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Abstract: Enhancing the fault tolerance of cloud systems and accurately forecasting 

cloud performance are pivotal concerns in cloud computing research. This research 

addresses critical concerns in cloud computing by enhancing fault tolerance and 

forecasting cloud performance using machine learning models. Leveraging the 

Google trace dataset with 10000 cloud environment records encompassing diverse 

metrics, we systematically have employed machine learning algorithms, including 

linear regression, decision trees, and gradient boosting, to construct predictive 

models. These models have outperformed baseline methods, with C5.0 and XGBoost 

showing exceptional accuracy, precision, and reliability in forecasting cloud 

behavior. Feature importance analysis has identified the ten most influential factors 

affecting cloud system performance. This work significantly advances cloud 

optimization and reliability, enabling proactive monitoring, early performance issue 

detection, and improved fault tolerance. Future research can further refine these 

predictive models, enhancing cloud resource management and ultimately improving 

service delivery in cloud computing. 
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1. Introduction 

Cloud computing represents a transformative computing service paradigm that offers 

significant advantages to both small-scale users and large-scale commercial and 

scientific applications. This paradigm is defined as a model that facilitates ubiquitous, 

convenient, on-demand network access to a shared pool of configurable computing 

resources. These resources encompass networks, servers, storage, applications, and 

services, all of which can be rapidly provisioned and deprovisioned with minimal 

management effort or interaction with service providers [1]. The core attributes of 

cloud computing include on-demand access, resource autonomy, rapid elasticity, and 

continuous availability [2]. Cloud resources are allocated using standard protocols, 

such as IAM, OAuth, OpenID for authentication, and AMI, OVF, SOAP, and REST 

for data and workload migration [3-4]. The adoption of these standards fosters the 
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widespread acceptance of cloud services. Furthermore, the cloud delivers enhanced 

business agility while simultaneously reducing costs, making it an appealing choice 

for a diverse user base. This combination of features positions cloud computing as a 

driving force in the contemporary technology landscape. 

Cloud computing, while garnering significant attention is still considered in its 

adolescence concerning its fault-handling capabilities [5]. The architecture of cloud 

computing is characterized by its dynamic and increasingly complex nature [6-7]. 

Unlike traditional systems, cloud deployments rely on millions of commodity 

components, making them more susceptible to faults and failures [8]. In this context, 

a fault is identified as an abnormal condition or defect in one or more parts of a 

system, potentially rendering the system incapable of performing its intended 

functions [9]. The occurrence of a fault within the system leads to errors, defined as 

deteriorations in one or more system components that deviate the system from its 

normal state [10]. These errors, left unaddressed, progress into system failures, 

disrupting the regular service delivery and degrading system performance. 

Inadequate handling of these system failures can render the system inoperable. The 

consequences of such failures can be severe, to the extent that they may have a 

detrimental impact on the economic stability of the service provider. It is therefore 

imperative to address and enhance fault tolerance within cloud computing to ensure 

the uninterrupted delivery of services and safeguard the economic health of the 

provider. Fault tolerance is a critical concept denoting a system's ability to maintain 

its intended functionality in the presence of faults [11-12]. In the absence of fault 

tolerance, even a well-designed system composed of the finest components and 

services cannot be considered reliable [13-15]. The importance of reliability is 

particularly pronounced in the realm of cloud computing, given the execution of a 

substantial number of delay-sensitive, real-time applications. Additionally, the 

reliability of services plays a pivotal role in ensuring the widespread acceptance of 

cloud solutions. As a result, the issue of fault tolerance has garnered significant 

attention in research, leading to the development of numerous fault tolerance 

frameworks documented in the literature. This paper aims to contribute by presenting 

a comprehensive survey of fault tolerance within the cloud computing environment. 

1.1. Motivation of the study 

The motivation for this study is deeply rooted in the evolution of cloud computing, 

which has emerged as a transformative force in information technology. As cloud 

services become increasingly integral to both small-scale users and large-scale 

enterprises, ensuring the fault tolerance and performance predictability of these 

systems has become paramount. The distributed and dynamic nature of cloud 

environments, coupled with the reliance on millions of commodity components, has 

made them susceptible to faults and failures. These faults can lead to errors and, if 

not properly handled, result in system failures, disrupting service delivery and 

potentially causing economic strain for service providers. Therefore, addressing these 

challenges is essential to enhance the reliability and performance of cloud computing. 

Machine learning stands out as a promising avenue to bolster fault tolerance and 

improve the prediction of cloud system performance. Its adaptability and data-driven 
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capabilities make it an ideal candidate for mitigating the limitations of current fault 

tolerance approaches. By systematically leveraging machine learning models, the 

study aims to empower cloud systems with proactive monitoring and early detection 

of performance issues, ultimately ensuring fault tolerance and improved resource 

management. The use of the Google trace dataset, a rich source of real-world cloud 

environment data, adds a practical dimension to the research, offering a foundation 

for the development and evaluation of these machine learning models. The 

motivation behind this study is to address the critical concerns within cloud 

computing by harnessing the potential of machine learning. By advancing fault 

tolerance and enhancing cloud performance prediction, the research aims to 

contribute significantly to the optimization and reliability of cloud computing. It not 

only offers practical solutions for improved fault tolerance but also aligns with the 

dynamic nature of cloud systems, ensuring their continuous and dependable service 

delivery. The ultimate goal is to pave the way for more resilient and efficient cloud 

computing, benefitting both users and service providers. 

1.2. Organization of the paper 

The paper’s structure is as follows. Section 2 conducts an in-depth review of existing 

literature, exploring prior research on fault tolerance, cloud computing, and machine 

learning in the context of this study. It identifies gaps and opportunities, emphasizing 

the need for innovative approaches like machine learning to enhance fault tolerance 

in cloud environments. Section 3 explains the proposed methodology, data sets used, 

and machine learning models used, including linear regression, decision trees, and 

gradient boosting, focusing on their application for improving fault tolerance and 

cloud system performance prediction. Section 4 of the paper presents research 

findings, including the performance of machine learning models and a feature 

importance analysis highlighting the most influential factors impacting cloud system 

performance. Section 5 summarizes key findings and their broader significance in 

fault tolerance and cloud performance prediction. It addresses study motivations, 

acknowledges limitations, and suggests future research directions, offering a view of 

the work’s contributions and potential impact. 

2. Related works 

The roots of fault tolerance research stretch back to the 1940s with the inception of 

reliability engineering. The primary objective of reliability engineering has been to 

design systems capable of enduring faults and maintaining operational effectiveness, 

even in the face of failures. As computer systems gained prominence, the focus of 

fault tolerance research shifted towards developing methods to ensure the 

dependability and continuous availability of these systems. In the specific context of 

cloud computing, fault tolerance research has gained paramount significance, largely 

due to the distributed and dynamically evolving nature of cloud environments. Cloud 

computing traces its lineage to the domain of distributed systems research, which 

centers on constructing systems that can function seamlessly, even when individual 
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components encounter failures. In recent times, fault-tolerant cloud architectures, 

algorithms for placing fault-tolerant virtual machines, and advanced fault detection 

and recovery techniques have taken center stage in research endeavors. 

In [16], a survey has provided an extensive examination of intelligent resource 

management techniques in the context of fault tolerance within cloud computing. 

This research discussed a range of methodologies, including machine learning, fuzzy 

logic, and swarm intelligence, while also presenting a comparative analysis of their 

strengths and weaknesses. Additionally, the study emphasizes the imperative for 

further exploration in this area to address the intricate challenges related to fault 

tolerance in complex cloud systems. In [17] is introduced a robust framework for 

data-intensive computing in cloud environments with a focus on fault tolerance. This 

framework has integrated key components, including data replication, workload 

balancing, and fault detection and recovery mechanisms, with the overall aim of 

ensuring high availability and optimal performance for data-intensive computing 

tasks in cloud settings. Furthermore, an additional research effort introduced a 

reliability-aware approach to fault tolerance in parallel processing within cloud 

computing. This approach incorporates a fault model rooted in reliability awareness 

to identify critical system components and allocate additional resources to enhance 

fault tolerance. It has also implemented a sophisticated load-balancing mechanism to 

optimize cloud system performance and efficiency, marking a substantial 

advancement in this field. In [18], a significant research effort focused on enhancing 

fault tolerance for containerized applications in cloud environments. This work 

introduces a technique that combines checkpointing and container migration to 

ensure fault tolerance and minimize system downtime in the event of failures. 

Additionally, the research includes a comprehensive performance evaluation of this 

technique using real-world applications, showcasing its effectiveness and efficiency. 

Another influential study addresses [19] dynamic replication schemes for fault 

tolerance. This research proposes a dynamic replication scheme for cloud computing 

that harnesses a prediction model to determine the optimal number of replicas needed 

to ensure fault tolerance. Furthermore, the scheme has incorporated a load-balancing 

mechanism to ensure high system performance and efficiency. In addition, a 

comprehensive survey paper [20] explores various techniques related to fault 

tolerance resource management in distributed cloud systems. This survey provides 

an in-depth analysis of concepts such as redundancy, replication, and checkpointing, 

offering a comparative assessment of their strengths and weaknesses. The paper 

emphasizes the ongoing need for further research in this domain to effectively address 

the intricate challenges associated with fault tolerance in distributed cloud systems. 

In [21], a research article introduces an extensive framework designed to ensure fault 

tolerance and high availability of containerized microservices within the cloud. This 

framework employs a combination of checkpointing, replication, and load-balancing 

techniques to achieve these objectives. Additionally, the paper includes a thorough 

performance assessment of the proposed framework using a real-world use case. 

Paper [22] offers a systematic review of fault-tolerant resource management 

techniques within the context of cloud computing. The paper delves into various 

methods, including redundancy, replication, checkpointing, and load balancing, and 
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conducts a comparative analysis of their strengths and weaknesses. It introduces a 

machine learning-based approach for predicting service availability in the cloud, 

utilizing historical data and machine learning techniques to achieve highly accurate 

predictions. The paper also provides a performance evaluation of this approach using 

real-world datasets, demonstrating its effectiveness and efficiency as presented in 

[23]. Paper [24] presents an innovative cloud-based architecture designed for Internet 

of Things (IoT) applications. This architecture employs a combination of redundancy, 

replication, and load balancing to ensure fault tolerance and the continuous 

availability of IoT applications. The paper also includes a comprehensive 

performance evaluation based on a real-world IoT use case. Additionally, [25] 

introduces an efficient technique for ensuring fault tolerance in edge computing 

environments. This method combines redundancy and replication to guarantee high 

resource availability in edge computing scenarios. The paper also offers a 

performance assessment using a real-world edge computing use case. Paper [26] 

proposes an architecture for service selection based on consumer feedback in service-

oriented environments. Furthermore, [27] introduces dynamic resource provisioning 

for cloud applications through Bayesian learning. The study presented in [28] 

explores smart city video surveillance using fog computing, while [29] delves into 

the issues and future directions of fog computing. According to [30], a hardware setup 

for vehicle-to-vehicle communication under foggy conditions is presented. In [31], 

the focus is on power consumption prediction in cloud data centers using machine 

learning techniques. Paper [32] proposes a hybrid cloud approach for efficient data 

storage and security. Paper [33] provides a comprehensive study on evolutionary 

games in cloud, fog, and edge computing. Moreover, an exploration of the potential 

applications of integrating blockchain technology with fog computing is found in 

[34], revealing diverse practical implications. Lastly, [35] focuses on serverless High-

Performance Computing over the Cloud, discussing the concept of serverless 

computing and its role in achieving high-performance computing capabilities within 

a cloud environment. These collective studies significantly contribute to a deeper 

understanding of modern computing paradigms and their wide-ranging applications. 

In this comprehensive survey of the literature, a number of noteworthy research 

gaps and opportunities in the realm of fault tolerance within cloud computing and its 

associated fields have been discerned. A notable trend in the surveyed literature is a 

significant reliance on reactive fault tolerance methods, a preference that can be 

attributed to concerns regarding increased overhead and the complexities associated 

with proactive fault tolerance approaches. Notably, replication emerges as the most 

frequently employed fault tolerance technique, with checkpoint restart and job 

migration being other prevalent methods. To address these identified gaps and 

opportunities, the focus of this research endeavor shifts towards the exploration of 

the potential of the machine and deep learning techniques as promising solutions for 

mitigating the limitations of existing fault tolerance strategies. These advanced 

methodologies, characterized by their adaptability and data-driven capabilities, offer 

a compelling avenue for enhancing fault tolerance mechanisms, with the ultimate 

goal of advancing the reliability and performance of cloud computing and its 

associated fields. 



 31 

The research initiative is laser-focused on addressing these pressing concerns. 

Dedication to developing and meticulously evaluating machine learning models that 

bolster fault tolerance and empower the precise prediction of cloud system 

performance is paramount. To support this investigation, we leverage the Google 

Trace dataset, a rich source of information containing 10000 records from an actual 

cloud environment. This dataset encompasses an array of diverse system metrics and 

performance indicators, providing a solid foundation for these research efforts. 

The investigation encompasses the following key aspects: 

• A diverse range of machine learning algorithms, such as linear regression, 

decision trees, and gradient boosting, have been systematically harnessed to build 

predictive models with the objectives of improving fault tolerance and predicting 

cloud system performance. 

• A central aspect of the research encompassed a comparative analysis of the 

machine learning models. Performance evaluation has been conducted with a focus 

on metrics such as accuracy, precision, recall, and other pertinent indicators, 

ultimately leading to the identification of the most effective models. 

• An in-depth examination was conducted to identify the most influential 

factors affecting cloud system performance and fault tolerance. This feature 

importance analysis provides insights into the elements that have the most significant 

impact on system behavior. 

The research offers several notable advantages, presenting practical solutions 

for enhancing fault tolerance and predicting cloud system performance. The 

application of machine learning facilitates proactive monitoring and early 

performance issue detection, ultimately resulting in heightened reliability and 

improved resource management within cloud environments. Nonetheless, it is crucial 

to recognize specific limitations. The study is predominantly centered on a particular 

dataset, and the suitability of the developed models may exhibit variability in distinct 

cloud environments. The efficacy of these models could further hinge on the selection 

of machine learning algorithms and feature subsets. Moreover, the study does not 

provide a comprehensive exploration of the real-time intricacies and complexities 

inherent in cloud systems. In future research endeavors, several promising directions 

emerge. First, the exploration of a broader array of cloud datasets is warranted to 

assess the adaptability and robustness of machine learning models across diverse 

cloud environments. Additionally, there is a need for continual refinement of machine 

learning algorithms and the exploration of advanced techniques to enhance the 

accuracy of cloud system performance predictions. Real-time monitoring methods, 

integrated with machine learning, should be developed to enable immediate fault 

detection and mitigation, aligning with the dynamic characteristics of cloud systems. 

Investigating the effectiveness of ensemble methods, which harness the collective 

strength of multiple machine learning models, holds the potential to further fortify 

fault tolerance and performance prediction. Furthermore, the exploration of hybrid 

approaches that amalgamate conventional fault tolerance methods with machine 

learning offers the promise of maximizing system reliability in the face of the ever-

evolving cloud environment. 
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3. The proposed methodology 

In the proposed methodology for fault detection using the Google Trace dataset, the 

process begins with meticulous data preprocessing, including data acquisition and 

labeling. The dataset is split into a training set and a testing set and the issue of class 

imbalance is addressed by creating under-sampled and oversampled subsets. Multiple 

machine learning models are selected, trained, and evaluated on both types of 

datasets, allowing for a comprehensive understanding of their performance under 

different data sampling conditions. Performance metrics, such as accuracy, 

sensitivity, and specificity, are employed to assess model performance, and the top 

models are selected for further analysis. Crucially, feature importance analysis is 

conducted to identify the most influential factors in fault detection, with an emphasis 

on common features among the top-performing models. 

If no common features are initially found, an iterative approach is adopted to 

refine the selection process. The final step of the methodology involves proposing an 

algorithm for fault detection based on the selected common features. This algorithm 

is then rigorously tested on a separate testing dataset to evaluate its effectiveness in 

identifying faults within cluster computing environments. Throughout this process, 

comprehensive documentation and reporting are maintained to capture the results and 

insights obtained, providing a foundation for iterative improvement and further 

research in the field of fault tolerance in cluster computing systems. 

3.1. Data set  

The Google Trace dataset, a publicly available resource, offers insights into real-

world events within Google’s production clusters. Researchers have extensively 

employed this dataset to explore diverse facets of cluster computing, including fault 

tolerance, energy consumption, and job scheduling. A prevalent application of the 

Google Trace dataset is its role in modeling fault tolerance within cluster computing 

systems. Researchers leverage this dataset to gain a deeper understanding of cluster 

behavior in the presence of faults, ultimately leading to the development of more 

robust fault tolerance mechanisms. The dataset has been instrumental in investigating 

various aspects of fault tolerance, encompassing checkpointing, replication, and 

recovery. For instance, researchers have assessed the efficacy of different 

checkpointing strategies by analyzing fault frequency and the time required for job 

checkpointing. Additionally, the dataset has been utilized to examine the impact of 

replication on fault tolerance, gauging the performance of jobs with and without 

replication. Constructed from traces originating from multiple Google data centers, 

the Google Trace dataset draws from anonymized job-level traces found in Google’s 

workload traces repository. These traces span several years, commencing in 2011, 

and encompass both single-tenant and multi-tenant data centers. The dataset 

comprises aggregated data on resource utilization, including CPU, memory, and disk 

I/O for each job, complemented by metadata such as job ID, submission time, and 

job duration. Moreover, the dataset incorporates information regarding the failure 

characteristics of each job, shedding light on the number and types of failures 

encountered during job execution. Google has periodically released updated versions 

of the dataset, with the latest iteration being the Google Cluster-Usage Trace v2. The 
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dataset serves as a valuable resource for academic research, finding applications in 

numerous studies related to resource management, job scheduling, and fault tolerance 

in data centers. Its extensive citation in over 1000 research papers underscores its 

pivotal role in the domain of data center management and optimization. The Google 

Trace dataset is not limited to one cluster but encompasses traces from two distinct 

clusters: a production cluster and a cluster designated for research purposes. The 

production cluster trace, sourced from Google’s Borg cluster management system, 

spans a one-month period in 2011. It encompasses an impressive volume of data, 

including approximately 13.25 million job submissions, 110 million task 

submissions, and a staggering 1.5 billion task events. The dataset provides insights 

into job and task details, submission times, resource requirements, and runtime 

statistics like CPU utilization and memory consumption. Complementing this, the 

research cluster trace offers data collected over a one-year duration, ranging from 

2011 to 2012. It encompasses around 12,000 job submissions and 63,000 task 

submissions, offering similar information as the production cluster trace. Notably, 

both traces feature data pertaining to machine failures and job/task migration events, 

rendering them invaluable for research related to fault tolerance and recovery within 

cluster computing. Researchers have harnessed the Google Trace dataset to advance 

scheduling and resource management algorithms tailored for large-scale computing 

systems. 

Variables used. The Google trace dataset encompasses a comprehensive set of 

variables, each serving a unique purpose in describing the dynamics of workload and 

resource utilization within a data center. These variables include essential identifiers 

like Job ID, Task Index, and Machine ID, temporal information such as Time and 

Duration, as well as resource-specific metrics like CPU Usage, Memory Usage, 

Input/output Usage, Network Usage, and Disk Usage.  
 

Table 1. Variable featured in the Google trace dataset 
Variable name Description 

Job ID A unique identifier for each job submitted to the data center 

Task index A unique identifier for each task within a job 

Machine ID A unique identifier for each machine in the data center 

Time The timestamp at which a task was submitted to the data center 

Duration The time taken by a task to complete 

CPU usage The amount of CPU utilized by a task 

Memory usage The amount of memory utilized by a task 

Input/output usage The number of input/output operations performed by a task 

Network usage The amount of network bandwidth utilized by a task 

Disk usage The amount of disk space utilized by a task 

Task type The type of task performed (e.g., map, reduce, shuffle) 

Job type The type of job submitted to the data center (e.g., batch, interactive) 

Priority The priority assigned to a task within a job 

Machine type The type of machine on which a task was executed (e.g., small, medium, large) 

Zone The geographical zone in which a machine was located 

CPU requested The amount of CPU requested by a task 

Memory requested The amount of memory requested by a task 

Disk requested The amount of disk space requested by a task 

Network requested The amount of network bandwidth requested by a task 

Input/output requested The number of input/output operations requested by a task 
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Moreover, task-related characteristics, including Task type and Job type, are 

featured, along with priority assignments. Information about the hardware 

environment is also available through Machine type, Zone, and resource allocation 

specifications, including CPU requested, Memory requested, Disk requested, 

Network requested, and Input/output requested. This diverse range of variables 

equips researchers with a rich dataset to analyze and model data center operations 

effectively. Table 1 provides a comprehensive list of the variables featured in the 

dataset. 

3.2. Addressing class imbalance 

The Google trace dataset exhibits class imbalance, with a small fraction of jobs 

labeled as “failed” (1.5%) and the majority as “successful” (98.5%). This class 

imbalance can challenge machine learning models, potentially leading to biases and 

difficulties in accurately predicting the minority class. To mitigate this, several 

techniques can be applied, such as oversampling the minority class or adopting cost-

sensitive learning strategies. 

3.3. Model training and testing 

Ten machine-learning models have been employed to analyze and enhance the 

Google Trace dataset for fault detection. These models have been systematically 

trained and tested using two distinct data sampling methods: under-sampling and 

oversampling. The selected models are as follows: 

Models trained with the under-sampling dataset: 

• M1U – C5.0; 

• M2U – eXtreme Gradient Boosting – TREE; 

• M3U – Model Averaged Neural Network;  

• M4U – AdaBoost.M1;  

• M5U – Bayesian Generalized Linear Model. 

Models trained with the oversampling dataset: 

• M1O – C5.0;  

• M2O – eXtreme Gradient Boosting – TREE;  

• M3O – Model Averaged Neural Network;  

• M4O – AdaBoost.M1;  

• M5O – Bayesian Generalized Linear Model.  

3.4. Performance evaluation 

The performance evaluation of the machine learning models using the Google trace 

dataset has been a rigorous and multifaceted process aimed at assessing their 

effectiveness in fault detection and management. To ensure a comprehensive 

understanding of the models’ performance, a wide array of performance metrics has 

been employed, encompassing key aspects of fault detection and prediction. These 

metrics included True positives, False negatives, True negatives, False positives, 

Accuracy, Sensitivity, Specificity, Positive predictive value, Negative predictive 
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value, Prevalence, Detection rate, Detection prevalence, and Balanced accuracy. By 

evaluating these metrics, researchers have been able to gain profound insights into 

the models’ strengths and weaknesses in identifying both actual faults and non-fault 

scenarios.  

Of particular significance were the Sensitivity and Specificity metrics, which 

measure the models’ abilities to avoid false negatives (missing actual faults) and false 

positives (incorrectly identifying faults in non-fault situations). The consideration of 

these metrics was especially vital in the context of an imbalanced dataset, where a 

small percentage of jobs have been labeled as “failed” while the majority were 

labeled as “successful”. The imbalanced nature of the dataset has posed unique 

challenges, as machine-learning models might develop biases towards the majority 

class, potentially hindering their ability to predict accurately the minority class of 

faults. The 95% Confidence interval for accuracy has been also employed to estimate 

the range within which the true accuracy of the models was likely to fall, accounting 

for potential uncertainty in the accuracy measurement. 

Furthermore, the amalgamation of these metrics has provided a comprehensive 

gauge of model performance, with Balanced Accuracy serving as a crucial composite 

indicator that considered the equilibrium between Sensitivity and Specificity. This 

evaluation process has been designed with the primary objective of singling out the 

top-performing models that possess the capability to adeptly identify and manage 

faults within intricate systems. Essentially, it afforded researchers a holistic panorama 

of the models’ fault tolerance capacities, empowering them to make judicious choices 

concerning model selection and the identification of the pivotal features that have 

exerted influence over fault detection. These discoveries have played a pivotal role 

in shaping the formulation of an algorithm proposed for fault detection, intended to 

harness the collective potential of these models in real-world applications, thereby 

elevating system reliability and fortifying fault tolerance. 

Through a meticulous examination of these metrics, it becomes feasible to 

discern the most exemplary models. To ensure an equitable and comprehensive 

assessment, it is prudent to opt for at least one model from each category of datasets, 

namely the undersampled and oversampled sets, in the quest to pinpoint the model 

that excels in performance. Once the models have been cherry-picked, the subsequent 

step involves the precise identification of the salient features that exert a significant 

impact on fraud detection. 

3.5. Proposed algorithm for fault detection 

By selecting the most common and significant features from all chosen models, an 

algorithm can be formulated to detect faults based on these important features. The 

proposed algorithm follows a structured approach to ensure robust fault detection. 

This includes iterative steps to identify the most influential features in the context of 

fault detection. 

Step 1. Commence by labeling the dataset with appropriate class labels, 

distinguishing between “failed” and “successful” cases. To further enhance the fault 

detection process, assign M-scores or weights to relevant data points based on feature 

importance. 
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Step 2. Divide the dataset into two distinct sets, namely training and testing data, 

allowing for model training and evaluation. 

Step 3. Subdivide the training set into two subsets: one for under-sampled data 

and the other for oversampled data. This approach aims to address the class imbalance 

challenge. 

Step 4. Randomly select multiple machine learning models to generate trained 

models for classification. These models will be trained on both the under-sampled 

and oversampled datasets. 

Step 5. Choose a performance metric that aligns with the specific objectives of 

the fault detection process. For instance, ROC (Receiver Operating Characteristic) 

can be employed for optimizing the training process and evaluating model 

performance. 

Step 6. Extract relevant performance metrics for each trained model. These 

metrics should encompass key aspects such as Accuracy, Sensitivity, and Precision 

for both the positive and negative classes and other metrics that capture the model's 

effectiveness. 

Step 7. Select the top N models based on essential performance metrics. These 

metrics guide the identification of the most proficient models in fault detection. For 

instance, N can be set to 2 for this purpose. 

Step 8. Ensure a balance between the selected models from both the under-

sampled and oversampled datasets to maintain comprehensive fault detection 

capabilities. 

Step 9. Examine and evaluate the significance of individual features on a scale 

of 0 to 100 for the selected models. These scores are essential in identifying 

influential features. 

Step 10. Identify common features among the top N features from all the 

selected models. This is a crucial step in pinpointing the key variables contributing 

to effective fault detection. 

Step 11. If there are no common features among the top N features, consider 

reducing the number of models to N – 2 for a more specific common feature selection. 

This process ensures the most relevant features are identified. 

Step 12. In the event that common features remain elusive, reselect the N models 

from the full set of trained models, possibly by altering the metrics chosen for 

selecting the top models. 

Step 13. Iterate through Steps 8-12 until at least three top features are 

consistently identified. This iterative approach hones the selection process and 

identifies robust fault detection features. 

By following this structured algorithm given in Table 2, fault detection can be 

enhanced through the identification and utilization of essential features and the 

selection of top-performing models, ultimately contributing to more effective fault 

tolerance and system reliability in cloud computing and data center management. 
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Table 2. Pseudocode of the proposed method 

1. Initialize the dataset and labels 
2. Calculate M-scores for dataset entries based on feature importance 
3. Split the dataset into training and testing sets 
4. Create two subsets: one for undersampled data and one for oversampled data 
5. Randomly select machine learning models: 
   - M1U (C5.0 – Undersampled) 
   - M2U (eXtreme gradient boosting – TREE – undersampled) 
   - M3U (Model averaged neural network – undersampled) 
   - M4U (AdaBoost.M1 – undersampled) 
   - M5U (Bayesian generalized linear model – undersampled) 
   - M1O (C5.0 – oversampled) 
   - M2O (eXtreme gradient boosting – TREE – oversampled) 
   - M3O (Model averaged neural network – oversampled) 
   - M4O (AdaBoost.M1 – oversampled) 
   - M5O (Bayesian generalized linear model – oversampled) 
6. For each model: 
   a. Train the model using the undersampled training dataset 
   b. Train the model using the oversampled training dataset 
7. Select a performance metric, e.g., ROC, for model training optimization 
8. For each trained model: 
   a. Extract performance metrics including Accuracy, Sensitivity, Precision for positive 
class, and Precision for negative class 
9. Select the top N models based on performance metrics, where N = 2 
10. Ensure a balanced selection of models from both undersampled and oversampled 
datasets 
11. Assess feature significance on a scale of 0 to 100 for selected models 
12. Identify common features among the top N features from all selected models 
13. If there are no common features: 
    a. Reduce the number of models to N – 2 for common feature selection 
    b. If still no common features, reselect N models with adjusted metrics 
14. Repeat steps 8 to 13 until at least three top features are identified 
15. The final selected models and top features contribute to a robust fault detection 
algorithm 

4. Simulation results and discussion 

• A Reduced dataset for Local machine processing 

In order to facilitate the analysis of the Google trace dataset, which proved too 

extensive to be accommodated by a local machine due to its sheer size and the local 

machine’s constrained processing capabilities, a scaled-down version of the dataset 

was meticulously crafted. This downsized dataset comprises a total of 10,000 records, 

designed to be more manageable for the local machine's limited resources. 

• Imbalance in failure detection 

Within this reduced dataset, there is a variable labeled “fault”, which can take 

on the value “yes” or “no”, indicating the presence or absence of a fault. Among the 

10000 records, 2299 instances are classified as positive cases, signifying the presence 

of a fault (where “fault” is set to “yes”). Conversely, the remaining records belong to 

the negative class, denoting the absence of a fault (where “fault” is set to “no”). It’s 

important to note that this dataset exhibits an imbalance in failure detection, with a 

considerable number of non-faulty instances compared to the faulty ones. 
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This downsized dataset serves as a practical solution for local machine 

processing, enabling efficient analysis and modeling while accounting for the 

inherent class imbalance in the context of failure detection. 
 

Table 3. Output from models trained with under-sampled datasets and tested on training dataset 
Model M1U M2U M3U M4U M5U 

Algorithm c5.o 
Ada – Boosted 

classification trees 

xgboost extreme – 

Gradient boosting 

avnNet – Model 

averaged neural 

network 

bayesglm – 

Generalized 

bayesian linear 

model 

Program name Upsampling Upsampling Upsampling Upsampling Upsampling 

Data Training set Training set Training set Training set Training set 

TP 1840 209 1828 11 1304 

FN 0 1631 12 1829 536 

TN 6161 1249 6068 6156 4257 

FP 0 4912 93 5 1904 

Accuracy 1 0.1822 0.9869 0.7708 0.695 

“95% CI” (0.9995, 1) (0.1738, 0.1.909) (0.9841, 0.9893) (0.7614, 0.78) 
(0.6848, 

0.7051) 

No information 

rate 
0.77 0.77 0.77 0.77 0.77 

P-value  

[Ace > NIR] 

Less than  

2.2×10–16 
1 

Less than  

2.2×10–16 
0.4428 1 

Kappa 1 –0.4207 0.9635 0.0079 0.317 

Macnemar’s test  

P-value 
NA 

Less than  

2.2×10–16 
5.85×1015 

Less than  

2.2×10–16 

Less than  

2.2×10–16 

Sensitivity 1 –0.11359 0.9935 0.005978 0.7087 

Specificity 1 0.20273 0.9849 0.999188 0.691 

Positive 

predictive value 
1 0.04081 0.9516 0.6875 0.4065 

Negative 

predictive value 
1 0.43368 0.998 0.7709 0.8882 

Prevalence 0.23 0.22997 0.23 0.229971 0.23 

Detection rate 0.23 0.02612 0.2285 0.001375 0.163 

Detection 

Prevalence 
0.23 0.64004 0.240 0.002 0.4009 

Balanced 

Accuracy 
1 0.15816 0.9892 0.502583 0.6998 

 

The presented Tables 3 and 4 offer a comprehensive evaluation of machine 

learning models trained on undersampled and oversampled datasets, subsequently 

tested on the training data. In Table 3, where undersampled data is employed, the five 

models (M1U-M5U) exhibit notable variations in their performance metrics. Model 

M1U stands out with an exceptional accuracy of 1, reflecting an impeccable ability 

to correctly classify data. Conversely, M2U underperforms significantly, with an 

accuracy of only 0.1822, indicating challenges in distinguishing between classes. The 

other models fall within this spectrum. These outcomes underscore the importance of 

the choice of machine learning algorithm and data preprocessing techniques in 

addressing imbalanced datasets. 
 
 



 39 

Table 4. Output from models trained with over-sampled datasets and tested on training dataset 
Model M1O M2UO M3O M4O M5O 

Algorithm c5.0 
Ada – Boosted 
classification  

trees 

xgboost extreme – 

Gradient boosting 

avnNet – Model 
averaged neural 

network 

bayesglm – Generalized 

bayesian linear model 

Program name 
down-

sampling 
down-sampling down-sampling down-sampling down-sampling 

Data Training set Training set Training set Training set Training set 

TP 1840 193 1833 1695 1288 

FN 0 1647 7 145 552 

TN 5942 1244 5836 5530 4246 

FP 219 4197 325 631 1915 

Accuracy 0.9726 0.1796 0.9585 0.2907 0.6917 

“95% CI” (0.9688,0.976) (0.1712, 0.1882) (0.9539, 0.9628) (0.2808, 0.3008) (0.6814, 0.7018) 

No information 

rate 
0.77 0.77 0.77 0.77 0.77 

P-value  

[Ace > NIR] 

Less than  

2.2×10–16 
1 

Less than  

2.2×10–16 
1 1 

Kappa 0.9258 –0.4271 0.8895 0.0117 0.3089 

Macnemar’s  
Test P-value 

Less than  
2.2×10–16 

Less than  
2.2×10–16 

Less than  
2.2×10–16 

Less than  
2.2×10–16 

Less than  
2.2×10–16 

Sensitivity 1 0.10489 0.9962 0.9212 0.7 

Specificity 0.9645 0.20192 0.9472 0.1024 0.6892 

Positive 

predictive value 
0.8936 0.03777 0.8494 0.2346 0.4021 

Negative 

predictive value 
1 0.4303 0.9988 0.8131 0.885 

Prevalence 0.23 0.22997 0.23 0.23 0.23 

Detection rate 0.23 0.02412 0.2291 0.2118 0.161 

Detection 
prevalence 

0.2573 0.63867 0.2697 0.903 0.4003 

Balanced 

accuracy 
0.9822 0.1534 0.9717 0.5118 0.6946 

 

Table 4, in contrast, reveals results when models are trained with oversampled 

data, aimed at enhancing class balance by inflating minority class instances. The 

general trend indicates improved accuracy across all models compared to Table 3. 

Model M1O impressively attains an accuracy of 0.9726, signifying improved 

classification capabilities following oversampling. However, a potential trade-off 

becomes apparent as sensitivity and specificity metrics are somewhat compromised 

when compared to M1U. This suggests that oversampling may influence the models’ 

ability to distinguish between positive and negative cases. The positive Kappa values 

indicate that the models consistently outperform random chance in their predictions. 

It is imperative to recognize that the evaluation in both tables occurs on the training 

dataset, a situation that can lead to over fitting. Consequently, it is vital to conduct 

further testing on independent datasets to assess the models’ generalization 

capabilities. Moreover, while these tables provide valuable insights into model 

performance, the choice of the most suitable model should be contingent on the 

specific objectives and considerations of the task, as well as the implications of false 

positives and false negatives in the context of the application. 

The provided figures, namely Figs 1 to 8, serve to elucidate the performance of 

various machine learning models in the context of training and testing on both under 

sampled and oversampled training datasets. These figures delve into multiple critical 

performance metrics, notably accuracy, sensitivity, positive precision, and negative 
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precision, shedding light on how these models handle imbalanced data. Let us embark 

on an in-depth elucidation of the findings: 
 

 
Fig. 1. Accuracy of machine learning models trained and tested with under sampled training subset 

 

Fig. 1 showcases the accuracy of machine learning models when trained and 

tested on under sampled training data. It is discerned that models M1U (utilizing the 

C5.0 Algorithm) and M3U (leveraging the Xgboost technique) exhibit a 

conspicuously superior accuracy. M1U attains an extraordinary 97.26%, while M3U 

delivers a commendable 95.85%. These results suggest that these two models are 

particularly adept at handling the intricacies of the under sampled dataset. 

Conversely, M2U (employing Ada-boost), M4U (based on Averaged Neural 

Network), and M5U (utilizing Bayesian GLM) face challenges in effectively fitting 

the data. 
 

 
Fig. 2. Accuracy of machine learning models trained and tested with over sampled training subset 

 

Fig. 2 provides insight into the accuracy of models trained and tested on 

oversampled training data. Notably, M1O and M3O demonstrate superior 

performance, mirroring the findings in Fig. 1. M1O attains a flawless accuracy of 

100%, while M3O reaches a commendable 98.69%. This implies that both 

undersampled and oversampled training data are conducive to the successful 

performance of M1 and M3 models, outshining their counterparts. 
 

 
Fig. 3. Sensitivity of machine learning models trained and tested with under sampled 

training subset 



 41 

 
Fig. 4. Sensitivity of machine learning models trained and tested with over sampled training subset 

 

Figs 3 and 4 scrutinize sensitivity, revealing that M1U, M3U, and M4U 

consistently achieve sensitivity levels exceeding 90%. It is evident that M1U and 

M3U outshine the other models, particularly in the context of the oversampled 

dataset. However, it is noteworthy that M4U experiences a decline in sensitivity when 

handling the oversampled dataset. In contrast, the specificity metrics presented in  

Fig. 3 indicate that M4U fares poorly, underscoring its proficiency in handling the 

positive class while grappling with the negative class. 
 

 
Fig. 5. Positive precision of machine learning models trained and tested with under sampled training 

subset 
 

 
Fig. 6. Positive precision of machine learning models trained and tested with over sampled training 

subset 
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Figs 5 and 6 are devoted to positive precision for both undersampled and 

oversampled datasets. Models M1U and M3U consistently exhibit elevated positive 

precision levels. M1U attains 89.36% and a perfect 100% for undersampled and 

oversampled datasets, respectively. These high precision levels are partly attributed 

to the minimal occurrence of false positives. 

Figs 7 and 8 delve into negative precision concerning undersampled and 

oversampled datasets. A striking observation is the exceedingly high negative 

precision levels, reaching 100%, for M1U, M3U, M1O, and M3O. These models 

excel in the accurate identification of the majority class, which is the negative class, 

underscoring their efficacy in navigating the intricacies of imbalanced datasets. In 

summation, grounded in the evaluation encompassing accuracy, sensitivity, positive 

precision, and negative precision, it is discerned that models M1 and M3 consistently 

outperform their peers across both under sampled and oversampled datasets. These 

models illustrate their aptitude in managing imbalanced data, particularly excelling 

in the accurate identification of the majority class. Nonetheless, the selection of a 

model for a specific task should be contingent on the precise objectives and inherent 

trade-offs, and it is imperative to ensure that the results generalize effectively to 

unseen data through rigorous validation on independent test datasets. 
 

 
Fig. 7. Negative precision of machine learning models trained and tested with under sampled training 

subset 

 

 
Fig. 8. Negative precision of machine learning models trained and tested with over sampled training 

subset 
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Table 5. Output from models trained with under sampled datasets and tested on testing dataset 
Model M1U M2U M3U M4U M5U 

Algorithm c5.o 
Ada – Boosted 

classification trees 
xgboost extreme – 
Gradient boosting 

avnNet – Model 
averaged neural 

network 

Bayesglm – 
Generalized 

bayesian linear 
model 

Program name Up sampling Up sampling Up sampling Up sampling Up sampling 
Data Testing set Testing set Testing set Testing set Testing set 
TP 440 48 437 6 324 
FN 19 411 22 453 135 
TN 1450 313 1430 1540 1066 
FP 90 1227 110 0 474 

Accuracy 0.9455 0.1806 0.934 0.7734 0.6953 

“95% CI” (0.9346,0.955) (0.164,0.1982) (0.9222, 0.9445) (0.7544, 0.7916) 
(0.6746, 
0.7155) 

No information 
rate 

0.7704 0.7704 0.7704 0.7704 0.7704 

P-value  
[Ace > NIR] 

2.20×10–16 1 2.20×10–16 0.3866 1 

Kappa 0.8538 –0.4262 0.8251 0.02 0.3161 
Macnemar’s test  

P-Value 
2.20×10–11 Less than 2.20×10–16 3.67×10–14 Less than 2.20×10–16 

Less than 
2.20×10–16 

Sensitivity 0.958 0.10458 0.9521 0.01307 0.7059 
Specificity 0.9416 0.20325 0.9286 1 0.6922 

Positive 
predictive value 

0.8302 0.03765 0.7989 1 0.406 

Negative 
predictive value 

0.9871 0.43232 0.9848 0.772704 0.8876 

Prevalence 0.2296 0.2296 0.2296 0.2296 0.2296 
Detection Rate 0.2201 0.02401 0.2186 0.00300 0.162 

Detection 
Prevalence 

0.2651 0.63782 0.2736 0.00300 0.3992 

Balanced 
Accuracy 

0.9501 0.15391 0.4403 0.506536 0.699 

 

Table 6. Output from models trained with over sampled datasets and tested on testing dataset 
Model M1O M2O M3O M4O M5O 

Algorithm c5.o 
Ada – Boosted 

classification trees 
xgboost extreme – 
Gradient boosting 

avnNet – Model 
averaged neural 

network 

Bayesglm – 
Generalized 

bayesian linear 
model 

Program name Up sampling Up sampling Up sampling Up sampling Up sampling 
Data Testing set Testing set Testing set Testing set Testing set 
TP 432 61 430 6 326 
FN 27 398 29 453 133 
TN 1516 321 1480 1540 1073 
FP 30 1219 60 0 467 

Accuracy 0.9713 0.1911 0.9555 0.7736 0.6998 

“95% CI” (0.9632,0.9783) (0.1741,0.209) (0.9445, 0.9641) (0.7544, 0.7916) 
(0.6746, 
0.7199) 

No information 
rate 

0.7704 0.7704 0.7704 0.7704 0.7704 

P-value [Ace > 
NIR] 

2.20×10–16 1 2.20×10–16 0.3866 1 

Kappa 0.9196 –0.4262  0.02 0.3866 
Macnemar’s test 

P-value 
0.7911 

Less than  
2.20×10–16 

0.001473 
Less than  
2.20×10–16 

Less than  
2.20×10–16 

Sensitivity 0.9412 0.1329 0.9368 0.013072 0.7102 
Specificity 0.9805 0.2084 0.961 1 0.6968 

Positive 
predictive value 

0.935 0.04766 0.8776 1 0.4111 

Negative 
predictive value 

0.9824 0.44645 0.9801 0.7727 0.8197 

Prevalence 0.2296 0.22961 0.2295 0.229615 0.2296 
Detection Rate 0.2161 0.03052 0.2151 0.003002 0.3967 

Detection 
prevalence 

0.2311 0.64032 0.245 0.003002 0.3967 

Balanced 
accuracy 

0.9605 0.1707 0.9489 0.506536 0.7035 
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Tables 5 and 6 provide a comprehensive evaluation of machine learning models 

that have undergone training on both under sampled and oversampled datasets, 

subsequently undergoing testing on dedicated evaluation datasets. These tables 

present a diverse range of performance metrics, encompassing parameters such as 

accuracy, sensitivity, positive precision, and negative precision. These metrics allow 

for an exhaustive appraisal of how these models navigate complex issues of class 

imbalance.  

In Table 5, it is evident that models M1U and M3U emerge as the top 

performers, achieving notable accuracy rates of 94.55% and 93.40%, respectively. 

This underscores their proficiency in correctly classifying the evaluation dataset, 

particularly when dealing with imbalanced data. M1U displays remarkable 

sensitivity, highlighting its capacity to correctly identify positive cases, while M4U 

showcases exceptional specificity in effectively distinguishing negative cases. 

Noteworthy positive precision values for M1U and M3U emphasize their precision 

in positive predictions, complemented by consistently high negative precision across 

models, indicating their adeptness in identifying the majority class, typically 

representing the negative class. 

Turning to Table 6, where models have been trained on oversampled data, M1O 

and M3O exhibit exceptional accuracy rates of 97.13% and 95.55%, respectively. 

These models shine in their ability to accurately classify the evaluation dataset, 

particularly in scenarios characterized by class imbalance. M1O and M3O maintain 

high sensitivity levels, underscoring their effectiveness in accurately identifying 

positive cases. Notably, M4O excels in specificity, achieving a 100% accuracy in 

distinguishing negative cases. Positive precision values for M1O and M3O are 

commendable, further attesting to their precision in positive predictions. The 

persistent high negative precision values in these models demonstrate their 

proficiency in identifying the majority class. This comprehensive array of 

performance metrics reinforces the necessity of selecting the most appropriate model 

contingent upon the specific task, while underscoring the importance of rigorous 

validation on independent test datasets to ascertain the models’ capacity for 

generalization. 

Figs 9 to 16 provide a detailed analysis of the performance of machine learning 

models denoted as M1U, M2U, M3U, M4U, and M5U for the undersampled dataset, 

as well as M1O, M2O, M3O, M4O, and M5O for the oversampled dataset. These 

models were tested on a separate testing subset, and its worth noting that this testing 

set was not utilized during the training of any models, serving as a hold-out set for 

unbiased evaluation. 
 

 
Fig. 9. Accuracy of machine learning models trained with under sampled dataset and tested with 

testing subset 
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Fig. 9 centers on the accuracy of machine learning models trained with the 

undersampled dataset and subsequently tested with the testing subset. It becomes 

evident that M1U and M3U outshine their counterparts, displaying significantly 

higher accuracy, with M1U achieving 94.55% and M3U achieving 93.40%. Notably, 

M4U also delivers good performance, with an accuracy of approximately 78%, while 

the other models demonstrate a less robust fit to the undersampled data. 
 

 
Fig. 10. Accuracy of machine learning models trained with over sampled dataset and tested with 

testing subset 
 

Fig. 10 extends the evaluation to models trained with the oversampled dataset 

and tested with the testing subset. Here, M1O takes the lead with an accuracy of 

97.15%, closely followed by M3O at 95.55%. M4O also demonstrates commendable 

performance, achieving approximately 78% accuracy. These findings highlight the 

consistent accuracy of models M1 and M3 when confronted with both undersampled 

and oversampled datasets and when tested with both training and testing datasets. 

 

 
Fig. 11. Sensitivity of machine learning models trained with under sampled dataset and tested with 

testing subset 
 

 
Fig. 12. Sensitivity of machine learning models trained with over sampled dataset and tested with 

testing subset 
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Figs 11 and 12 delve into sensitivity, revealing that M1U, M3U, M1O, and M3O 

consistently maintain sensitivity levels exceeding 90%, indicating their effectiveness 

in correctly identifying positive cases. However, M4U and M4O show less robust 

sensitivity performance, particularly when tested with the undersampled dataset. 
 

 
Fig. 13. Positive precision of machine learning models trained with under sampled dataset and tested 

with testing subset 

 

 
Fig. 14. Positive precision of machine learning models trained with over sampled dataset and tested 

with testing subset 

 

Figs 13 and 14 depict positive precision values for models trained and tested 

with both undersampled and oversampled training subsets. Notably, M4U and M4O 

reach 100% positive precision. Meanwhile, sensitivity for M1U and M3U shows a 

slight dip to around 80%, while M1O and M3O maintain sensitivity above 90%. 
 

 
Fig. 15. Negative precision of machine learning models trained with under sampled dataset and tested 

with testing subset 
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Fig. 16. Negative precision of machine learning models trained with over sampled dataset and tested 

with testing subset 
 

Figs. 15 and 16 illustrate negative precision values for models trained and tested 

with both under sampled and oversampled training subsets. Interestingly, positive 

precision reaches 100% for M4U and M4O. Sensitivity for M1U and M3U remains 

near 100%, while M1O and M3O display sensitivity levels above 80%.  

These comprehensive results collectively demonstrate the robustness of models 

M1 and M3 across both undersampled and oversampled datasets, further emphasizing 

their consistent performance. However, the specific choice of model should align 

with the specific task requirements, and rigorous validation on independent test 

datasets is crucial to ascertain the generalizability of the findings. 

The top 10 features extracted from models M1 and M3 shed light on the crucial 

factors influencing their predictions. Interestingly, a substantial overlap exists 

between these two sets of top features. Specifically, seven features are common to 

both models, underscoring their shared significance in predicting the performance of 

cloud systems and enhancing fault tolerance.These common features encompass 

aspects such as “cycles_per_instruction”, which relates to the efficiency of resource 

utilization, “cpu_usage_distribution1”, reflecting the distribution of CPU usage, 

“start_time” and “average_usage_memory”, which are essential in understanding the 

temporal and memory-related dynamics, “random_sample_usage_cpus”, indicating 

unpredictability in CPU utilization, “vertical_scaling”, a vital scalability metric, and 

“priority”, denoting the relative importance of tasks or processes within the system. 

The presence of these shared features suggests that either the C5.0 or XGBoost model 

can be effectively employed to predict cloud performance and bolster its reliability. 

By closely monitoring these seven parameters and implementing timely 

interventions, cloud administrators can proactively address issues, optimize resource 

allocation, and enhance the overall dependability of cloud systems, ensuring smooth 

operations and robust fault tolerance. 

5. Conclusion 

In conclusion, this research comprehensively evaluates the performance of machine 

learning models using a scaled-down version of Google trace data, addressing the 

computational limitations of local machines. Two key datasets, undersampled and 

oversampled, have been created to mitigate label imbalance. Five distinct algorithms, 

namely C5.0, Ada-Boost, XGBoost, Average Neural Network, and Bayesian GLM, 
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have been trained with these datasets, resulting in ten different models. Rigorous 

testing on both training and testing datasets has been conducted to gauge the models' 

performance across various metrics. The findings highlight the consistent and 

superior performance of models M1U (C5.0 Algorithm) and M3U (XGBoost) in 

terms of accuracy, sensitivity, positive precision, and negative precision. Notably, 

these models exhibited performance exceeding 90% in most cases, making them 

stand out. Furthermore, seven common features, including “cycles_per_instruction”, 

“cpu_usage_distribution1”, “start_time”, “average_usage_memory”, 

“random_sample_usage_cpus”, “vertical_scaling”, and “priority”, emerged as 

critical indicators for predicting cloud performance and enhancing fault tolerance. 

As future avenues, this research suggests evaluating these models on larger 

datasets, exploring alternative algorithms, enhancing feature engineering and 

selection, and validating the models externally. Real-time applications in cloud 

monitoring and dynamic model updates to accommodate evolving cloud 

environments are also recommended. Ensemble methods could be explored to 

enhance predictive accuracy. In summary, this study offers insights into cloud system 

performance prediction and fault tolerance, with potential real-world applications and 

avenues for continued research in cloud computing. 
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