0.01737 0.68958 11.3 0.17367 0.04461 0.82614 8.4 

PSO 0.32716 0.02074 0.67468 13.3 0.25237 0.05098 0.75 26.3 

SSA 0.33484 0.02285 0.66555 9.9 0.24825 0.05944 0.75114 8.3 

TGA 0.30115 0.00596 0.70401 21.1 0.21772 0.01143 0.78523 27.5 

WOA 0.29696 0.01591 0.70657 16.8 0.18185 0.04795 0.81705 3.9 

EOA 0.31606 0.01780 0.68510 9.7 0.18704 0.04309 0.8125 21.4 

GA 0.31019 0.01461 0.69183 13.3 0.20466 0.04393 0.79773 23.8 

SCA 0.31166 0.01995 0.68942 12.2 0.18071 0.04426 0.81818 3.35 

TLBO 0.31445 0.01843 0.68638 10.3 0.22857 0.03077 0.77046 7.1 

GOA 0.32323 0.01769 0.67772 10.9 0.22477 0.04204 0.775 10.9 

4.3. Convergences curves and statistical difference 

The convergence curves can visually illustrate the variations in the performance of 

all the MHAs across different criteria. Figs 1 and 2 illustrate the convergence curves 

that correspond to the average fitness observed throughout each iteration. Each graph 

shown represents a distinct dataset. It can be observed that among the three datasets, 

namely D2_M, D4, and D5, the BVPL algorithm exhibits a quicker convergence 

speed compared to the other metaheuristics. Moreover, in the cases of D2_S, D3_M, 

D3_S, D6, and D8, the level of competitiveness of BVPL is notably high. 

Additionally, it is observed that BVPL in D8, D6, and D3_S exhibit a faster rate of 

convergence compared to the other MHAs, after the 75th iteration. SSA reveals a 
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major shift in convergence across all datasets, surpassing the other algorithms in 

terms of fitness values. The ACO algorithm exhibits a notable convergence speed 

when searching for the global optimum in datasets D1, D2_S, and D7.  

Tables 13 and 14 (Appendix B), present the p-values resulting from the use of 

t-tests or Wilcoxon sum-rank tests. These tests have been conducted to examine the 

difference in average fitness between BVPL and the remaining 20 MHAs. If the  

p-value is less than 0.05, it can be concluded that there is a significant difference in 

the average fitness of BVPL when compared to the other algorithm. In the event that 

BVPL demonstrates superior performance, it will be represented by the symbol “+”. 

Conversely, if BVPL exhibits equivalent performance, it will be signified by the 

symbol “=”. Lastly, if BVPL demonstrates inferior performance, it will be indicated 

by the symbol “– “. The performance of BVPL surpasses that of 17 MHAs, exhibiting 

superior results in over 50% of the datasets. The performance of BVPL does not 

appear to be superior to ACO, except in the case of four specific datasets. 

Additionally, when considering the performance of WOA and GA, they are found to 

be equally superior to BVPL.  

4.4. Results of BVPL vs BVPL_OBL 

This section provides a summary of the four metrics used to evaluate the FS problem 

BVPL against BVPL_OBL, as presented in Table 8.  

Table 8. Results BVPL against OBL_BVPL 

Algorithm BVPL Algorithm OBL_BVPL Algorithm 

Dataset favg fsd accavg featavg favg fsd accavg featavg 

D1 0.05338 0.01874 0.94723 2.5 0.01848 0.00539 0.98274 3.05 

D2_S 0.06385 0.01782 0.93724 2.05 0.05601 0.00747 0.94654 3.7 

D2_M 0.05716 0.01763 0.94433 2.45 0.05082 0.00864 0.95216 4.15 

D3_S 0.14256 0.03281 0.85924 3.85 0.10058 0.01898 0.90241 4.75 

D3_M 0.13584 0.02114 0.86557 3.3 0.09235 0.00385 0.91013 4.05 

D4 0.34154 0.03427 0.65643 3.65 0.30865 0.01973 0.68971 3.8 

D5 0.08522 0.01227 0.91593 149.8 0.08392 0.01209 0.91728 152.3 

D6 0.10983 0.02630 0.89040 5.95 0.08794 0.01235 0.91249 5.85 

D7 0.32260 0.01530 0.67564 3.85 0.28404 0.01429 0.71523 5.5 

D8 0.15493 0.03445 0.84429 4.2 0.11701 0.02745 0.88298 6.3 

 

The suggested methodology exhibits significant enhancements in terms of 

average fitness and accuracy across all datasets. Incorporating the opposing approach 

leads to a considerable increase in accuracy and a decrease in fitness. The observed 

improvement in precision ranges from 0.135% in D5 to 4.456%. In relation to 

efficacy, this technique has demonstrated major relevance in the prediction of 

Parkinson’s disease. 
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Fig. 1. The convergence curves of B-VPL versus the other MHAs for the first five datasets 
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Fig. 2. The convergence curves of B-VPL versus the other MHAs for the last five datasets 

5. Conclusions 

This paper has employed a metaheuristic, BVPL in feature selection problem which 

has provided a higher accuracy in predicting PD, in 10 different datasets, compared 

with a large list of metaheuristics. BVPL outperforms ACO in fitness and accuracy 
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across five datasets, while ACO outperforms in one. SCA outperforms ASO in one 

dataset, with the lowest values across all datasets. The BVPL algorithm demonstrates 

an acceptable speed of convergence and effectiveness in searching across a wide 

range of datasets, consistently ranking among the top three among other MHAs, and 

superior in three of them. Opposition-based learning can enhance the prediction of 

PD above 90% in 7 out of 10 datasets.  
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Appendix A. Results from the S-shaped and V-shaped transfer functions 

The values displayed in bold indicate the optimal outcomes. 

Table 9. The results of average fitness for each dataset, and transfer function 

Dataset S1 S2 S3 S4 V1 V2 V3 V4 

D1 0.06027 0.05929 0.06037 0.06228 0.05749 0.05832 0.05338 0.05421 

D2_S 0.06508 0.06822 0.07338 0.06686 0.06768 0.06512 0.06385 0.06690 

D2_M 0.05992 0.05716 0.06554 0.06438 0.06054 0.06112 0.05798 0.05856 

D3_S 0.15848 0.15530 0.14256 0.14607 0.17481 0.17176 0.16378 0.15534 

D3_M 0.14306 0.14194 0.13584 0.14511 0.15267 0.15205 0.14599 0.14123 

D4 0.3491 0.34154 0.35054 0.34283 0.35271 0.34762 0.34258 0.34154 

D5 0.08854 0.08592 0.08522 0.08755 0.09008 0.08931 0.08968 0.08599 

D6 0.11497 0.12096 0.12025 0.11752 0.11551 0.11371 0.11914 0.10983 

D7 0.32395 0.3226 0.32349 0.32566 0.32869 0.32774 0.32760 0.32313 

D8 0.16934 0.17679 0.18291 0.17965 0.16723 0.16270 0.15493 0.16745 

 

Table 10. The standard deviation of fitness for each dataset, and transfer function 

Dataset S1 S2 S3 S4 V1 V2 V3 V4 

D1 0.02302 0.02300 0.02496 0.02819 0.02146 0.02226 0.01874 0.02274 

D2_S 0.01840 0.02083 0.025240 0.02082 0.01864 0.01794 0.01782 0.01861 

D2_M 0.01598 0.01763 0.02238 0.01637 0.01514 0.01645 0.01515 0.01388 

D3_S 0.03406 0.03564 0.03281 0.02990 0.03616 0.02799 0.03449 0.03104 

D3_M 0.02132 0.0225 0.02114 0.02431 0.02308 0.02489 0.02989 0.02509 

D4 0.03609 0.03427 0.03182 0.03448 0.03616 0.03317 0.03419 0.03223 

D5 0.01093 0.01111 0.01227 0.01105 0.01286 0.01204 0.01051 0.01301 

D6 0.02274 0.02440 0.02716 0.03290 0.01905 0.03097 0.02417 0.02630 

D7 0.01469 0.01530 0.01461 0.01394 0.01299 0.01254 0.01089 0.01138 

D8 0.03893 0.03386 0.03548 0.03908 0.03589 0.03888 0.03445 0.03755 

 

Table 11. The average accuracy for each dataset, and transfer function 
Dataset S1 S2 S3 S4 V1 V2 V3 V4 

D1 0.94040 0.94149 0.94068 0.93879 0.94301 0.94215 0.94723 0.94669 

D2_S 0.93597 0.93311 0.92781 0.93448 0.93344 0.93620 0.93724 0.93445 

D2_M 0.94174 0.94433 0.93570 0.93720 0.94057 0.94037 0.94354 0.94291 

D3_S 0.84258 0.84557 0.85924 0.85561 0.82582 0.82890 0.83709 0.84620 

D3_M 0.85802 0.85950 0.86557 0.85587 0.84789 0.84857 0.85506 0.86000 

D4 0.64852 0.65643 0.64757 0.65530 0.64487 0.65018 0.65526 0.65627 

D5 0.91173 0.91482 0.91593 0.91374 0.90995 0.91083 0.91060 0.91458 

D6 0.88458 0.87919 0.88054 0.88351 0.88417 0.88620 0.88058 0.89040 

D7 0.67397 0.67564 0.67502 0.67289 0.66911 0.67010 0.67034 0.67477 

D8 0.82955 0.82282 0.81723 0.82066 0.83184 0.83644 0.84429 0.83193 

 

Table 12. The average number of features for each dataset, and transfer function 
Dataset S1 S2 S3 S4 V1 V2 V3 V4 

D1 2.8 3 3.6 3.7 2.35 2.3 2.5 3.15 

D2_S 2.05 2.4 2.3 2.4 2.15 2.35 2.05 2.4 

D2_M 2.7 2.45 2.25 2.65 2.05 2.5 2.5 2.45 

D3_S 3.15 2.9 3.85 3.75 2.85 2.85 3 3.7 

D3_M 3 3.4 3.3 2.9 2.5 2.55 3 3.15 

D4 2.95 3.65 4.25 4.1 2.95 3.35 3.35 3.25 

D5 87.1 119.2 149.75 161.95 69.75 77.65 87.8 107 

D6 3.15 6.1 8.95 9.9 3.8 4.7 4.1 5.95 

D7 3.05 3.85 4.55 4.75 2.9 2.95 3.2 3 

D8 3.2 7.45 10.65 11.35 4.05 4.2 4.2 5.75 
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Appendix B. Results from the statistical tests 

The bolded values show that there is a significant difference (p-value < 0.05) 

Table 13. The p-value results of BVPL against the 10 first metaheuristics 
Dataset GOA PSO  ABC ACO ALO ASO BA DE DF FA 

D1 1.57×10–6 6.19×10–4 6.14×10–9 3.96×10–2 3.82×10–1 5.68×10–2 1.77×10–2 5.86×10–1 5.18×10–4 1.28×10–6 

D2_S 1.67×10–4 1.36×10–3 1.59×10–6 2.91×10–1 3.33×10–2 3.44×10–2 1.51×10–4 8.63×10–2 3.88×10–3 5.40×10–5 

D2_M 3.65×10–5 4.54×10–4 8.16×10–5 4.90×10–1 2.42×10–3 3.92×10–1 1.28×10–4 6.79×10–4 7.32×10–3 1.65×10–6 

D3_S 5.20×10–4 9.69×10–6 2.91×10–8 7.41×10–1 3.45×10–2 6.08×10–3 6.03×10–4 1.34×10–2 1.07×10–3 5.26×10–8 

D3_M  3.17×10–4 1.52×10–7 1.78×10–6 3.61×10–1 3.42×10–4 3.69×10–2 2.90×10–5 2.66×10–3 3.19×10–4 5.54×10–7 

D4 4.17×10–9 2.70×10–12 1.86×10–11 1.77×10–2 3.81×10–8 3.13×10–8 3.47×10–6 3.48×10–6 7.72×10–9 6.74×10–8 

D5 1.75×10–6 8.47×10–10 2.41×10–10 4.78×10–3 2.83×10–6 1.84×10–5 6.11×10–3 4.37×10–6 2.43×10–9 6.98×10–10 

D6 2.05×10–5 2.17×10–8 8.26×10–8 7.42×10–1 4.66×10–1 2.01×10–6 7.37×10–5 2.52×10–3 4.47×10–9 2.38×10–8 

D7 6.75×10–1 4.33×10–1 2.58×10–3 5.19×10–8 1.12×10–2 1.72×10–1 6.97×10–2 3.12×10–2 4.41×10–1 1.98×10–3 

D8 1.44×10–6 3.91×10–8 1.06×10–7 3.97×10–1 7.25×10–1 2.56×10–5 1.29×10–4 1.43×10–3 1.09×10–7 1.96×10–7 

+/-/= 9/1/0 9/1/0 10/0/0 4/6/0 8/2/0 7/3/0 9/1/0 7/3/0 9/1/0 10/0/0 

 

Table 14. The p-value results of BVPL against the 10 last metaheuristics 
Dataset GWO HHO MFO TGA TLBO WOA EOA GA SCA SSA 

D1 5.19×10–1 1.32×10–1 1.87×10–3 2.17×10–1 4.39×10–5 3.63×10–1 3.08×10–3 9.24×10–1 4.69×10–4 2.04×10–6 

D2_S 7.95×10–2 1.22×10–2 3.82×10–2 4.65×10–1 6.54×10–6 6.33×10–1 9.32×10–4 5.70×10–1 2.31×10–4 3.36×10–7 

D2_M 4.65×10–3 5.07×10–3 3.87×10–5 1.27×10–2 3.89×10–4 1.23×10–2 2.89×10–3 5.81×10–2 1.08×10–4 4.43×10–7 

D3_S 3.09×10–1 2.53×10–1 1.08×10–2 2.32×10–1 3.12×10–3 1.78×10–1 6.14×10–3 2.00×10–1 4.44×10–3 8.29×10–8 

D3_M 2.28×10–1 2.82×10–1 6.77×10–2 9.58×10–2 1.28×10–4 1.68×10–1 5.09×10–5 1.43×10–1 2.39×10–2 5.16×10–7 

D4 1.03×10–6 2.73×10–5 3.92×10–7 7.60×10–6 4.60×10–10 1.53×10–5 5.45×10–6 6.14×10–9 1.49×10–5 6.77×10–10 

D5 3.25×10–3 5.16×10–6 1.46×10–4 1.79×10–5 3.24×10–8 7.76×10–5 7.94×10–6 6.86×10–7 6.23×10–6 2.86×10–8 

D6 1.36×10–2 1.23×10–3 3.18×10–3 1.22×10–3 3.75×10–5 7.54×10–4 6.80×10–3 1.23×10–3 3.96×10–2 2.38×10–6 

D7 1.15×10–4 3.56×10–4 4.10×10–2 9.28×10–6 1.37×10–1 7.27×10–6 2.21×10–1 1.25×10–2 5.98×10–2 5.48×10–2 

D8 7.40×10–3 4.19×10–4 1.46×10–1 4.76×10–8 1.76×10–8 1.29×10–1 1.33×10–2 3.17×10–4 4.71×10–2 2.67×10–6 

+/-/= 6/4/0 7/3/0 8/2/0 7/3/0 9/1/0 5/5/0 9/1/0 5/5/0 9/1/0 9/1/0 
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