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Abstract: Wireless Sensor Networks (WSN) aggregate data from multiple sensors 

and transfer it to a central node. Sensor nodes should use as little energy as possible 

to aggregate data. This work has focused on optimal clustering and cluster head node 

selection to save energy. HyperGraphs (HGC) and cluster head selection based on 

distance and energy consumption are unique approaches to spectral clustering. GRA 

computes a relational matrix to select the cluster head. The network’s Moving Agent 

(MA) may use Hypergraphed Particle Swarm Optimization (HGPSO) to collect data 

from cluster heads. Compared to the clustering algorithm without agent movement, 

the HGC-GRA-HGPSO approach has increased residual energy by 5.59% and 

packets by 2.44%. It also has improved residual energy by 2.45% compared to Grey 

Wolf Optimizer-based Clustering (GWO-C). 

Keywords: Hypergraph, Spectral clustering, Relational analysis, Energy 

consumption, Data aggregation, Traveling agent. 

1. Introduction  

WSNs are widely used in remote and power outage areas and in military surveillance, 

battlefields, and disaster-prone areas. Due to the limitations in energy resources of 

the sensory nodes constituting WSN, energy-efficient data gathering, and 

transportation have become a challenging issue. Data aggregation is used to minimize 

the transmission count of the data packets being broadcast to the base station to meet 

the energy and distance constraints of the nodes’ data transmission [1]. In the context 

of data aggregation in WSNs, a pivotal component is the WSN head agent as seen in 

Fig. 1, which plays a crucial role in aggregating data and transmitting it to the 

appropriate base stations located at a reasonable distance. However, when the base 

station is situated several hops away, the transmission latency and packet loss tend to 

increase [2]. This underscores the need for effective optimization of the movement 

of the data-gathering agent, particularly when it needs to traverse multiple hops to 

reach the base station. 

The main data aggregation mechanisms are Cluster-based data aggregation and 

Tree-based data aggregation [1]. In cluster-based routing protocols, the sensory nodes 
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are grouped into small clusters, each cluster has a head node called cluster head which 

acts as a local station for data collection for its affiliated nodes and eventually sends 

the collective data to the base station [3]. In tree-based data aggregation, the base 

station acts as the root node with leaves assumed as the head node where data is 

transferred from the leaves node to the base, and aggregation is performed through 

the head node [4]. However, tree-based aggregation suffers from uneven distribution 

of nodes in the hierarchy, depleting the energy of such nodes and causing network 

failure [4]. The clustering-based method suffers from poor energy balancing and high 

latency [1]. Over the last decade, a slew of improvements have been proposed to 

address the inadequacies of clustering-based approaches. Data aggregation has been 

the subject of a plethora of studies. 
 

 
Fig. 1. Architecture of WSN  

 

 
Fig. 2. WSN Data aggregation model with moving agent in the field 

 

Among these advancements, the concept of a traveling data-gathering agent has 

gained attention [5]. The data-gathering agent refers to a mobile entity within the 

WSN that is responsible for collecting data from the parent nodes identified through 

clustering. This agent exhibits unique capabilities and characteristics, distinguishing 

it from other components in the network. Its mobility allows it to traverse the network 

efficiently, gathering data from various parent nodes and contributing to effective 

data aggregation [6]. The power of the data-gathering agent lies in its ability to 

minimize transmission latency, reduce energy consumption, and improve overall 
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network performance, making it a promising solution for data collection and 

aggregation in WSNs. On the basis of these findings, Fig. 2 illustrates the WSN 

aggregation model, which includes a clustering of nodes for the selection of a parent 

node and a moving agent for collecting data from the parent nodes. 

The remainder of the paper is organized as a scrutinized review of the pertinent 

contemporary literature in Section 2 followed by Section 3, which delineates the 

intricacies of the proposed solution. It is juxtaposed by the ensuing Section 4 

demonstrating the performance analytics of the proposed solution and finally, the 

inference of the entire work proposed is summarized in Section 5. 

2. Related work 

K a r u n a n i t h y  and V e l u s a m y  [3] have proposed a Traveling Salesman 

Approach (TSP) to reduce the time taken by the UAV drone to collect the data from 

the cluster heads. A g r a w a l  et al. [7] is proposed an efficient technique for the 

election of cluster heads in WSNs to increase the network lifespan by employing a 

Grey Wolf Optimizer (GWO). M i r j a l i l i  [8] propose Moth-Flame Optimization 

(MFO) algorithm for optimization in a very effective mechanism for traveling in a 

straight line for long distances, which can be extended to finding the optimal path to 

collect data from cluster heads. H a d i a  et al. [9] have proposed a modified Particle 

Optimization Algorithm (PSO) to find the shortest tour of minimum length on a fully 

connected graph, which can be extended to solve hop sequence optimization 

problems of the data-collecting agent. Y a n  et al. [19] have used autocorrelation 

output errors to calculate the distance between nodes and determined cluster heads 

for PSO. K i r a n, S m y s  and B i n d h u  [20] use the modified PSO to get the optimal 

path from the base station to the cluster heads. K o t a r y, N a n d a  and G u p t a  [21] 

propose a reference-based leader selection and distance and energy transmission 

using Whale optimization. V e r m a  et al. [22] have devised a clustering method 

called GABAT that combines a generic algorithm and BAT algorithm to reduce 

energy depletion and increase transmission security. S u l e i m a n  and H a m d a n  

[23] have used multiple LEACH-based clustering algorithms [24], focusing mainly 

on the re-election of cluster heads using the proposed Adapt-P method [25]. To 

improve the battery life in WSN caused due to forming communication holes [26], 

GMM is considered for clustering [27] with a combination of social spider 

optimization models.  

A brief analysis of attributes considered in the previous works is tabulated in 

Table 1. 

These optimization procedures aim to reduce the latency and throughput by 

defining an itinerary that reduces the distance traveled to collect the data from the 

network where the cluster heads act as a proxy. The related works address the 

solutions to minimize energy consumption and maximize packet transmission by 

cluster head selection but do not highlight the residual energy of the cluster head 

whose depletion may cause no packet transfer from that cluster to the base station 

decreasing the throughput of the network significantly also, the moving agent’s 

energy is restricted which decreases the latency for long-distance transmission. 
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Table1. Attributes used for efficient data aggregation (√ – discussed) 

References 

Review of availability of Attributes for efficient  

data aggregation 

Energy  

consumption 

Alive  

nodes 

Thro- 

ughput 

Packet  

delivery 

Late- 

ncy 

Moving  

agent 

D e v i, R a v i  and P r i y a  [1] √  √ √ √  

K a r u n a n i t h y  and V e l u s a m y  [3] √  √ √  √ 

S e l v i n  and K u m a r  [4] √  √  √ √ 

A g r a w a l et al. [7] √ √ √   √ 

A r o r a, S h a r m a  and S a c h d e v a  [10] √   √ √ √ 

D w i v e d i  and S h a r m a  [11] √ √  √   

C h a u h a n  and S o n i  [12] √   √  √ 

Y a n  et al. [19] √ √    √ 

K i r a n, S m y s  and B i n d h u  [20] √     √ 

K o t a r y, N a n d a  and G u p t a  [21] √    √ √ 

V e r m a  et al. [22] √  √ √ √  

S u l e i m a n  and H a m d a n  [23] √    √ √ 
 

The proposed work takes the following factors into consideration: 

1. The clustering of the sensory nodes should not be random but should depend 

on performance attributes such as transmission distance and energy consumption rate. 

The parent node from each cluster must have a considerable amount of energy left to 

avoid transmission failure. 

2. To minimize the latency at the base station, the data collector for parent 

sensory nodes must have sufficient energy to operate at any distance constraints and 

minimize the distance traversed to aggregate the data. 

3. The optimization algorithm must be versatile to any number of clusters and 

faster convergence to maximize the throughput. 

In the next section of this article, the proposed solution is discussed in detail. 

The simulation results are discussed in Section 3 followed by the conclusion of the 

work. 

3. Proposed solution 

The proposed work of the data aggregation model is three-fold: an optimal number 

of sensor nodes’ groups, cluster head selection+, and optimal path scheduling of the 

moving agent to collect the data. As discussed in the previous section, the optimal 

number of clusters reduces the latency and the network lives longer than randomly 

selected groups. The decision depends upon the density and distributed geographical 

area of the nodes. For this purpose, the nodes are presented as a hypergraph and the 

eigenvalue for each node with respect to others in the transmission range is fed into 

the K-means algorithm to calculate the Calinski-Harabasz index. This work has used 

the Calinski-Harabasz index to select the optimal number of clusters. The maximum 

number of clusters in a network can be 10% of the total number of nodes. So, this 

serves as the maximum number of possible clusters The Calinski-Harabasz index is 

calculated for each cluster made by the K-means Clustering Algorithm, and the 

maximum index valued clustered is considered as the optimal number of clusters. 
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For clustering, a Grey Relational Analysis Algorithm [13] is suggested. The 

energy consumption in each node in the transmission of 1200 packets to every node 

and the distance with corresponding nodes are considered as the attributes for 

relational analysis. The node with the maximum grey relational value is considered 

the cluster head. The cluster head aggregates the data from fellow cluster members 

and shares this data with a Moving Agent (MA) in the field. The travel route is to be 

optimized for the MA. This work has introduced a novel particle swarm optimization 

that harnesses the power of hypergraph and is termed HyperGraph Particle Swarm 

Optimization (HGPSO). 

The proposed three-fold methodology is presented in Fig. 3. 
 

 
Fig. 3. Proposed methodology Steps for WSN data aggregation 

3.1. Optimal cluster numbers & Network hypergraph-based clustering 

The WSN network is presented as a network graph where each node 𝑉1, 𝑉2, … , 𝑉𝑘 

makes a disjoint set and is connected with the nodes in the transmission range. The 

distance between two nodes 𝑑𝑖𝑗 is the weight of the connecting edge between two 

nodes 𝑖 and 𝑗. Based on the distances between the nodes, a similarity distance 

adjacency matrix is generated. The adjacency matrix highlights the relation between 

the nodes and the edges formed. As discussed in the previous section, the problem is 

the partitioning of the weighted hypergraph 𝑉 into 𝑘 disjoint sets, 𝑉1, … , 𝑉𝑘, such 

that the total weight of edges within each cluster is high (denser connectivity among 

the sensor nodes), and the partitions are balanced. The number of nodes connected to 

a node is defined as that degree of any node (deg (𝑣), 𝑣 ∈ 𝑉), defining the total 

weight of edges 𝑣 that is incident, i.e., 

(1)  (𝑣) = ∑ 𝑤𝑒𝑒 ∈𝐸:𝑣 ∈𝑒 . 
Here, the weight 𝑤𝑒 associated with an edge 𝑒 ∈  𝐸. This represents the weight or 

similarity distance between the nodes connected by the edge.  
Next, is the volume defined as 

(2)  CM(𝑉1) = ∑ deg deg (𝑣)𝑣𝜖 𝑉1
, 

which is the number of nodes incident on the node 𝑉1 such that 𝑉1 ⊆ 𝑉. The 

association between the edges contained within 𝑉1 is defined as 

(3)  (𝑉1 ) = ∑ 𝑤𝑒. 

The normalized associativity of these individual partitions is given as 

(4)  Par (𝑉1, … , 𝑉𝑘) = ∑
assoc(𝑉𝑖 )

CM(𝑉𝑖 )

𝑘
𝑖=1 . 
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The adjacency matrix defined here is of the tensor (order 𝑧): 

(5)  𝐴𝑖1, 𝑖2,…,𝑖𝑧
= {

 𝑤{𝑖1,𝑖2,…,𝑖𝑧} if  𝑖1, 𝑖2,…,𝑖𝑧  are distinct, 
0                         otherwise.

 

The normalized associativity can be now rewritten using the adjacency matrix as in 

Equation 1 and normalized associativity then becomes as 

(6)  Par𝑖∈{1,…,𝑘} =
1

𝑧! 
Trace(𝐴 ×1 𝑌(1)T

×2 𝑌(2)T
×3 𝑌(3)T

… ×𝑧 𝑌(𝑧)T
). 

Here ×𝑙 is the model-𝑙 product and 𝑌(1)T
, 𝑌(2)T

, 𝑌(3)T
, … , 𝑌(𝑧)T

∈ 𝑅𝑘×𝑧 which 

represents the number of CMs connected to each node 𝑣𝑖 for each vertex. 𝑌𝑖∈{1,2,...,𝑧} 

as shown in the next equation,  

(7)  𝑌𝑖 =
1

∑ CM(𝑉𝑖 )𝑘

. 

The designed adjacency matrix is considered for spectral clustering, and this 

hypergraph is now transverse to get the diagonal (degree matrix) Dig that is the sum 

of only runs over all the vehicle nodes that are one-hop adjacent to the node 𝑣𝑖, 

(8)   Dig𝑖𝑖 = ∑ 𝐴𝑖𝑗
𝑁
𝑗=1 . 

Then comes Laplacian graph computation; this study utilizes the Laplacian 

matrix as in the next equation: 

(9)  𝐿 = Dig−1/2𝐴Dig−1/2. 
The top 𝑘 eigenvector (𝑋 = eig(𝐿)) is taken for the K-means clustering that 

provides the 𝑘-partitions of the sensor nodes’ hypergraph structure. These partitions 

resemble the cluster formation in the network. These partitions are further punned to 

get the optimal set of clusters. Algorithm 1 lists the spectral clustering for the 

Hypergraphed sensor nodes. 

Algorithm. 1. TTM Clustering in Hypergraph Theory 

Input: Location of each node: 𝑁Loc, Node’s Transmission range Tr 

Step 1. Calculate the distance of each node to another and store it in a variable 

dist𝑖×𝑗 

Step 2. if dist𝑖×𝑗 < Tr 

a. 𝐴𝑖𝑗 = 1 

Step 3. else 

b. 𝐴𝑖𝑗 = 0 

Step 4. end if 

Step 5. if 𝐷 ∈ 𝑅𝑚×𝑚is the diagonal matrix such that 𝐷𝑖𝑖 =  ∑ 𝐴𝑖𝑗
𝑛
𝑗=1 , 

Step 6. Calculate the Laplacian matrix (𝐿) using Equation (9) 

Step 7. Calculate the 𝑘 eigenvectors of 𝐿, represented as 𝑋 = 𝑅𝑛×𝑘 

Step 8. Normalize the 𝑋 

Step 9. Cluster the normalized 𝑋 using K-means 

These eigenvalues  𝑋 = 𝑅𝑛×𝑘 are used to find out the optimal number of 

clusters in the area. The possible Clusters Selection are selected using Calinski-

Harabasz Index as it generally shows better cluster validation results when K-means 

is used as the clustering algorithm [14], which is defined as the sum of inter-cluster 

dispersion and the sum of intra-cluster dispersion of all clusters. The Inner-cluster 
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dispersion or Between Group Sum of Squares (BGSS) is calculated as shown in the 

equation  

(10)  BGGS  =   ∑ 𝑛𝑘
𝐾
𝑘=1 × ||𝐶𝑘 − 𝐶||

2
, 

where: 

𝑛𝑘 is the number of observations in cluster 𝑘; 

𝐶𝑘 is the centroid of cluster 𝑘; 

𝐶  is the centroid of cluster 𝑘; 
K is the number of clusters. 

Also, the intra-cluster dispersion or Within Group Sum of Squares (WGSS) is 

calculated as shown in the equation [14], 

(11)  WGSS𝑘 = ∑ ||𝑋𝑖𝑘 − 𝐶𝑘||
2𝑛𝑘

𝑖=1 , 

where: 

𝑛𝑘 is the number of observations in cluster k; 

𝑋𝑖𝑘 is the 𝑖-th observation of cluster 𝑘; 

𝐶𝑘 is the centroid of cluster 𝑘. 

And the sum of all individuals within groups sum of squares: 

(12)  WGSS = ∑ WGSS𝑘
 𝐾
𝑘=1  . 

Finally, the CH index is calculated as 

(13)  CH =
BGSS

WGSS
×

𝑁−𝐾

𝐾−1
, 

where: 

𝑁 is the total number of observations; 

𝐾 is the total number of clusters. 

Which validates and selects k clusters using the K-means clustering algorithm. 

3.2. Cluster head selection 

Once the clusters are decided, nodes are marked in their respective clusters. A node 

is selected as the Cluster Head (CH) in each cluster to aggregate the data. This CH 

shares this aggregated data with a moving agent in the network. This requires high 

energy residual with the node to hold the data for longer. The node also consumes 

energy in data transmission and reception to fellow cluster mates. So, a CH must be 

selected to be nearest to cluster nodes and have maximum residual energy. This paper 

proposes a novel metric for selecting the CH that meets the maximum energy and 

minimum distance requirements based on Grey Relational Analysis (GRA). The 

fundamental advantage of GRA is that it can handle data that is imprecise, 

ambiguous, or vague. This is due to the fact that GRA constructs the GRG using a 

mathematical technique. GRA is thus more robust than other systems that rely on 

heuristics or subjective judgments. GRA also has the advantage of being able to work 

with both quantitative and qualitative data [13]. GRA is thus more adaptable than 

other approaches that demand data in a certain format. 

When deployed in a static WSN network, active sensors help save on energy 

costs. Since full network activity results in a significant increase in power 

consumption, we only activate a subset of the nodes in this case.  

The assumption of the active nodes is explained as  
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(14)  Active𝑁 =  Total𝑁 –  Sleep𝑁, 
where Active𝑁 is Active nodes, Total𝑁 is the total number of nodes deployed that is 

100: 50: 500 (from Table 2), and Sleep𝑁 are the nodes in sleep state.  

The total energy consumption is calculated as 

(15)  Total𝐸 =  Edt𝑥 + Edt𝑥𝑏𝑠 , 
where Edt𝑥 = (Total𝑁 –  Sleep𝑁 − 1) × Ndata × Eec + Ndata × dst2 × Eair is 

Consumption of energy for data transmitted and  

Edt𝑥𝑏𝑠 = aggData × Eec + aggData ×  dstCH
2 × Eair 

is the consumption of energy of the sending data from the CH and Base station. 

Here, Ndata is the bytes of data to be transmitted, aggData is Aggregated data, 

dstCH is the distance from the Base station to CH, Eec is the Consumed energy at 

each node on the circuit, Eair is the radio frequency amplification for the loss.  

In grey relational analysis, there are three steps for decision-making:  

1. Find the grey relational grade,  

2. Find the grey relational coefficient,  

3. Use the grey relational coefficient to make a decision. 

These steps are mathematically formulated as below. 

Step 1. The eigenvalues with 𝑘 attributes 𝑋𝑖𝜖 {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘}) from 

Algorithm 2 are used to generate a comparable matrix for relational matrix generation 

as in the equation 

(16)  𝑌𝑖𝑘 =
(𝑥𝑖𝑘) 

(𝑥𝑖𝑘) 
= 1.  

Equation (16) creates a normalized matrix of eigenvalues to avoid biasing caused 

due to larger sample values in any attribute.  

Step 2. The grey relational coefficient is the closeness value between 𝑌𝑖𝑘  and 

𝑌0𝑘. A higher coefficient value indicates the closer are two samples. It can be 

calculated as 

(17)  𝛾(𝑌0𝑘 , 𝑌𝑖𝑘) =
∆min+𝜁∆max

∆𝑖𝑘+𝜁∆max
, 

where 𝛾 is the grey relational coefficient between 𝑌0𝑘 and 𝑌𝑖𝑘. Here ∆𝑖𝑗= |𝑌0𝑘 − 𝑌𝑖𝑘| 

and 

(18)  ∆min= ∆𝑖𝑗 , 

(19)  ∆max= ∆𝑖𝑗 , 

where 𝜁 is the distinguishing coefficient and randomly lies between 0 and 1.  

It regulates the expansion and compression of the relational coefficient. Using 

Equation (17) coefficient, grey relational reward is calculated, which is used to select 

the higher relational samples. However, in our case, we use the output from  

Equation (15) to generate a graph, and the betweenness degree 𝑔(𝑣) is calculated. A 

higher 𝑔(𝑣) sensor node among the cluster nodes is considered as the cluster head. 

The process is depicted in Algorithm 2. 

Algorithm. 2. Cluster Head Selection Using Grey Relational Analysis 

Input: Eigenvalue matrix 𝑋 

Step 1. Normalize the matrix 𝑋 

Step 2. for 𝑖 = 1: 𝑛 

a. for 𝑗 = 1: 𝑘 
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Calculate the grey relational coefficient 𝛾
𝑖𝑗

 using Equation (17) 

b. end for 

Step 3. end for 

Step 4. generate a graph object from 𝛾
𝑖𝑗

 

Step 5. calculate the betweenness 𝑔(𝑣) for each element 

Step 6. CHind𝑥 = 𝑔(𝑣).  

3.3. Moving agent routing 

If the cluster head is far distant from the sink, multi-hop data transfer from the cluster 

head to the sink is an option. As a result, a Moving Agent (MA) is dispatched to the 

area in order to collect data from each cluster head to avoid the high energy 

consumption of CH. This section aims to find the best route for the MA to travel the 

shortest distance while covering every CH node. The problem formulation of moving 

agents to travel least is presented in Section 2. This nonlinear problem is solved with 

a novel HyperGraphed Particle Swarm Optimization (HGPSO) method. The HGPSO 

is developed on the ground of PSO. However, it improves the PSO’s premature 

convergence drawback by facilitating the convergence towards a good solution and 

diversified space. The root concept of introducing the hypergraph in the PSO is to 

benefit each particle with the central particle's cognitive experience. The proposed 

HGPSO has two main advantages: 

1. It can solve the problem of premature convergence in traditional PSOs more 

efficiently, 

2. It improves the diversity and global search performance of traditional PSOs, 

thus reducing the number of iterations required to find the optimally low value of the 

cost function. 

In recent years hypergraphs have been widely used in some fields of computer 

science such as image segmentation [16], data mining [17], and social network 

analysis [18]. A hypergraph is a generalization of an ordinary graph model that can 

be applied to problems with more than two variables or objects. The advantage of 

hypergraphs is that they have higher connectivity than traditional graphs, thus making 

it easier to obtain connections between different nodes. The detailed discussion of 

HGPSO starts from the brief of PSO ahead in the section. 

Particle Swarm Optimization (PSO) was proposed by J. Kennedy in 1995 and 

is one of the most popular evolutionary algorithms. PSO simulates social behavior to 

solve complex optimization problems, so it has many advantages such as simple 

structure, easy implementation, and low computational complexity [1]. Therefore, 

PSO has been widely used in many fields including mechanical engineering design, 

fuzzy control systems, and image processing applications. However, traditional PSOs 

have two main disadvantages: 1) they are easy to fall into local optima; 2) they require 

a large number of iterations before converging to global optima. These defects lead 

to poor performance for some complex optimization problems with high dimensions 

or large-scale applications. In order to find better solutions, many scholars have 

proposed some improved PSOs by introducing new ideas and methods [7]. We 

propose a hypergraph-based particle swarm optimization where the position update 

in the exploration process of a vanilla PSO is modified to incorporate a new direction 
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vector to get better results. The velocities of PSO for a sequence optimization 

problem are defined as a series of swap operations based on a probabilistic update 

rule for the current position update. 

Each particle has two attributes: location and velocity, which are represented as 

vectors 𝑥𝑖  and 𝑣𝑖, respectively. The objective function is applied to each particle’s 

position vector (location) in order to obtain its fitness value 𝑓(𝑥𝑖). The global best 

position �̂� and personal best position �̂�𝑖 of each particle can be obtained by 

comparing the fitness values of particles with their own previous locations or other 

particles’ locations. The velocity and position of each particle will be updated 

according to the following formula: 

(20)  𝑣𝑖,𝑡+1 = 𝜔 × 𝑣𝑖 + 𝑐1𝑟1 × (�̂�𝑖,𝑡 − 𝑥𝑖,𝑡) + 𝑐2𝑟2(�̂�𝑖,𝑡 − 𝑥𝑖,𝑡), 

(21)   𝑥𝑖,𝑡+1 = 𝑥𝑖,𝑡 + 𝑣𝑖,𝑡+1. 

Here: ω, c1, and c2 are constant weighting factors; the term �̂�𝑖,𝑡is the personal best 

location at time 𝑡; the term �̂�𝑖,𝑡 represents the global best position of all particles, 

which can be obtained by comparing the fitness values of particles with each other; 

r1 and r2 are two independent random variables in the range [0, 1]. 

Equation (20) is the exploration step of the PSO and is modified for the 

HyperGraph PSO (HGPSO). A new fourth parameter is added to the equation as in 

the next equation: 

(22) 𝑣𝑖,𝑡+1 = 𝜔 × 𝑣𝑖 + 𝑐1𝑟1 × (�̂�𝑖,𝑡 − 𝑥𝑖,𝑡) + 𝑐2𝑟2(�̂�𝑖,𝑡 − 𝑥𝑖,𝑡) + 𝑐3𝑟3(ℎ̂𝑖,𝑡 − 𝑥𝑖,𝑡). 

Here ℎ̂𝑖,𝑡 is the best position in the hypergraph generated by the current fitness values 

of the particles. The update process of HGPSO is shown in Fig. 4.  

The concept of hypergraph generation is similar to that discussed in Section 3.1. 

An adjacency matrix of 𝑛 × 𝑛 is used to get the weights of each particle’s connection 

to another. The particle’s fitness in any iteration is a vector quantity and it has to be 

converted into an adjacency matrix using the nearest neighbor calculation scheme. 

(23)  𝐴𝑛×𝑛 = Adjacency(𝑓(𝑥1) … 𝑓(𝑥𝑛)), 

where 𝐴  is the adjacency matrix of the vector of costs of the particles in the swarm 

then a hypergraph 𝑘 is calculated for 𝐴 to get an eigenvector using Equation (6). The 

centroid of 𝑘 is calculated using k-means clustering, where the number of clusters is 

one and the index of the particle with minimum distance is calculated as  

(24)  ℎ𝑖,𝑡 =arg arg ||kmeans(𝑘, 1)||
2

. 

 
Fig. 4. Particle’s positions update in Hypergraphed Particle Swarm optimization 

The pseudo code for HGPSO is in Algorithm 3. 
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Algorithm. 3. HGPSO for Sequence Optimization 

Input: Epoch size, Swarm size 𝑛 , 𝜔 , 𝑟1 , 𝑟2, 𝑟3 

Initialize: initial position of the swarm 

Step 1. Calculate 𝑝 , 𝑔 , 𝑅 , 𝑓(𝑥𝑖) for the initial positions 

Step 2. do 

a. for each sequence x in the swarm do 

b. Update the velocity using 𝑣𝑖, 𝑡 = 𝑉𝑖, 𝑡+1(𝑥,  𝑝,  𝑔,  𝑅,  𝜔,  𝑟1,  𝑟2,  𝑟3) 

c. Calculate new position 𝑥𝑖, 𝑡 to update particle's position 

d. if ( 𝑓(𝑥)  Is better than 𝑓(𝑥) ) then 

i. 𝑓(𝑥)  = 𝑓(𝑥); 

ii. 𝑥 = 𝑥 

e. end if 

f. if ( 𝑓(𝑥) is better than 𝑓(𝑔))  

i. 𝑓(𝑔) = 𝑓(𝑥) 

g. end for 

h. Calculate 𝑅   for current epoch and particle positions 

i. if ( 𝑅   Is better than 𝑅    )  
i. 𝑅 = 𝑅 

j. end_if 

Step 3. while (number of epochs are not satisfied) 

4. Results and discussion 

The proposed data aggregation scheme is evaluated with randomly placed nodes in 

the geographic area. The network parameters for data transmission are tabulated in 

Table 3. MATLAB has been used as the coding platform to implement the 

hypergraph for clustering, grey relational analysis for cluster head selection, and 

HGPSO for routing. All experiments have been performed on an Intel Core i7-2600 

CPU with 3.40 GHz and 4 GB RAM running Windows 7, 64-bit operating system. 

To give a full picture, the list of the various communication technologies utilized 

by WSNs, along with their typical transmission distances given in Table 2. 
 

Table 2. WSN Network parameters 

Communication technology Transmission range (approximate) 

Bluetooth Up to 100 meters 

Zigbee Up to 100 meters 

Wi-Fi Up to 100 meters 

LoRa Several kilometers 

Cellular (GSM, 4G, 5G) Varies (extensive coverage) 
 

It is necessary to note that the transmission range of the chosen communication 

technology should match the needs and specifications of the WSN deployment. A 

communication range of 20 meters is assumed in the scenario presented. To 

accommodate varying communication distances, the transmission range can be 
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adjusted and different communication technologies can be selected based on the 

requirements of the application. 

Table 3. WSN Network parameters 

Number of nodes 100:50:500 

Transmission range 20 m 

Packet size 2000 bytes 

Number of packets transmitted 64 

Initial energy of nodes 1 J 

Simulation time 1000 s 

The proposed algorithm is evaluated on the evaluation parameters like residual 

energy, alive nodes and number of packets delivered. The HGPSO clustered 100 

nodes with corresponding selected CH by GRA is presented in Fig. 4. The maximum 

number of possible clusters is considered as per the convention of 10% of the nodes’ 

density. A sink node is placed at coordinates of 𝑥 = 50, 𝑦 = 50. The sink node and 

cluster heads are marked as “×” in Fig. 5. 

 

Fig. 5. Clustered WSN and selected CH with the proposed Hypergraph clustering and GRA 

The evaluating parameters are calculated with the moving agent in the field at 

its optimal route and without any MA. A state-of-the-art comparison is also presented 

with other clustering algorithms such as FA-LEACH [12], GWO-Clustering [7], 

ACO [10], and SMA-LEACH [15] with MA in the field.  

The Firefly algorithm is used for cluster head selection in a network divided into 

rectangular regions [12]. The cluster head selection in [7] is made using a grey wolf 

optimizer. The cluster members are bound with the selected cluster heads based on 

the minimum distance from a CH and the maximum away from other CHs. The work 

in [10] uses the LEACH for energy-efficient clustering and ant colony optimization 

is used to select the time-efficient route for 3 mobile sinks. The work in [15] is also 

presented on a similar line of action as in [10]; however, the sink routing is selected 

by the Slime mould algorithm. The proposed hypergraph-based clustering, followed 

by grey relational analysis for CH selection and HGPSO for MA route selection, is 

compared with these algorithms.  

Fig. 6 compares the energy consumption of these state-of-the-art algorithms 

with the proposed stack of algorithms. The energy residual in transmitting the 2000 

packets is simulated for 1000 seconds and calculated for proposed clustering and 

cluster head selection without MA in the field and with MA in the field. Other 

comparative algorithms are also evaluated with MA in the field. This helps to 

evaluate the algorithms on a common benchmark. The residual energy without MA 
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is lesser than the energy with MA in the field. This is because MA facilitates the 

single-hope communication for CH to transfer the data, which could be multi-hop for 

many of the cluster heads. The energy consumption with the proposed clustering and 

MA routing has transferred the 2000 packets with 5.59% higher residual energy than 

the proposed clustering only. This improvement is calculated for the residual energy 

at the end of simulation time. HGC-GRA-HGPSO is viable to perform highest for 

energy residual in the same simulation environment as for other state-of-the-art 

schemes. It has achieved an improvement of 2.45% from the GWO-C [7] due to 

hypergraph spectral clustering with grey relational CH selection. The SMA-RE from 

[15] has performed the least and all energy is depleted in 1000 s simulation. 

Therefore, no alive node is in the network at the end of the simulation, as depicted in 

Fig. 7. 

 
Fig. 6. Residual energy comparative plot of HGC-GRA-HGPSO with state-of-the-art algorithms for 

1000 sec simulation for 2000 packets transmission 

 
Fig. 7. Alive nodes comparative plot of HGC-GRA-HGPSO with state-of-the-art algorithms for 1000 s 

simulation for 2000 packets transmission 

The packet delivery is calculated and the comparative plot is plotted in Fig. 8. 

The proposed HGC-GRA-HGPSO has all 100 nodes as the alive nodes after the  

1000 s simulation. However, the number of alive nodes calculated by the algorithms 

in [15] and [10] is less than the proposed HGC-GRA. If the HGC-GRA-HGPSO is 

compared to the second highest GWO-C [7], an improvement of 2.04% is achieved. 

The proposed scheme with MA has 4.16% higher alive nodes than without MA. This 

validates the purpose of introducing spectral clustering with GRA for data 

aggregation.  
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It is noticed that the work presented in [15] has the least residual energy and no 

alive node, although the packet delivery is highest in it, as in Fig. 8. The 25.3% more 

packets are delivered by the work in [15]. Since all nodes are dying in the process, so 

this cannot be a reliable solution. The proposed scheme has achieved 2.44% 

improvement than without MA and 0.30% higher packet delivery than the work in 

[7].  

Along with this network parameters evaluation, the routing path efficiency is 

also evaluated. The total distance covered by the MA should be minimized by the 

novel HGPSO. Fig. 9 shows the comparison of the total distance traveled by the MA. 

Fig. 9 indicates the total distance reduction comparison in each iteration. The HGPSO 

converges after 67 iterations at a lower value than PSO. An improvement of 3.67% 

in total distance traveled is achieved by the HGPSO than PSO. This concludes that 

the suggested routing algorithm collects the data from aggregating cluster heads with 

the least energy consumption. 

 
Fig. 8. Packet delivery comparative plot of HGC-GRA-HGPSO with state-of-the-art algorithms  

for 1000 s simulation for 2000 packets transmission 

 
Fig. 9. Routing distance comparison by the proposed HGPSO with the state-of-the-art schemes 

5. Conclusion 

This study provides a novel Wireless Sensor Network (WSNs) data aggregation 

model. Hypergraph-based clustering, grey relational analysis, and hypergraph 

particle swarm optimization are used. The results show that the model achieves 

energy savings and reliability in Wireless Sensor Network data aggregation. Cluster 



 177 

analysis uses the Calinski-Harabasz index to determine the optimal number of 

clusters to reduce latency and increase network lifetime. Residual energy and cluster 

node proximity determine cluster head selection. GRA is used for this selection. A 

Mobile Agent (MA) improves data collection optimization, while the HyperGraph 

Particle Swarm Optimization (HGPSO) technique addresses premature convergence 

in the PSO algorithm. Compared to the clustering technique that does not include 

agent mobility around the field, the HGC-GRA-HGPSO approach increased residual 

energy by 5.59% and packets by 2.44%. The HGC-GRA-HGPSO algorithm 

improves residual energy by 2.45% compared to the leading Grey Wolf Optimizer-

based Clustering (GWO-C) solution. This study will evaluate and optimize the model 

in large-scale Wireless Sensor Network (WSN) implementations. It also combines 

energy harvesting for sustainability and data security and privacy for confidentiality. 

The model’s robustness and efficiency can be improved by testing its usefulness in 

other network topologies, implementing it in real-world circumstances, and 

developing adaptive network dynamics methods. Integrating the model with IoT, 

cloud computing, machine learning, and energy-efficient communication protocols 

can improve its capabilities. Real-time data aggregation methods will also improve 

the model’s applicability to time-sensitive scenarios, promoting the development of 

data aggregation strategies for Wireless Sensor Networks (WSNs) and improving 

their dependability and energy efficiency across varied settings and applications. 
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