
 26

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 23, No 4

Sofia • 2023 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2023-0034

Fault Tolerance of Cloud Infrastructure with Machine Learning

Chetankumar Kalaskar, Thangam S.

Department of Computer Science and Engineering, Amrita School of Computing, Amrita

Vishwavidyapeetam, Bangalore, 560035 Karnataka, India

E-mails: k_chetankalaskar@blr.amrita.edu s_thangam@blr.amrita.edu

Abstract: Enhancing the fault tolerance of cloud systems and accurately forecasting

cloud performance are pivotal concerns in cloud computing research. This research

addresses critical concerns in cloud computing by enhancing fault tolerance and

forecasting cloud performance using machine learning models. Leveraging the

Google trace dataset with 10000 cloud environment records encompassing diverse

metrics, we systematically have employed machine learning algorithms, including

linear regression, decision trees, and gradient boosting, to construct predictive

models. These models have outperformed baseline methods, with C5.0 and XGBoost

showing exceptional accuracy, precision, and reliability in forecasting cloud

behavior. Feature importance analysis has identified the ten most influential factors

affecting cloud system performance. This work significantly advances cloud

optimization and reliability, enabling proactive monitoring, early performance issue

detection, and improved fault tolerance. Future research can further refine these

predictive models, enhancing cloud resource management and ultimately improving

service delivery in cloud computing.

Keywords: Cloud computing, Fault tolerance, Machine learning, Reliability of cloud.

1. Introduction

Cloud computing represents a transformative computing service paradigm that offers

significant advantages to both small-scale users and large-scale commercial and

scientific applications. This paradigm is defined as a model that facilitates ubiquitous,

convenient, on-demand network access to a shared pool of configurable computing

resources. These resources encompass networks, servers, storage, applications, and

services, all of which can be rapidly provisioned and deprovisioned with minimal

management effort or interaction with service providers [1]. The core attributes of

cloud computing include on-demand access, resource autonomy, rapid elasticity, and

continuous availability [2]. Cloud resources are allocated using standard protocols,

such as IAM, OAuth, OpenID for authentication, and AMI, OVF, SOAP, and REST

for data and workload migration [3-4]. The adoption of these standards fosters the

 27

widespread acceptance of cloud services. Furthermore, the cloud delivers enhanced

business agility while simultaneously reducing costs, making it an appealing choice

for a diverse user base. This combination of features positions cloud computing as a

driving force in the contemporary technology landscape.

Cloud computing, while garnering significant attention is still considered in its

adolescence concerning its fault-handling capabilities [5]. The architecture of cloud

computing is characterized by its dynamic and increasingly complex nature [6-7].

Unlike traditional systems, cloud deployments rely on millions of commodity

components, making them more susceptible to faults and failures [8]. In this context,

a fault is identified as an abnormal condition or defect in one or more parts of a

system, potentially rendering the system incapable of performing its intended

functions [9]. The occurrence of a fault within the system leads to errors, defined as

deteriorations in one or more system components that deviate the system from its

normal state [10]. These errors, left unaddressed, progress into system failures,

disrupting the regular service delivery and degrading system performance.

Inadequate handling of these system failures can render the system inoperable. The

consequences of such failures can be severe, to the extent that they may have a

detrimental impact on the economic stability of the service provider. It is therefore

imperative to address and enhance fault tolerance within cloud computing to ensure

the uninterrupted delivery of services and safeguard the economic health of the

provider. Fault tolerance is a critical concept denoting a system's ability to maintain

its intended functionality in the presence of faults [11-12]. In the absence of fault

tolerance, even a well-designed system composed of the finest components and

services cannot be considered reliable [13-15]. The importance of reliability is

particularly pronounced in the realm of cloud computing, given the execution of a

substantial number of delay-sensitive, real-time applications. Additionally, the

reliability of services plays a pivotal role in ensuring the widespread acceptance of

cloud solutions. As a result, the issue of fault tolerance has garnered significant

attention in research, leading to the development of numerous fault tolerance

frameworks documented in the literature. This paper aims to contribute by presenting

a comprehensive survey of fault tolerance within the cloud computing environment.

1.1. Motivation of the study

The motivation for this study is deeply rooted in the evolution of cloud computing,

which has emerged as a transformative force in information technology. As cloud

services become increasingly integral to both small-scale users and large-scale

enterprises, ensuring the fault tolerance and performance predictability of these

systems has become paramount. The distributed and dynamic nature of cloud

environments, coupled with the reliance on millions of commodity components, has

made them susceptible to faults and failures. These faults can lead to errors and, if

not properly handled, result in system failures, disrupting service delivery and

potentially causing economic strain for service providers. Therefore, addressing these

challenges is essential to enhance the reliability and performance of cloud computing.

Machine learning stands out as a promising avenue to bolster fault tolerance and

improve the prediction of cloud system performance. Its adaptability and data-driven

 28

capabilities make it an ideal candidate for mitigating the limitations of current fault

tolerance approaches. By systematically leveraging machine learning models, the

study aims to empower cloud systems with proactive monitoring and early detection

of performance issues, ultimately ensuring fault tolerance and improved resource

management. The use of the Google trace dataset, a rich source of real-world cloud

environment data, adds a practical dimension to the research, offering a foundation

for the development and evaluation of these machine learning models. The

motivation behind this study is to address the critical concerns within cloud

computing by harnessing the potential of machine learning. By advancing fault

tolerance and enhancing cloud performance prediction, the research aims to

contribute significantly to the optimization and reliability of cloud computing. It not

only offers practical solutions for improved fault tolerance but also aligns with the

dynamic nature of cloud systems, ensuring their continuous and dependable service

delivery. The ultimate goal is to pave the way for more resilient and efficient cloud

computing, benefitting both users and service providers.

1.2. Organization of the paper

The paper’s structure is as follows. Section 2 conducts an in-depth review of existing

literature, exploring prior research on fault tolerance, cloud computing, and machine

learning in the context of this study. It identifies gaps and opportunities, emphasizing

the need for innovative approaches like machine learning to enhance fault tolerance

in cloud environments. Section 3 explains the proposed methodology, data sets used,

and machine learning models used, including linear regression, decision trees, and

gradient boosting, focusing on their application for improving fault tolerance and

cloud system performance prediction. Section 4 of the paper presents research

findings, including the performance of machine learning models and a feature

importance analysis highlighting the most influential factors impacting cloud system

performance. Section 5 summarizes key findings and their broader significance in

fault tolerance and cloud performance prediction. It addresses study motivations,

acknowledges limitations, and suggests future research directions, offering a view of

the work’s contributions and potential impact.

2. Related works

The roots of fault tolerance research stretch back to the 1940s with the inception of

reliability engineering. The primary objective of reliability engineering has been to

design systems capable of enduring faults and maintaining operational effectiveness,

even in the face of failures. As computer systems gained prominence, the focus of

fault tolerance research shifted towards developing methods to ensure the

dependability and continuous availability of these systems. In the specific context of

cloud computing, fault tolerance research has gained paramount significance, largely

due to the distributed and dynamically evolving nature of cloud environments. Cloud

computing traces its lineage to the domain of distributed systems research, which

centers on constructing systems that can function seamlessly, even when individual

 29

components encounter failures. In recent times, fault-tolerant cloud architectures,

algorithms for placing fault-tolerant virtual machines, and advanced fault detection

and recovery techniques have taken center stage in research endeavors.

In [16], a survey has provided an extensive examination of intelligent resource

management techniques in the context of fault tolerance within cloud computing.

This research discussed a range of methodologies, including machine learning, fuzzy

logic, and swarm intelligence, while also presenting a comparative analysis of their

strengths and weaknesses. Additionally, the study emphasizes the imperative for

further exploration in this area to address the intricate challenges related to fault

tolerance in complex cloud systems. In [17] is introduced a robust framework for

data-intensive computing in cloud environments with a focus on fault tolerance. This

framework has integrated key components, including data replication, workload

balancing, and fault detection and recovery mechanisms, with the overall aim of

ensuring high availability and optimal performance for data-intensive computing

tasks in cloud settings. Furthermore, an additional research effort introduced a

reliability-aware approach to fault tolerance in parallel processing within cloud

computing. This approach incorporates a fault model rooted in reliability awareness

to identify critical system components and allocate additional resources to enhance

fault tolerance. It has also implemented a sophisticated load-balancing mechanism to

optimize cloud system performance and efficiency, marking a substantial

advancement in this field. In [18], a significant research effort focused on enhancing

fault tolerance for containerized applications in cloud environments. This work

introduces a technique that combines checkpointing and container migration to

ensure fault tolerance and minimize system downtime in the event of failures.

Additionally, the research includes a comprehensive performance evaluation of this

technique using real-world applications, showcasing its effectiveness and efficiency.

Another influential study addresses [19] dynamic replication schemes for fault

tolerance. This research proposes a dynamic replication scheme for cloud computing

that harnesses a prediction model to determine the optimal number of replicas needed

to ensure fault tolerance. Furthermore, the scheme has incorporated a load-balancing

mechanism to ensure high system performance and efficiency. In addition, a

comprehensive survey paper [20] explores various techniques related to fault

tolerance resource management in distributed cloud systems. This survey provides

an in-depth analysis of concepts such as redundancy, replication, and checkpointing,

offering a comparative assessment of their strengths and weaknesses. The paper

emphasizes the ongoing need for further research in this domain to effectively address

the intricate challenges associated with fault tolerance in distributed cloud systems.

In [21], a research article introduces an extensive framework designed to ensure fault

tolerance and high availability of containerized microservices within the cloud. This

framework employs a combination of checkpointing, replication, and load-balancing

techniques to achieve these objectives. Additionally, the paper includes a thorough

performance assessment of the proposed framework using a real-world use case.

Paper [22] offers a systematic review of fault-tolerant resource management

techniques within the context of cloud computing. The paper delves into various

methods, including redundancy, replication, checkpointing, and load balancing, and

 30

conducts a comparative analysis of their strengths and weaknesses. It introduces a

machine learning-based approach for predicting service availability in the cloud,

utilizing historical data and machine learning techniques to achieve highly accurate

predictions. The paper also provides a performance evaluation of this approach using

real-world datasets, demonstrating its effectiveness and efficiency as presented in

[23]. Paper [24] presents an innovative cloud-based architecture designed for Internet

of Things (IoT) applications. This architecture employs a combination of redundancy,

replication, and load balancing to ensure fault tolerance and the continuous

availability of IoT applications. The paper also includes a comprehensive

performance evaluation based on a real-world IoT use case. Additionally, [25]

introduces an efficient technique for ensuring fault tolerance in edge computing

environments. This method combines redundancy and replication to guarantee high

resource availability in edge computing scenarios. The paper also offers a

performance assessment using a real-world edge computing use case. Paper [26]

proposes an architecture for service selection based on consumer feedback in service-

oriented environments. Furthermore, [27] introduces dynamic resource provisioning

for cloud applications through Bayesian learning. The study presented in [28]

explores smart city video surveillance using fog computing, while [29] delves into

the issues and future directions of fog computing. According to [30], a hardware setup

for vehicle-to-vehicle communication under foggy conditions is presented. In [31],

the focus is on power consumption prediction in cloud data centers using machine

learning techniques. Paper [32] proposes a hybrid cloud approach for efficient data

storage and security. Paper [33] provides a comprehensive study on evolutionary

games in cloud, fog, and edge computing. Moreover, an exploration of the potential

applications of integrating blockchain technology with fog computing is found in

[34], revealing diverse practical implications. Lastly, [35] focuses on serverless High-

Performance Computing over the Cloud, discussing the concept of serverless

computing and its role in achieving high-performance computing capabilities within

a cloud environment. These collective studies significantly contribute to a deeper

understanding of modern computing paradigms and their wide-ranging applications.

In this comprehensive survey of the literature, a number of noteworthy research

gaps and opportunities in the realm of fault tolerance within cloud computing and its

associated fields have been discerned. A notable trend in the surveyed literature is a

significant reliance on reactive fault tolerance methods, a preference that can be

attributed to concerns regarding increased overhead and the complexities associated

with proactive fault tolerance approaches. Notably, replication emerges as the most

frequently employed fault tolerance technique, with checkpoint restart and job

migration being other prevalent methods. To address these identified gaps and

opportunities, the focus of this research endeavor shifts towards the exploration of

the potential of the machine and deep learning techniques as promising solutions for

mitigating the limitations of existing fault tolerance strategies. These advanced

methodologies, characterized by their adaptability and data-driven capabilities, offer

a compelling avenue for enhancing fault tolerance mechanisms, with the ultimate

goal of advancing the reliability and performance of cloud computing and its

associated fields.

 31

The research initiative is laser-focused on addressing these pressing concerns.

Dedication to developing and meticulously evaluating machine learning models that

bolster fault tolerance and empower the precise prediction of cloud system

performance is paramount. To support this investigation, we leverage the Google

Trace dataset, a rich source of information containing 10000 records from an actual

cloud environment. This dataset encompasses an array of diverse system metrics and

performance indicators, providing a solid foundation for these research efforts.

The investigation encompasses the following key aspects:

• A diverse range of machine learning algorithms, such as linear regression,

decision trees, and gradient boosting, have been systematically harnessed to build

predictive models with the objectives of improving fault tolerance and predicting

cloud system performance.

• A central aspect of the research encompassed a comparative analysis of the

machine learning models. Performance evaluation has been conducted with a focus

on metrics such as accuracy, precision, recall, and other pertinent indicators,

ultimately leading to the identification of the most effective models.

• An in-depth examination was conducted to identify the most influential

factors affecting cloud system performance and fault tolerance. This feature

importance analysis provides insights into the elements that have the most significant

impact on system behavior.

The research offers several notable advantages, presenting practical solutions

for enhancing fault tolerance and predicting cloud system performance. The

application of machine learning facilitates proactive monitoring and early

performance issue detection, ultimately resulting in heightened reliability and

improved resource management within cloud environments. Nonetheless, it is crucial

to recognize specific limitations. The study is predominantly centered on a particular

dataset, and the suitability of the developed models may exhibit variability in distinct

cloud environments. The efficacy of these models could further hinge on the selection

of machine learning algorithms and feature subsets. Moreover, the study does not

provide a comprehensive exploration of the real-time intricacies and complexities

inherent in cloud systems. In future research endeavors, several promising directions

emerge. First, the exploration of a broader array of cloud datasets is warranted to

assess the adaptability and robustness of machine learning models across diverse

cloud environments. Additionally, there is a need for continual refinement of machine

learning algorithms and the exploration of advanced techniques to enhance the

accuracy of cloud system performance predictions. Real-time monitoring methods,

integrated with machine learning, should be developed to enable immediate fault

detection and mitigation, aligning with the dynamic characteristics of cloud systems.

Investigating the effectiveness of ensemble methods, which harness the collective

strength of multiple machine learning models, holds the potential to further fortify

fault tolerance and performance prediction. Furthermore, the exploration of hybrid

approaches that amalgamate conventional fault tolerance methods with machine

learning offers the promise of maximizing system reliability in the face of the ever-

evolving cloud environment.

 32

3. The proposed methodology

In the proposed methodology for fault detection using the Google Trace dataset, the

process begins with meticulous data preprocessing, including data acquisition and

labeling. The dataset is split into a training set and a testing set and the issue of class

imbalance is addressed by creating under-sampled and oversampled subsets. Multiple

machine learning models are selected, trained, and evaluated on both types of

datasets, allowing for a comprehensive understanding of their performance under

different data sampling conditions. Performance metrics, such as accuracy,

sensitivity, and specificity, are employed to assess model performance, and the top

models are selected for further analysis. Crucially, feature importance analysis is

conducted to identify the most influential factors in fault detection, with an emphasis

on common features among the top-performing models.

If no common features are initially found, an iterative approach is adopted to

refine the selection process. The final step of the methodology involves proposing an

algorithm for fault detection based on the selected common features. This algorithm

is then rigorously tested on a separate testing dataset to evaluate its effectiveness in

identifying faults within cluster computing environments. Throughout this process,

comprehensive documentation and reporting are maintained to capture the results and

insights obtained, providing a foundation for iterative improvement and further

research in the field of fault tolerance in cluster computing systems.

3.1. Data set

The Google Trace dataset, a publicly available resource, offers insights into real-

world events within Google’s production clusters. Researchers have extensively

employed this dataset to explore diverse facets of cluster computing, including fault

tolerance, energy consumption, and job scheduling. A prevalent application of the

Google Trace dataset is its role in modeling fault tolerance within cluster computing

systems. Researchers leverage this dataset to gain a deeper understanding of cluster

behavior in the presence of faults, ultimately leading to the development of more

robust fault tolerance mechanisms. The dataset has been instrumental in investigating

various aspects of fault tolerance, encompassing checkpointing, replication, and

recovery. For instance, researchers have assessed the efficacy of different

checkpointing strategies by analyzing fault frequency and the time required for job

checkpointing. Additionally, the dataset has been utilized to examine the impact of

replication on fault tolerance, gauging the performance of jobs with and without

replication. Constructed from traces originating from multiple Google data centers,

the Google Trace dataset draws from anonymized job-level traces found in Google’s

workload traces repository. These traces span several years, commencing in 2011,

and encompass both single-tenant and multi-tenant data centers. The dataset

comprises aggregated data on resource utilization, including CPU, memory, and disk

I/O for each job, complemented by metadata such as job ID, submission time, and

job duration. Moreover, the dataset incorporates information regarding the failure

characteristics of each job, shedding light on the number and types of failures

encountered during job execution. Google has periodically released updated versions

of the dataset, with the latest iteration being the Google Cluster-Usage Trace v2. The

 33

dataset serves as a valuable resource for academic research, finding applications in

numerous studies related to resource management, job scheduling, and fault tolerance

in data centers. Its extensive citation in over 1000 research papers underscores its

pivotal role in the domain of data center management and optimization. The Google

Trace dataset is not limited to one cluster but encompasses traces from two distinct

clusters: a production cluster and a cluster designated for research purposes. The

production cluster trace, sourced from Google’s Borg cluster management system,

spans a one-month period in 2011. It encompasses an impressive volume of data,

including approximately 13.25 million job submissions, 110 million task

submissions, and a staggering 1.5 billion task events. The dataset provides insights

into job and task details, submission times, resource requirements, and runtime

statistics like CPU utilization and memory consumption. Complementing this, the

research cluster trace offers data collected over a one-year duration, ranging from

2011 to 2012. It encompasses around 12,000 job submissions and 63,000 task

submissions, offering similar information as the production cluster trace. Notably,

both traces feature data pertaining to machine failures and job/task migration events,

rendering them invaluable for research related to fault tolerance and recovery within

cluster computing. Researchers have harnessed the Google Trace dataset to advance

scheduling and resource management algorithms tailored for large-scale computing

systems.

Variables used. The Google trace dataset encompasses a comprehensive set of

variables, each serving a unique purpose in describing the dynamics of workload and

resource utilization within a data center. These variables include essential identifiers

like Job ID, Task Index, and Machine ID, temporal information such as Time and

Duration, as well as resource-specific metrics like CPU Usage, Memory Usage,

Input/output Usage, Network Usage, and Disk Usage.

Table 1. Variable featured in the Google trace dataset
Variable name Description

Job ID A unique identifier for each job submitted to the data center

Task index A unique identifier for each task within a job

Machine ID A unique identifier for each machine in the data center

Time The timestamp at which a task was submitted to the data center

Duration The time taken by a task to complete

CPU usage The amount of CPU utilized by a task

Memory usage The amount of memory utilized by a task

Input/output usage The number of input/output operations performed by a task

Network usage The amount of network bandwidth utilized by a task

Disk usage The amount of disk space utilized by a task

Task type The type of task performed (e.g., map, reduce, shuffle)

Job type The type of job submitted to the data center (e.g., batch, interactive)

Priority The priority assigned to a task within a job

Machine type The type of machine on which a task was executed (e.g., small, medium, large)

Zone The geographical zone in which a machine was located

CPU requested The amount of CPU requested by a task

Memory requested The amount of memory requested by a task

Disk requested The amount of disk space requested by a task

Network requested The amount of network bandwidth requested by a task

Input/output requested The number of input/output operations requested by a task

 34

Moreover, task-related characteristics, including Task type and Job type, are

featured, along with priority assignments. Information about the hardware

environment is also available through Machine type, Zone, and resource allocation

specifications, including CPU requested, Memory requested, Disk requested,

Network requested, and Input/output requested. This diverse range of variables

equips researchers with a rich dataset to analyze and model data center operations

effectively. Table 1 provides a comprehensive list of the variables featured in the

dataset.

3.2. Addressing class imbalance

The Google trace dataset exhibits class imbalance, with a small fraction of jobs

labeled as “failed” (1.5%) and the majority as “successful” (98.5%). This class

imbalance can challenge machine learning models, potentially leading to biases and

difficulties in accurately predicting the minority class. To mitigate this, several

techniques can be applied, such as oversampling the minority class or adopting cost-

sensitive learning strategies.

3.3. Model training and testing

Ten machine-learning models have been employed to analyze and enhance the

Google Trace dataset for fault detection. These models have been systematically

trained and tested using two distinct data sampling methods: under-sampling and

oversampling. The selected models are as follows:

Models trained with the under-sampling dataset:

• M1U – C5.0;

• M2U – eXtreme Gradient Boosting – TREE;

• M3U – Model Averaged Neural Network;

• M4U – AdaBoost.M1;

• M5U – Bayesian Generalized Linear Model.

Models trained with the oversampling dataset:

• M1O – C5.0;

• M2O – eXtreme Gradient Boosting – TREE;

• M3O – Model Averaged Neural Network;

• M4O – AdaBoost.M1;

• M5O – Bayesian Generalized Linear Model.

3.4. Performance evaluation

The performance evaluation of the machine learning models using the Google trace

dataset has been a rigorous and multifaceted process aimed at assessing their

effectiveness in fault detection and management. To ensure a comprehensive

understanding of the models’ performance, a wide array of performance metrics has

been employed, encompassing key aspects of fault detection and prediction. These

metrics included True positives, False negatives, True negatives, False positives,

Accuracy, Sensitivity, Specificity, Positive predictive value, Negative predictive

 35

value, Prevalence, Detection rate, Detection prevalence, and Balanced accuracy. By

evaluating these metrics, researchers have been able to gain profound insights into

the models’ strengths and weaknesses in identifying both actual faults and non-fault

scenarios.

Of particular significance were the Sensitivity and Specificity metrics, which

measure the models’ abilities to avoid false negatives (missing actual faults) and false

positives (incorrectly identifying faults in non-fault situations). The consideration of

these metrics was especially vital in the context of an imbalanced dataset, where a

small percentage of jobs have been labeled as “failed” while the majority were

labeled as “successful”. The imbalanced nature of the dataset has posed unique

challenges, as machine-learning models might develop biases towards the majority

class, potentially hindering their ability to predict accurately the minority class of

faults. The 95% Confidence interval for accuracy has been also employed to estimate

the range within which the true accuracy of the models was likely to fall, accounting

for potential uncertainty in the accuracy measurement.

Furthermore, the amalgamation of these metrics has provided a comprehensive

gauge of model performance, with Balanced Accuracy serving as a crucial composite

indicator that considered the equilibrium between Sensitivity and Specificity. This

evaluation process has been designed with the primary objective of singling out the

top-performing models that possess the capability to adeptly identify and manage

faults within intricate systems. Essentially, it afforded researchers a holistic panorama

of the models’ fault tolerance capacities, empowering them to make judicious choices

concerning model selection and the identification of the pivotal features that have

exerted influence over fault detection. These discoveries have played a pivotal role

in shaping the formulation of an algorithm proposed for fault detection, intended to

harness the collective potential of these models in real-world applications, thereby

elevating system reliability and fortifying fault tolerance.

Through a meticulous examination of these metrics, it becomes feasible to

discern the most exemplary models. To ensure an equitable and comprehensive

assessment, it is prudent to opt for at least one model from each category of datasets,

namely the undersampled and oversampled sets, in the quest to pinpoint the model

that excels in performance. Once the models have been cherry-picked, the subsequent

step involves the precise identification of the salient features that exert a significant

impact on fraud detection.

3.5. Proposed algorithm for fault detection

By selecting the most common and significant features from all chosen models, an

algorithm can be formulated to detect faults based on these important features. The

proposed algorithm follows a structured approach to ensure robust fault detection.

This includes iterative steps to identify the most influential features in the context of

fault detection.

Step 1. Commence by labeling the dataset with appropriate class labels,

distinguishing between “failed” and “successful” cases. To further enhance the fault

detection process, assign M-scores or weights to relevant data points based on feature

importance.

 36

Step 2. Divide the dataset into two distinct sets, namely training and testing data,

allowing for model training and evaluation.

Step 3. Subdivide the training set into two subsets: one for under-sampled data

and the other for oversampled data. This approach aims to address the class imbalance

challenge.

Step 4. Randomly select multiple machine learning models to generate trained

models for classification. These models will be trained on both the under-sampled

and oversampled datasets.

Step 5. Choose a performance metric that aligns with the specific objectives of

the fault detection process. For instance, ROC (Receiver Operating Characteristic)

can be employed for optimizing the training process and evaluating model

performance.

Step 6. Extract relevant performance metrics for each trained model. These

metrics should encompass key aspects such as Accuracy, Sensitivity, and Precision

for both the positive and negative classes and other metrics that capture the model's

effectiveness.

Step 7. Select the top N models based on essential performance metrics. These

metrics guide the identification of the most proficient models in fault detection. For

instance, N can be set to 2 for this purpose.

Step 8. Ensure a balance between the selected models from both the under-

sampled and oversampled datasets to maintain comprehensive fault detection

capabilities.

Step 9. Examine and evaluate the significance of individual features on a scale

of 0 to 100 for the selected models. These scores are essential in identifying

influential features.

Step 10. Identify common features among the top N features from all the

selected models. This is a crucial step in pinpointing the key variables contributing

to effective fault detection.

Step 11. If there are no common features among the top N features, consider

reducing the number of models to N – 2 for a more specific common feature selection.

This process ensures the most relevant features are identified.

Step 12. In the event that common features remain elusive, reselect the N models

from the full set of trained models, possibly by altering the metrics chosen for

selecting the top models.

Step 13. Iterate through Steps 8-12 until at least three top features are

consistently identified. This iterative approach hones the selection process and

identifies robust fault detection features.

By following this structured algorithm given in Table 2, fault detection can be

enhanced through the identification and utilization of essential features and the

selection of top-performing models, ultimately contributing to more effective fault

tolerance and system reliability in cloud computing and data center management.

 37

Table 2. Pseudocode of the proposed method

1. Initialize the dataset and labels
2. Calculate M-scores for dataset entries based on feature importance
3. Split the dataset into training and testing sets
4. Create two subsets: one for undersampled data and one for oversampled data
5. Randomly select machine learning models:
 - M1U (C5.0 – Undersampled)
 - M2U (eXtreme gradient boosting – TREE – undersampled)
 - M3U (Model averaged neural network – undersampled)
 - M4U (AdaBoost.M1 – undersampled)
 - M5U (Bayesian generalized linear model – undersampled)
 - M1O (C5.0 – oversampled)
 - M2O (eXtreme gradient boosting – TREE – oversampled)
 - M3O (Model averaged neural network – oversampled)
 - M4O (AdaBoost.M1 – oversampled)
 - M5O (Bayesian generalized linear model – oversampled)
6. For each model:
 a. Train the model using the undersampled training dataset
 b. Train the model using the oversampled training dataset
7. Select a performance metric, e.g., ROC, for model training optimization
8. For each trained model:
 a. Extract performance metrics including Accuracy, Sensitivity, Precision for positive
class, and Precision for negative class
9. Select the top N models based on performance metrics, where N = 2
10. Ensure a balanced selection of models from both undersampled and oversampled
datasets
11. Assess feature significance on a scale of 0 to 100 for selected models
12. Identify common features among the top N features from all selected models
13. If there are no common features:
 a. Reduce the number of models to N – 2 for common feature selection
 b. If still no common features, reselect N models with adjusted metrics
14. Repeat steps 8 to 13 until at least three top features are identified
15. The final selected models and top features contribute to a robust fault detection
algorithm

4. Simulation results and discussion

• A Reduced dataset for Local machine processing

In order to facilitate the analysis of the Google trace dataset, which proved too

extensive to be accommodated by a local machine due to its sheer size and the local

machine’s constrained processing capabilities, a scaled-down version of the dataset

was meticulously crafted. This downsized dataset comprises a total of 10,000 records,

designed to be more manageable for the local machine's limited resources.

• Imbalance in failure detection

Within this reduced dataset, there is a variable labeled “fault”, which can take

on the value “yes” or “no”, indicating the presence or absence of a fault. Among the

10000 records, 2299 instances are classified as positive cases, signifying the presence

of a fault (where “fault” is set to “yes”). Conversely, the remaining records belong to

the negative class, denoting the absence of a fault (where “fault” is set to “no”). It’s

important to note that this dataset exhibits an imbalance in failure detection, with a

considerable number of non-faulty instances compared to the faulty ones.

 38

This downsized dataset serves as a practical solution for local machine

processing, enabling efficient analysis and modeling while accounting for the

inherent class imbalance in the context of failure detection.

Table 3. Output from models trained with under-sampled datasets and tested on training dataset
Model M1U M2U M3U M4U M5U

Algorithm c5.o
Ada – Boosted

classification trees

xgboost extreme –

Gradient boosting

avnNet – Model

averaged neural

network

bayesglm –

Generalized

bayesian linear

model

Program name Upsampling Upsampling Upsampling Upsampling Upsampling

Data Training set Training set Training set Training set Training set

TP 1840 209 1828 11 1304

FN 0 1631 12 1829 536

TN 6161 1249 6068 6156 4257

FP 0 4912 93 5 1904

Accuracy 1 0.1822 0.9869 0.7708 0.695

“95% CI” (0.9995, 1) (0.1738, 0.1.909) (0.9841, 0.9893) (0.7614, 0.78)
(0.6848,

0.7051)

No information

rate
0.77 0.77 0.77 0.77 0.77

P-value

[Ace > NIR]

Less than

2.2×10–16
1

Less than

2.2×10–16
0.4428 1

Kappa 1 –0.4207 0.9635 0.0079 0.317

Macnemar’s test

P-value
NA

Less than

2.2×10–16
5.85×1015

Less than

2.2×10–16

Less than

2.2×10–16

Sensitivity 1 –0.11359 0.9935 0.005978 0.7087

Specificity 1 0.20273 0.9849 0.999188 0.691

Positive

predictive value
1 0.04081 0.9516 0.6875 0.4065

Negative

predictive value
1 0.43368 0.998 0.7709 0.8882

Prevalence 0.23 0.22997 0.23 0.229971 0.23

Detection rate 0.23 0.02612 0.2285 0.001375 0.163

Detection

Prevalence
0.23 0.64004 0.240 0.002 0.4009

Balanced

Accuracy
1 0.15816 0.9892 0.502583 0.6998

The presented Tables 3 and 4 offer a comprehensive evaluation of machine

learning models trained on undersampled and oversampled datasets, subsequently

tested on the training data. In Table 3, where undersampled data is employed, the five

models (M1U-M5U) exhibit notable variations in their performance metrics. Model

M1U stands out with an exceptional accuracy of 1, reflecting an impeccable ability

to correctly classify data. Conversely, M2U underperforms significantly, with an

accuracy of only 0.1822, indicating challenges in distinguishing between classes. The

other models fall within this spectrum. These outcomes underscore the importance of

the choice of machine learning algorithm and data preprocessing techniques in

addressing imbalanced datasets.

 39

Table 4. Output from models trained with over-sampled datasets and tested on training dataset
Model M1O M2UO M3O M4O M5O

Algorithm c5.0
Ada – Boosted
classification

trees

xgboost extreme –

Gradient boosting

avnNet – Model
averaged neural

network

bayesglm – Generalized

bayesian linear model

Program name
down-

sampling
down-sampling down-sampling down-sampling down-sampling

Data Training set Training set Training set Training set Training set

TP 1840 193 1833 1695 1288

FN 0 1647 7 145 552

TN 5942 1244 5836 5530 4246

FP 219 4197 325 631 1915

Accuracy 0.9726 0.1796 0.9585 0.2907 0.6917

“95% CI” (0.9688,0.976) (0.1712, 0.1882) (0.9539, 0.9628) (0.2808, 0.3008) (0.6814, 0.7018)

No information

rate
0.77 0.77 0.77 0.77 0.77

P-value

[Ace > NIR]

Less than

2.2×10–16
1

Less than

2.2×10–16
1 1

Kappa 0.9258 –0.4271 0.8895 0.0117 0.3089

Macnemar’s
Test P-value

Less than
2.2×10–16

Less than
2.2×10–16

Less than
2.2×10–16

Less than
2.2×10–16

Less than
2.2×10–16

Sensitivity 1 0.10489 0.9962 0.9212 0.7

Specificity 0.9645 0.20192 0.9472 0.1024 0.6892

Positive

predictive value
0.8936 0.03777 0.8494 0.2346 0.4021

Negative

predictive value
1 0.4303 0.9988 0.8131 0.885

Prevalence 0.23 0.22997 0.23 0.23 0.23

Detection rate 0.23 0.02412 0.2291 0.2118 0.161

Detection
prevalence

0.2573 0.63867 0.2697 0.903 0.4003

Balanced

accuracy
0.9822 0.1534 0.9717 0.5118 0.6946

Table 4, in contrast, reveals results when models are trained with oversampled

data, aimed at enhancing class balance by inflating minority class instances. The

general trend indicates improved accuracy across all models compared to Table 3.

Model M1O impressively attains an accuracy of 0.9726, signifying improved

classification capabilities following oversampling. However, a potential trade-off

becomes apparent as sensitivity and specificity metrics are somewhat compromised

when compared to M1U. This suggests that oversampling may influence the models’

ability to distinguish between positive and negative cases. The positive Kappa values

indicate that the models consistently outperform random chance in their predictions.

It is imperative to recognize that the evaluation in both tables occurs on the training

dataset, a situation that can lead to over fitting. Consequently, it is vital to conduct

further testing on independent datasets to assess the models’ generalization

capabilities. Moreover, while these tables provide valuable insights into model

performance, the choice of the most suitable model should be contingent on the

specific objectives and considerations of the task, as well as the implications of false

positives and false negatives in the context of the application.

The provided figures, namely Figs 1 to 8, serve to elucidate the performance of

various machine learning models in the context of training and testing on both under

sampled and oversampled training datasets. These figures delve into multiple critical

performance metrics, notably accuracy, sensitivity, positive precision, and negative

 40

precision, shedding light on how these models handle imbalanced data. Let us embark

on an in-depth elucidation of the findings:

Fig. 1. Accuracy of machine learning models trained and tested with under sampled training subset

Fig. 1 showcases the accuracy of machine learning models when trained and

tested on under sampled training data. It is discerned that models M1U (utilizing the

C5.0 Algorithm) and M3U (leveraging the Xgboost technique) exhibit a

conspicuously superior accuracy. M1U attains an extraordinary 97.26%, while M3U

delivers a commendable 95.85%. These results suggest that these two models are

particularly adept at handling the intricacies of the under sampled dataset.

Conversely, M2U (employing Ada-boost), M4U (based on Averaged Neural

Network), and M5U (utilizing Bayesian GLM) face challenges in effectively fitting

the data.

Fig. 2. Accuracy of machine learning models trained and tested with over sampled training subset

Fig. 2 provides insight into the accuracy of models trained and tested on

oversampled training data. Notably, M1O and M3O demonstrate superior

performance, mirroring the findings in Fig. 1. M1O attains a flawless accuracy of

100%, while M3O reaches a commendable 98.69%. This implies that both

undersampled and oversampled training data are conducive to the successful

performance of M1 and M3 models, outshining their counterparts.

Fig. 3. Sensitivity of machine learning models trained and tested with under sampled

training subset

 41

Fig. 4. Sensitivity of machine learning models trained and tested with over sampled training subset

Figs 3 and 4 scrutinize sensitivity, revealing that M1U, M3U, and M4U

consistently achieve sensitivity levels exceeding 90%. It is evident that M1U and

M3U outshine the other models, particularly in the context of the oversampled

dataset. However, it is noteworthy that M4U experiences a decline in sensitivity when

handling the oversampled dataset. In contrast, the specificity metrics presented in

Fig. 3 indicate that M4U fares poorly, underscoring its proficiency in handling the

positive class while grappling with the negative class.

Fig. 5. Positive precision of machine learning models trained and tested with under sampled training

subset

Fig. 6. Positive precision of machine learning models trained and tested with over sampled training

subset

 42

Figs 5 and 6 are devoted to positive precision for both undersampled and

oversampled datasets. Models M1U and M3U consistently exhibit elevated positive

precision levels. M1U attains 89.36% and a perfect 100% for undersampled and

oversampled datasets, respectively. These high precision levels are partly attributed

to the minimal occurrence of false positives.

Figs 7 and 8 delve into negative precision concerning undersampled and

oversampled datasets. A striking observation is the exceedingly high negative

precision levels, reaching 100%, for M1U, M3U, M1O, and M3O. These models

excel in the accurate identification of the majority class, which is the negative class,

underscoring their efficacy in navigating the intricacies of imbalanced datasets. In

summation, grounded in the evaluation encompassing accuracy, sensitivity, positive

precision, and negative precision, it is discerned that models M1 and M3 consistently

outperform their peers across both under sampled and oversampled datasets. These

models illustrate their aptitude in managing imbalanced data, particularly excelling

in the accurate identification of the majority class. Nonetheless, the selection of a

model for a specific task should be contingent on the precise objectives and inherent

trade-offs, and it is imperative to ensure that the results generalize effectively to

unseen data through rigorous validation on independent test datasets.

Fig. 7. Negative precision of machine learning models trained and tested with under sampled training

subset

Fig. 8. Negative precision of machine learning models trained and tested with over sampled training

subset

 43

Table 5. Output from models trained with under sampled datasets and tested on testing dataset
Model M1U M2U M3U M4U M5U

Algorithm c5.o
Ada – Boosted

classification trees
xgboost extreme –
Gradient boosting

avnNet – Model
averaged neural

network

Bayesglm –
Generalized

bayesian linear
model

Program name Up sampling Up sampling Up sampling Up sampling Up sampling
Data Testing set Testing set Testing set Testing set Testing set
TP 440 48 437 6 324
FN 19 411 22 453 135
TN 1450 313 1430 1540 1066
FP 90 1227 110 0 474

Accuracy 0.9455 0.1806 0.934 0.7734 0.6953

“95% CI” (0.9346,0.955) (0.164,0.1982) (0.9222, 0.9445) (0.7544, 0.7916)
(0.6746,
0.7155)

No information
rate

0.7704 0.7704 0.7704 0.7704 0.7704

P-value
[Ace > NIR]

2.20×10–16 1 2.20×10–16 0.3866 1

Kappa 0.8538 –0.4262 0.8251 0.02 0.3161
Macnemar’s test

P-Value
2.20×10–11 Less than 2.20×10–16 3.67×10–14 Less than 2.20×10–16

Less than
2.20×10–16

Sensitivity 0.958 0.10458 0.9521 0.01307 0.7059
Specificity 0.9416 0.20325 0.9286 1 0.6922

Positive
predictive value

0.8302 0.03765 0.7989 1 0.406

Negative
predictive value

0.9871 0.43232 0.9848 0.772704 0.8876

Prevalence 0.2296 0.2296 0.2296 0.2296 0.2296
Detection Rate 0.2201 0.02401 0.2186 0.00300 0.162

Detection
Prevalence

0.2651 0.63782 0.2736 0.00300 0.3992

Balanced
Accuracy

0.9501 0.15391 0.4403 0.506536 0.699

Table 6. Output from models trained with over sampled datasets and tested on testing dataset
Model M1O M2O M3O M4O M5O

Algorithm c5.o
Ada – Boosted

classification trees
xgboost extreme –
Gradient boosting

avnNet – Model
averaged neural

network

Bayesglm –
Generalized

bayesian linear
model

Program name Up sampling Up sampling Up sampling Up sampling Up sampling
Data Testing set Testing set Testing set Testing set Testing set
TP 432 61 430 6 326
FN 27 398 29 453 133
TN 1516 321 1480 1540 1073
FP 30 1219 60 0 467

Accuracy 0.9713 0.1911 0.9555 0.7736 0.6998

“95% CI” (0.9632,0.9783) (0.1741,0.209) (0.9445, 0.9641) (0.7544, 0.7916)
(0.6746,
0.7199)

No information
rate

0.7704 0.7704 0.7704 0.7704 0.7704

P-value [Ace >
NIR]

2.20×10–16 1 2.20×10–16 0.3866 1

Kappa 0.9196 –0.4262 0.02 0.3866
Macnemar’s test

P-value
0.7911

Less than
2.20×10–16

0.001473
Less than
2.20×10–16

Less than
2.20×10–16

Sensitivity 0.9412 0.1329 0.9368 0.013072 0.7102
Specificity 0.9805 0.2084 0.961 1 0.6968

Positive
predictive value

0.935 0.04766 0.8776 1 0.4111

Negative
predictive value

0.9824 0.44645 0.9801 0.7727 0.8197

Prevalence 0.2296 0.22961 0.2295 0.229615 0.2296
Detection Rate 0.2161 0.03052 0.2151 0.003002 0.3967

Detection
prevalence

0.2311 0.64032 0.245 0.003002 0.3967

Balanced
accuracy

0.9605 0.1707 0.9489 0.506536 0.7035

 44

Tables 5 and 6 provide a comprehensive evaluation of machine learning models

that have undergone training on both under sampled and oversampled datasets,

subsequently undergoing testing on dedicated evaluation datasets. These tables

present a diverse range of performance metrics, encompassing parameters such as

accuracy, sensitivity, positive precision, and negative precision. These metrics allow

for an exhaustive appraisal of how these models navigate complex issues of class

imbalance.

In Table 5, it is evident that models M1U and M3U emerge as the top

performers, achieving notable accuracy rates of 94.55% and 93.40%, respectively.

This underscores their proficiency in correctly classifying the evaluation dataset,

particularly when dealing with imbalanced data. M1U displays remarkable

sensitivity, highlighting its capacity to correctly identify positive cases, while M4U

showcases exceptional specificity in effectively distinguishing negative cases.

Noteworthy positive precision values for M1U and M3U emphasize their precision

in positive predictions, complemented by consistently high negative precision across

models, indicating their adeptness in identifying the majority class, typically

representing the negative class.

Turning to Table 6, where models have been trained on oversampled data, M1O

and M3O exhibit exceptional accuracy rates of 97.13% and 95.55%, respectively.

These models shine in their ability to accurately classify the evaluation dataset,

particularly in scenarios characterized by class imbalance. M1O and M3O maintain

high sensitivity levels, underscoring their effectiveness in accurately identifying

positive cases. Notably, M4O excels in specificity, achieving a 100% accuracy in

distinguishing negative cases. Positive precision values for M1O and M3O are

commendable, further attesting to their precision in positive predictions. The

persistent high negative precision values in these models demonstrate their

proficiency in identifying the majority class. This comprehensive array of

performance metrics reinforces the necessity of selecting the most appropriate model

contingent upon the specific task, while underscoring the importance of rigorous

validation on independent test datasets to ascertain the models’ capacity for

generalization.

Figs 9 to 16 provide a detailed analysis of the performance of machine learning

models denoted as M1U, M2U, M3U, M4U, and M5U for the undersampled dataset,

as well as M1O, M2O, M3O, M4O, and M5O for the oversampled dataset. These

models were tested on a separate testing subset, and its worth noting that this testing

set was not utilized during the training of any models, serving as a hold-out set for

unbiased evaluation.

Fig. 9. Accuracy of machine learning models trained with under sampled dataset and tested with

testing subset

 45

Fig. 9 centers on the accuracy of machine learning models trained with the

undersampled dataset and subsequently tested with the testing subset. It becomes

evident that M1U and M3U outshine their counterparts, displaying significantly

higher accuracy, with M1U achieving 94.55% and M3U achieving 93.40%. Notably,

M4U also delivers good performance, with an accuracy of approximately 78%, while

the other models demonstrate a less robust fit to the undersampled data.

Fig. 10. Accuracy of machine learning models trained with over sampled dataset and tested with

testing subset

Fig. 10 extends the evaluation to models trained with the oversampled dataset

and tested with the testing subset. Here, M1O takes the lead with an accuracy of

97.15%, closely followed by M3O at 95.55%. M4O also demonstrates commendable

performance, achieving approximately 78% accuracy. These findings highlight the

consistent accuracy of models M1 and M3 when confronted with both undersampled

and oversampled datasets and when tested with both training and testing datasets.

Fig. 11. Sensitivity of machine learning models trained with under sampled dataset and tested with

testing subset

Fig. 12. Sensitivity of machine learning models trained with over sampled dataset and tested with

testing subset

 46

Figs 11 and 12 delve into sensitivity, revealing that M1U, M3U, M1O, and M3O

consistently maintain sensitivity levels exceeding 90%, indicating their effectiveness

in correctly identifying positive cases. However, M4U and M4O show less robust

sensitivity performance, particularly when tested with the undersampled dataset.

Fig. 13. Positive precision of machine learning models trained with under sampled dataset and tested

with testing subset

Fig. 14. Positive precision of machine learning models trained with over sampled dataset and tested

with testing subset

Figs 13 and 14 depict positive precision values for models trained and tested

with both undersampled and oversampled training subsets. Notably, M4U and M4O

reach 100% positive precision. Meanwhile, sensitivity for M1U and M3U shows a

slight dip to around 80%, while M1O and M3O maintain sensitivity above 90%.

Fig. 15. Negative precision of machine learning models trained with under sampled dataset and tested

with testing subset

 47

Fig. 16. Negative precision of machine learning models trained with over sampled dataset and tested

with testing subset

Figs. 15 and 16 illustrate negative precision values for models trained and tested

with both under sampled and oversampled training subsets. Interestingly, positive

precision reaches 100% for M4U and M4O. Sensitivity for M1U and M3U remains

near 100%, while M1O and M3O display sensitivity levels above 80%.

These comprehensive results collectively demonstrate the robustness of models

M1 and M3 across both undersampled and oversampled datasets, further emphasizing

their consistent performance. However, the specific choice of model should align

with the specific task requirements, and rigorous validation on independent test

datasets is crucial to ascertain the generalizability of the findings.

The top 10 features extracted from models M1 and M3 shed light on the crucial

factors influencing their predictions. Interestingly, a substantial overlap exists

between these two sets of top features. Specifically, seven features are common to

both models, underscoring their shared significance in predicting the performance of

cloud systems and enhancing fault tolerance.These common features encompass

aspects such as “cycles_per_instruction”, which relates to the efficiency of resource

utilization, “cpu_usage_distribution1”, reflecting the distribution of CPU usage,

“start_time” and “average_usage_memory”, which are essential in understanding the

temporal and memory-related dynamics, “random_sample_usage_cpus”, indicating

unpredictability in CPU utilization, “vertical_scaling”, a vital scalability metric, and

“priority”, denoting the relative importance of tasks or processes within the system.

The presence of these shared features suggests that either the C5.0 or XGBoost model

can be effectively employed to predict cloud performance and bolster its reliability.

By closely monitoring these seven parameters and implementing timely

interventions, cloud administrators can proactively address issues, optimize resource

allocation, and enhance the overall dependability of cloud systems, ensuring smooth

operations and robust fault tolerance.

5. Conclusion

In conclusion, this research comprehensively evaluates the performance of machine

learning models using a scaled-down version of Google trace data, addressing the

computational limitations of local machines. Two key datasets, undersampled and

oversampled, have been created to mitigate label imbalance. Five distinct algorithms,

namely C5.0, Ada-Boost, XGBoost, Average Neural Network, and Bayesian GLM,

 48

have been trained with these datasets, resulting in ten different models. Rigorous

testing on both training and testing datasets has been conducted to gauge the models'

performance across various metrics. The findings highlight the consistent and

superior performance of models M1U (C5.0 Algorithm) and M3U (XGBoost) in

terms of accuracy, sensitivity, positive precision, and negative precision. Notably,

these models exhibited performance exceeding 90% in most cases, making them

stand out. Furthermore, seven common features, including “cycles_per_instruction”,

“cpu_usage_distribution1”, “start_time”, “average_usage_memory”,

“random_sample_usage_cpus”, “vertical_scaling”, and “priority”, emerged as

critical indicators for predicting cloud performance and enhancing fault tolerance.

As future avenues, this research suggests evaluating these models on larger

datasets, exploring alternative algorithms, enhancing feature engineering and

selection, and validating the models externally. Real-time applications in cloud

monitoring and dynamic model updates to accommodate evolving cloud

environments are also recommended. Ensemble methods could be explored to

enhance predictive accuracy. In summary, this study offers insights into cloud system

performance prediction and fault tolerance, with potential real-world applications and

avenues for continued research in cloud computing.

5. R e f e r e n c e s

1. A b d E l f a t t a h, E., M. E l k a w k a g y, A. E l S i s i. A Reactive Fault Tolerance Approach for

Cloud Computing. – In: Proc. of 13th International IEEE Computer Engineering Conference

(ICENCO’17), 2017, pp. 190-194.

2. H a s a n, M., M. S. G o r a y a. Priority Based Cooperative Computing in Cloud Using Task

Backfilling. – Lect. Notes Software. Eng., Vol. 4, 2016, pp. 229-233.

http://dx.doi.org/10.18178/nse.2016.4.3.255

3. K o c h h a r, D., A. K. J. H i l d a. An Approach for Fault Tolerance in Cloud Computing Using

Machine Learning Technique. – Int. J. Pure Appl. Math., Vol. 117, 2017, No 22, pp. 345-351.

4. G u p t a, S., B. B. G u p t a. XSS-Secure as a Service for the Platforms of Online Social Network-

Based Multimedia Web Applications in the Cloud. – Multimedia Tools Appl., Vol. 77, 2018,

No 4, pp. 4829-4861.

5. T e b a a, M., S. E l H a j j i. From Single to Multi-Clouds Computing Privacy and Fault Tolerance.

– In: Proc. of International Conference on Future Information Engineering, Elsevier B. V.,

2014, pp. 112-118.

http://dx.doi.org/10.1016/j.ieri.2014.09.099

6. A b i d, A., M. T. K h e m a k h e m, S. M a r z o u k, M. B e m J e m a a, T. M o n t e i l, K. D r i r a.

Toward Ant Fragile Cloud Computing Infrastructures. – Procedia Compute. Sci., Vol. 32,

2014, pp. 850-855.

http://dx.doi.org/10.1016/j.procs.2014.05.501

7. L i n, X., A. M a m a t, Y. L u, J. D e o g u n, S. G o d d a r d. Real-Time Scheduling of Divisible

Loads in Cluster Computing Environments. – Parallel Distributed. Computing, Vol. 70, 2010,

pp. 296-308.

http://dx.doi.org/10.1016/j.jpdc.2009.11.009

8. J h a w a r, R., V. P i u r i. Fault Tolerance and Resilience in Cloud Computing Environments. – In:

J. Vacca, Ed. Computer and Information Security Handbook. 2013, pp. 1-29.

http://dx.doi.org/10.1109/CLOUD.2011.16

9. S u n, D., G. C h a n g, C. M i a o, X. W a n g. Modelling and Evaluating a High Serviceability Fault

Tolerance Strategy in Cloud Computing Environments. – Int. J. Security Network, Vol. 7,

2012, pp. 196-210.

http://dx.doi.org/10.1504/IJSN.2012.053458

http://dx.doi.org/10.18178/

 49

10. T c h e r n y k h, A., U. S c h w i e g e l s o h n, V. A l e x a n d r o v, E. T a l b i. Towards

Understanding Uncertainty in Cloud Computing Resource Provisioning. – In: Proc. of

International Conference on Computational Science, 2015, pp. 1772-1781.

http://dx.doi.org/10.1016/j.procs.2015.05.387

11. W a n g, T., W. Z h a n g, C. Y e, J. W e i, H. Z h o n g, T. H u a n g. FD4C: Automatic Fault

Diagnosis Framework for Web Applications in Cloud Computing. – IEEE Trans. Syst. Man

Cyber Network. Syst., Vol. 46, 2016, pp. 61-75.

http://dx.doi.org/10.1109/TSMC.2015.2430834

12. A h m e d, W., Y. W. W u. A Survey on Reliability in Distributed Systems. – J. Computer and Syst.

Sci., Vol. 79, 2013, pp. 1243-1255.

http://dx.doi.org/10.1016/j.jcss.2013.02.006

13. H e r n á n d e z, S., J. F a b r a, P. Á l v a r e z, J. E z p e l e t a. Using Cloud-Based Resources to

Improve Availability and Reliability in a Scientific Workflow Execution Framework. – In:

Proc. of 4th International Conference on Cloud Computing, GRIDs and Virtualization, 2013,

pp. 230-237.

14. C h e r a g h l o u, M. N., A. K h a d e m-Z a d e h, M. H a g h p a r a s t. A Survey of Fault Tolerance

Architecture in Cloud Computing. – J. Network. Compute. Appl., Vol. 61, 2016, pp. 81-92.

http:// dx.doi.org/10.1016/j.jnca.2015.10.004

15. P r a t h i b a, S., S. S o w v a r n i c a. Survey of Failures and Fault Tolerance in Cloud. – In: Proc.

of 2nd International Conference on Computer Communications Technologies (ICCCT’17),

2017, pp. 169-172.

16. Z h a n g, J., Y. J i a, Y. Y u. Intelligent Resource Management for Fault Tolerance in Cloud

Computing: A Survey. – Journal of Network and Computer Applications, Vol. 132, 2019,

pp. 38-52.

17. G a o, J., H. W a n g, H. S h e n. Machine Learning Based Workload Prediction in Cloud Computing.

– In: Proc. of 29th International Conference on Computer Communications and Networks

(ICCCN’20). IEEE, 2020, Los Alamitos, pp. 1-9.

18. R o d r i g u e z, G. G., J. M o r r i s o n. A Fault Tolerance Technique for Containers in the Cloud. –

Journal of Cloud Computing, Vol. 9, 2020, No 1, pp. 1-18.

19. A b d u l l a h, S. M., M. M. H a s a n, A. A l z a h r n i. A Dynamic Replication Scheme for Fault

Tolerance in Cloud Computing. – International Journal of Grid and High Performance

Computing, Vol. 12, 2020, No 1, pp. 1-21.

20. A l m u k h a i z i m, S. H. S., M. O t h m a n. Fault-Tolerant Resource Management in Distributed

Cloud Systems: A Survey. – Journal of Grid Computing, Vol. 18, 2020, No 1, pp. 71-98.

21. N i g a m, S. S., P. P a t n a i k, A. K. M a n d a l. Towards a Comprehensive Framework for Fault-

Tolerant Containerized – Micro Services in the Cloud. – Journal of Cloud Computing:

Advances, Systems and Applications, Vol. 9, 2020, No 1, pp. 1-26.

22. A l o m a r i, F., M. Z. I s l a m. Fault-Tolerant Resource Management in Cloud Computing: A

Systematic Review. – International Journal of Distributed Systems and Technologies, Vol. 12,

2021, No 1, pp. 44-62.

23. A l h a d d a d, S., M. Z. I s l a m. Cloud-Based Service Availability Prediction Using Machine

Learning Techniques. – Journal of Cloud Computing, Vol. 9, 2020, No 1, p. 17.

24. G a n i, M. A., S. U l l a h, S. U. K h a n. A Fault-Tolerant Cloud-Based Architecture for IoT

Applications. – Journal of Grid Computing, Vol. 18, 2020, No 2, pp. 213-227.

25. Q u a m a r, N., A. B. M. A. A. I s l a m. Efficient Fault-Tolerant Resource Allocation in Edge

Computing. – International Journal of Computer Networks and Communications Security,

Vol. 8, 2020, No 3, pp. 44-52.

26. T h a n g a m, S., E. K i r u b a k a r a n, J. W i l l i a m. Architecture for Service Selection Based on

Consumer Feedback (FBSR) in Service Oriented Architecture Environment. – International

Information Institute (Tokyo). Information, 2014, pp. 282-286.

27. P a n w a r, R., M. S u p r i y a. Dynamic Resource Provisioning for Service-Based Cloud

Applications: A Bayesian Learning Approach. – Journal of Parallel and Distributed

Computing, Vol. 168, 2022, Issue October 2022, pp. 90-107.

https://doi.org/10.1016/j.jpdc.2022.06.001

http://dx.doi.org/10
https://dl.acm.org/toc/jpdc/2022/168/C
https://dl.acm.org/toc/jpdc/2022/168/C
https://doi.org/10.1016/j.jpdc.2022.06.001

 50

28. P r a k a s h, P., R. S u r e s h, P. N. D h i n e s h K u m a r. Smart City Video Surveillance Using

Fog Computing. – International Journal of Enterprise Network Management, Vol. 10, March

2019, pp. 389-399. DOI: 10.1504/IJENM(2019).

29. P r a k a s h, P., K. G. D a r s h a u n, P. Y a a z h l e n e, M. V. G a n e s h, V. V a s u d a. Fog

Computing: Issues, Challenges and Future Directions. – International Journal of Electrical and

Computer Engineering (IJECE), Vol. 7, December 2017, No 6, pp 3669-3673.

https://DOI:10.11591/ijece.v7i6.pp3669-3673

30. S i n g h, B. S., M. P r a t a p, D. K. S a n g e e t a. Hardware Setup for VLC Based Vehicle to Vehicle

Communication under Fog Weather Condition. – International Journal of Advanced Science

and Technology, Vol. 29, 2020, No 3s.

31. D e e p i k a, T., P. P r a k a s h. Power Consumption Prediction in Cloud Data Center Using Machine

Learning. – International Journal of Electrical and Computer Engineering, 2020,

pp. 1524-1532.

http://doi.org/10.11591/ijece.v10i2

32. S a n d e e p, H. R., S. T h a n g a m. A Hybrid Cloud Approach for Efficient Data Storage and

Security. – In: Proc. of 6th International Conference on Communication and Electronics

Systems (ICCES’22), 2022.

33. I y e r, G. N. Evolutionary Games for Cloud, Fog and Edge Computing – A Comprehensive Study.

– Advances in Intelligent Systems and Computing, Vol. 990, 2020, pp. 299-309.

http://doi.org/:10.1007/978-981-13-8676-3_27

34. Y e h i a, I., A. A. A l j a a f r e h. Block Chain-Fog Computing Integration Applications. –

Cybernetics and Information Technologies, Vol. 23, 2023, No 1, pp. 3-37.

35. P e t r o s y a n, D., H. A s t s a t r y a n. Serverless High-Performance Computing over Cloud. –

Cybernetics and Information Technologies, Vol. 22, 2022, No 3, pp. 82-92.

Received: 13.07.2023; Second Version:15.10.2023; Third Verion: 26.10.2023; Accepted:

07.11.2023

http://dx.doi.org/10.11591/ijece.v7i6.pp3669-3673
http://doi.org/10.11591/ijece.v10i2
http://dx.doi.org/10.1007/978-981-13-8676-3_27

