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Abstract: Throughout the years neural networks have been based on the perceptron 

model of the artificial neuron. Attempts to stray from it are few to none. The 

perceptron simply works and that has discouraged research around other neuron 

models. New discoveries highlight the importance of dendrites in the neuron, but the 

perceptron model does not include them. This brings us to the goal of the paper which 

is to present and test different models of artificial neurons that utilize dendrites to 

create an artificial neuron that better represents the biological neuron. The authors 

propose two models. One is made with the purpose of testing the idea of the dendritic 

neuron. The distinguishing feature of the second model is that it implements 

activation functions after its dendrites. Results from the second model suggest that it 

performs as well as or even better than the perceptron model. 

Keywords: Activation function, Neural network, Artificial intelligence, Dendritic 

neuron, Neuron model. 

1. Introduction 

The structure of artificial neural networks has the goal of mimicking the structure of 

the biological neural network. Recent discoveries in the space of neuroscience have 

highlighted the importance of dendrites in the structure of the neuron. For a review 

of existing hypotheses for the role of dendrites in the computational function of 

biological neurons see [1-3]. These discoveries have led the field in a new direction 

of implementing the dendrite into the structure of the artificial neuron. 

1.1. Artificial neural networks 

Researchers have always been interested in the unfathomable abilities of the brain to 

learn and interpret foreign information. This interest in turn falls onto the structure of 

the brain and the billions of neurons and connections between them. In recent years, 

researchers have begun to try and emulate these capabilities of the brain by creating 

an artificial version of it. The artificial versions are called artificial neural networks, 

https://mail.bg/#compose/Z21vbWNoZXZhQG1hdGguYmFzLmJn
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and they try to emulate the functionality of the brain by mimicking its structure. In 

recent years, the processing power of computers has tremendously increased, and so 

artificial intelligence has taken a great leap forward. 

1.2. Biological neuron 

The brain is a nervous system composed of cells called neurons and connections 

between them. Neuron cells transmit information, they communicate with other 

neuron cells, muscles, or gland cells. The human brain contains on average around 

100 billion neurons each of which is connected with up to 10000 other neurons. 

Estimates of the human brain’s memory capacity vary wildly from 1 to 1000 terabytes 

[4]. The primate brain is also more densely packed with neurons and the human brain 

is the biggest among primates [5]. Although the process by which the brain learns is 

not fully understood it is certain that these metrics play an important role, especially 

the number of neurons and their interconnectivity. 

The typical neuron contains a soma (a body that contains the cell nucleus and 

most of the organelles), dendrites (relatively short and thick protrusions that branch 

close to the soma and form input contacts with other neurons) and an axon (a thin 

long outgrowth that branches away from the soma. It forms the output connections 

of the neuron), as shown in Fig. 1. It is noteworthy that on average dendrites receive 

more than 90 percent of all synaptic input to the nerve cell [6]. The neurons possess 

the so-called excitable membrane: an uneven distribution and permeability of ions 

create an electrochemical gradient at rest. The inner membrane surface is negatively 

charged relative to the external. Changes in the ionic permeability cause voltage 

gradient fluctuations (hyperpolarization and depolarization) across the membrane. 

These phenomena are facilitated by the presence of special classes of ion channels 

with modifiable permeability in the membrane named gated ion channels. They 

resemble a protein pore in the membrane with a gating mechanism that is either open, 

allowing the passage of certain ion types (К+-channels, Na+-channels, Ca2+-channels), 

or closed. Depending on how the gate is controlled, we distinguish ligand-gated 

(controlled by a chemical signal), voltage-gated (open when there is a certain change 

in the transmembrane potential), and mechanically gated. The active electrical 

properties of the excitable membrane depend on the voltage-gated channels. The 

changes in permeability are countered by existing active transport mechanisms (ionic 

pumps) that redistribute the ions across the membrane against their electrochemical 

gradients. That is why most of the evoked changes in transmembrane potential are 

localized and attenuated rapidly along the membrane. When the depolarization 

however (the reduction of the voltage difference) crosses a certain threshold in 

sensitive areas of the neuronal surface (the axonal hillock at the base of the axon), a 

rapidly propagating spike of depolarization of the axon is initiated – Action Potential 

(AP). The AP travels along the axon and affects neighboring neurons via specialized 

contacts called synapses. The opposite voltage fluctuations (hyperpolarization, i.e., 

the voltage gets more negative) reduce the probability of generating an AP. The AP 

initiation is influenced by thousands of synapses residing on the neuronal surface 

(more than 90% in the dendrites) that evoke local voltage fluctuations in the 

postsynaptic membrane (in most cases via chemical signaling). The evoked 
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postsynaptic potentials are usually short-lived depolarization in the excitatory 

synapses (Excitatory PostSynaptic Potential – EPSP) or hyperpolarization in the 

inhibitory (Inhibitory PostSynaptic Potential – IPSP). Utilizing these mechanisms 

neurons transmit, integrate, process, and transfer information one to another.  

 
Fig. 1. A depiction of a neuron with labeled dendrites, soma, axon, and synapses 

1.3. Artificial neuron (perceptron) 

One of the first attempts to recreate the function of the biological neuron was the 

perceptron (McCulloch-Pitts neuron). It was first described theoretically by 

M c C u l l o c h  and P i t t s  [7] in 1943 and simulated for the first time by 

R o s e n b l a t t  [8] in 1957. Since its inception, the perceptron artificial neuron 

model or models following its paradigms have continued to be the most used artificial 

neuron models. These models have been the go-to artificial neuron models for years 

on end, but they lack one key aspect – they do not include dendrites into their 

structure. Attempts to create models that stray from the simple perceptron paradigms 

have been made, but they are few and from our experience, literature on the subject 

is scarce. One model differing from the standard perceptron paradigm that has 

garnered a lot of success is the convolutional model. It, however, has specific 

connectivity patterns that are not in the scope of our paper.  

 
Fig. 2. A representation of a single perceptron. Its input layer, weights, sum function and activation 

function are shown 

 

The perceptron is a single layer artificial neural network that mimics the 

biological neuron. It consists of four parts: input values, their weights (and biases), a 

net sum, and an activation function. The perceptron takes the input values, multiplies 

each of them with a weight and adds a bias. Then the results from these 

multiplications are summed, and the sum is then passed through an activation 

function. The perceptron and the inputs are connected via the weights that act as a 
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strength modifier of a particular connection. The structure of the perceptron is 

presented in Fig. 2: the input values and their weights comprise a basic representation 

of the biological dendrites, the net sum acts as the soma and the activation function 

as the output of the perceptron (axonal hillock and axon). The perceptron learns by 

fine-tuning its weights to produce a result closer to the one wanted. 

The perceptron on its own is not very powerful and can solve only linearly 

separable problems. A simple problem the perceptron cannot solve is the XOR 

problem [9]. Therefore, more sophisticated methods like the multi-layer perceptron 

networks are required. Multi-layer perceptron networks are composed of an input 

layer, hidden layers, and an output layer (Fig. 3). The input layer consists of 

perceptrons that take in the data that the neural network will process. The hidden 

layers are composed of many perceptrons connected to the previous layer. The output 

layer of perceptron also receives connections from the previous layer and its output 

is the result that the network produces. The multi-layer perceptron model can learn 

to solve harder problems such as the XOR problem, classification of information, 

speech recognition, image recognition, translation, and many others. For some of 

these more complex tasks the multi-layer networks include additional operations: 

pooling, flattening, dropout, but these operations are not in the scope of this paper. 

 
Fig. 3. Depiction of a multi-layered neural network 

1.4. Dendritic neuron  

Experimenting with different structures of the artificial neuron is one of the many 

possible ways to improve the existing models. One approach that is currently still 

being experimented on is the implementation of the dendritic neuron structure; 

however, reports in the specialized literature are still limited. The main idea behind 

it is the fact that the perceptron neural model does not consider the existence of the 

dendrites in a standalone manner in the biological neuron. As stated above dendrites 

receive more than 90 percent of the nerve cell input [6]. Additionally, the structure 

of the dendritic tree (number and length of dendrites, and branching pattern) is tightly 

related to the function of the neuron and pathological and functional changes are 

related to changes in the dendritic tree. These observations motivate us to believe that 

dendrites play a vital role in the learning process of the brain and should be more 

prominently included in the artificial neurons. Throughout the paper, the term 

“dendritic neuron” is used for the model of a neuron that implements dendrites. 

The dendritic neuron differs from the perceptron in that it incorporates dendrites 

into its structure. Each dendritic neuron has several dendrites. Every one of the inputs 

can be connected to none, one or many of the dendrites of the neuron. Each dendrite 

calculates a value based on the inputs connected to it. In most cases, the value is 
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computed by multiplying the inputs. All the values computed by the dendrites of the 

neuron are then summed and passed through an activation function. The output of the 

activation function is the result of the dendritic neuron (Fig. 4). 

 
Fig. 4. A representation of a dendritic neuron with 8 inputs and 3 dendrites and full connectivity to the 

input layer. The values from the inputs are multiplied in every dendrite. The values of the dendrites are 

then summed and passed through an activation function 

The dendritic neuron on its own cannot solve complex problems. It can be used 

to solve more complex tasks, in the same manner as the perceptron in multi-layer 

networks. It can also be used in conjunction with perceptrons in the same multi-layer 

network. Again, multi-layer networks with dendritic neurons can include layers 

different from dendritic neuron layers. 

2. Related work 

2.1. Biological aspects of dendritic computation 

In the 1940s-50s Hodgkin and Huxley demonstrated brilliantly that neurons are 

transmitting signals composed of modulated membrane ion permeability that 

manifests as AP. At this time, the nature of computation occurring inside the nervous 

system and its fundamental unit has not been understood. It was assumed that since 

the signal transfer from cell to cell occurs mostly on dendritic synapses, the dendrites 

serve to collect signals, which are then integrated linearly in the neuronal soma, to 

finally initiate (or not) a response in the axonal hillock in the form of AP. This view 

has been challenged by the pioneering work of Wilfrid Rall, who in 1959 showed that 

the dendrites' conductance follows the cable law, and passive currents are rapidly 

attenuated along the dendritic tree and its membrane also possesses active properties 

[6]. This sparked serious interest in the active and passive integrative properties of 

the dendrites. With recent advances in electrophysiology, cell biology, imaging, and 

computation, a lot of data on the biological, molecular, and biophysical properties of 

the dendrites have been gathered that support the hypothesis that the dendritic 

branches operate as computational subunits, capable of generating dendritic spikes, 

and at the same time may act as passive filters, attenuating or augmenting currents 

initiated by synapses (locally or stemming from more distant branches) [1]. A 
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detailed summary of the current knowledge about the properties and the physiology 

of the biological dendrites and the related hypotheses about the nature of biological 

dendritic computation may be found in [10] and [6]. 

The most important features of the dendritic tree may be summarized as follows: 

 The dendritic tree consists of converging segments that receive input from 

multiple synapses with diverse molecular makeup and modality (excitatory or 

inhibitory). 

 The structure and properties of the dendritic membrane differ from the 

somatic and axonal membrane. 

 The dendritic segments between two branching points have a relatively 

constant diameter that increases as the tree converges on the soma. 

 The propagation of the local passive or active currents between segments is 

modulated by synaptic activity as well as by back-propagating APs. 

 The tree architecture significantly influences the passive (filtering) and active 

(generation of dendritic spikes) properties of the dendritic segments. 

 The integration of the passive and/or active responses of the individual 

segments determines the effect of the entire subunit of the dendritic tree on the ability 

of the neuron to generate APs or change the frequency of AP generation. 

 Back propagating APs from the axonal hillock strengthen synapses with an 

activity that is phase-locked with the firing of the postsynaptic neuron and conversely 

weaken synapses that are out of phase. 

 The number and distribution of synapses, and their strength can be modified 

by internal cellular mechanisms. 

Based on the current understanding of the functional and structural properties of 

the biological dendrite, a novel view arises that the neuron may be treated as a 

multilayer network where linear integration occurs at the level of individual branches 

and the multiple branch response is a result of nonlinear activation at the nodes of 

conversion [1].  

2.2. Existing dendritic models 

In the field of the dendritic neuron model, one structure has garnered a great deal of 

attention. It is frequently used in research papers on the dendritic neuron [11, 12] and 

is seen under many names. It consists of four layers namely a synaptic, dendritic, 

membrane and somatic layer. In the next paragraphs, we go over the structure of this 

model. 

The synaptic layer receives inputs and sends signals to the dendritic layer. After 

a certain threshold is passed the synapse fires. To simulate this the following sigmoid 

function is used.  

(1)   𝑖,𝑚 =
1

1+𝑒−𝑘(𝑤𝑖𝑚𝑥𝑖−𝑞𝑖𝑚), 

where 𝑥𝑖 is the input and 𝑌𝑖,𝑚 is the output of the i-th synapse in the m-th branch of 

dendrites. The parameters k, 𝑤𝑖𝑚 and 𝑞𝑖𝑚 need to be tuned if we want the synapse to 

have an adaptive function [13]. A threshold is calculated for the synapse in the 

following way: 

(2)   𝜃𝑖𝑚 =
𝑞𝑖𝑚

𝑤𝑖𝑚
. 



 151 

After the activation of the synapse, it can adopt one of four states according to 

the ranges of 𝑤𝑖𝑚 and 𝑞𝑖𝑚.  

 Direct-connecting state – if the value of the input 𝑥𝑖𝑚 is greater than 𝜃𝑖𝑚, the 

value of the output approximately equals 1; otherwise, it equals 0. 

 Opposite-connecting state – if the value of the input 𝑥𝑖𝑚 is less than 𝜃𝑖𝑚, the 

value of the output approximately equals 1; otherwise, it equals 0. 

 Constant-1 state – the value of the output is always 1. 

 Constant-0 state – the value of the output is always 0. 

The outputs of the synaptic layer for each dendrite are multiplied and a value is 

computed. The dendritic layer is summarized by the following equation:  

(3)   𝑍𝑚 = ∏ 𝑌𝑖𝑚
𝐼
𝑖=1 . 

The membrane layer takes the outputs from the dendritic layer and linearly sums 

the values. The membrane layer can be summed up by the following equation: 

(4)   𝑉 = ∑ 𝑍𝑚
𝑀
𝑚=1 . 

The somatic layer receives the signal from the membrane layer. The signal is 

then passed through an activation function, 

(5)    =
1

1+𝑒−𝑘soma(𝑉−𝜃soma)
. 

The distinguishing features of this dendritic neuron model are the full 

connectivity between the inputs and dendrites, the added complexity of the adaptive 

synapse, the multiplication in the dendrites and the summation in the membrane layer. 

3. Proposed methodologies 

We propose two dendritic neuron models. Both models differ from the existing go to 

neuron structures. The first model serves as a stepping-stone showing the inherent 

capabilities of the dendritic neuron structure. The things distinguishing it from the 

existing models are that the connectivity between the dendrites and the inputs is very 

sparse and done in a controlled manner, and that adaptive synapses are not used. The 

second model is more complex and could see more applications. The things 

distinguishing it from the existing models are the implemented activation functions 

for every dendrite branch, and that adaptive synapses are not used. 

3.1. Undecorated dendritic neuron model 

The undecorated dendritic model is greatly inspired by the paradigm reviewed in the 

related work chapter. The purpose of our model, however, is to show the dendritic 

neuron model idea in its most basic form. There are no complications to this model, 

such as adaptive synapses. It is worth being noted that although models proposed in 

[11, 12], through the implemented pruning, may achieve a structure, at some point in 

their training process, similar to that of our proposed model. That, however, cannot 

be for certain; it is not controlled and was not the goal of the authors. What is certain 

is that our model will always have that structure, as it was hardcoded. The idea behind 

the model is to better compare the dendritic neuron idea to the existing perceptron. 

Making this comparison gives us the opportunity to figure out if the dendrites really 

play that big of a role in the structure of the neuron, without other complications. 
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The model works with four different types of trainable parameters of which two 

are weights and two are biases. A set of weights and biases is used as a connection 

between the inputs and the dendrites. For every neuron, a weight and bias are trained. 

All inputs for an undecorated dendritic neuron are multiplied by the weight and then 

the bias is added. After this, the computed values are multiplied in the dendrites. 

Every neuron also has a set of weights and a single bias for its dendrites. A single 

weight for every dendrite and a bias for the dendrites are trained; let us call these 

biases and weights dendritic. The computed values in the dendrites are multiplied by 

the dendritic weights and then the dendritic bias is added. After that, the values for 

all dendrites in a single neuron are summed and passed through an activation 

function. The trainable parameters per neuron are numDendrites+1 weights and two 

biases. By swapping a perceptron with an undecorated dendrite we use fewer 

trainable parameters as the number of trainable parameters per perceptron depends 

on the number of inputs, and in most cases, the used number of dendrites will be less 

than the number of inputs. The connections between inputs and dendrites in Fig. 5 

represent multiplication, not a trainable parameter. The training algorithm is 

backpropagation. 

Although inspired by the model in the related work chapter, our model differs 

greatly. The first difference between the models is that all input values coming into 

our dendritic layer can be connected to exactly one dendrite. That is, the layers are 

not fully connected; they are connected very lightly. By swapping a perceptron layer 

with an undecorated dendritic layer, we keep the number of connections the same and 

lower the number of trainable parameters. This is an important fact that shows that 

any differences in accuracy purely stem from the innate essence of the dendritic 

neuron and not a larger number of parameters. The inputs are spread out amongst the 

dendrites as equally as possible. All dendrites will have either ⌊
numInputs

numDendrites
⌋ or 

⌈
numInputs

numDendrites
⌉ inputs connected to them, as seen in Fig. 5. Another difference 

between both models is that our model does not search for extra complexity. No 

adaptive synapses are used. These differences between the models are made with the 

goal of creating a dendritic neuron model that is void of extra complexity. This is 

done to better compare the perceptron model with the true essence of the dendritic 

neuron. 

 
Fig. 5. A representation of the undecorated dendritic neuron with eight inputs and three dendrites  
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3.2. Multi-activation dendritic neuron model 

The crucial thing distinguishing this model from others is that in its structure, after 

every dendrite there is an activation function. These activation functions bring extra 

complexity to the model and act as a way to make the dendrites more influential. 

These activation functions can differ and are independent of each other. Another 

noteworthy thing is that the dendrites are fully connected to the layer preceding the 

multi-activation neuron. For a better understanding of the structure of the model see 

Fig. 6. 

 
Fig. 6. A representation of the multi-activation dendritic neuron model with eight inputs and three 

dendrites. Note that all of the activation functions can be the same, different, and some can be the 

same while others are different 

3.2.1. Structure of the dendrites 

All neurons from the layer before a multi-activation dendritic neuron layer are 

connected to every dendrite of every neuron in the multi-activation dendritic neuron 

layer. In other words, this layer is fully connected to the preceding layer. This 

connectivity provides us with many tunable parameters. 

The dendrites compute their value in the following manner. Every value from 

the previous layer is multiplied with a trainable weight. A sum of all of these 

multiplications is computed for every dendrite. This sum is then passed through an 

activation function. Different dendrites can have different activation functions. There 

is no limit on the number of activation functions but the number of dendrites with 

each activation function stays as close to equal as possible. 

3.2.2. Structure of the soma 

The soma of the model takes the computed values by the activation functions for each 

dendrite and sums them. This sum is then passed through another activation function. 

The computed value is the output of the neuron. 

4. Results 

As the models are very different in structure they are tested individually. This is done 

on well-known public datasets. Testing on some of the datasets is not done purely to 
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achieve accuracy, but on others it is oriented around delving deeper into the 

capabilities of the dendritic neuron and bringing them to light. 

4.1. Cross-validation 

The datasets used are the Fashion MNIST [14], Iris [15], Breast Cancer Wisconsin 

(Diagnostic) [16] and the CIFAR-10 [17] datasets. The premise of the paper is not to 

achieve the most optimized and well performing architecture on the datasets, but to 

test the proposed models against the perceptron model in a variety of neural network 

architectures. For each dataset we picked the customary data split and used it 

throughout testing. Details about the splits can be found in Table 1. 

Table 1. Ratios of the train to validation data split for the different datasets used 

Datasets Train to validation ratio 

Fashion MNIST 6:1 

CIFAR-10 5:1 

Iris 9:1 

Breast Cancer 4:1 

4.2. Results on the undecorated dendritic neuron model 

The proposed dendritic neuron model has been tested on the Fashion MNIST, 

CIFAR-10, and the Breast Cancer Wisconsin (Diagnostic) datasets. The data in the 

Breast Cancer Wisconsin (Diagnostic) dataset is closely tied to research based around 

mammogram images. Research on this topic can also be found [18]. Tests have been 

made on models where dendritic neuron layers are inserted into perceptron based 

neural networks, on models where perceptron layers are completely swapped out for 

the dendritic neuron layers, and on neural networks implementing other types of 

layers. The models chosen for the final ranking are the best performing ones in 

accuracy among the tested models. All models incorporating perceptrons were also 

been tested in the same structure but with some or all perceptron layers swapped out 

for dendritic neuron layers. Results on the Fashion MNIST dataset do not indicate an 

edge of neither the perceptron nor the dendritic model. Results from the CIFAR-10 

dataset indicate that the perceptron models perform better. This could be a byproduct 

of the fact that every input to the dendritic neuron connects to only one dendrite and 

with that, some learning capabilities could be lost. The best-performing architecture 

on the Breast Cancer Wisconsin (Diagnostic) dataset used no perceptron layers, only 

dendritic layers. The lead it has over other architectures on the dataset is non-

negligible and very promising for the field. It also achieves a loss two times smaller 

than the next best-performing architecture. The used loss function is sparse 

categorical cross-entropy. For the achieved results, see Table 2. 

Table 2. Results from testing the undecorated dendritic neuron model. CNN is a convolutional 

neural network, UD is the undecorated dendritic neuron, DNN is a deep neural network 

Dataset Architecture Accuracy 

Fashion MNIST 
CNN + UD 92.33 

CNN + perceptrons 92.22 

CIFAR-10 
CNN + perceptrons 74.62 

CNN + perceptrons + UD  73.22 

Breast Cancer Wisconsin 
UD 99.12 

Perceptrons 98.25 
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The architectures of the best performing models are shown in Figs. 7-12. The 

layers are described as follows: convolutional layers by the number of filters, kernel 

size, and activation function, pooling layers by kernel size, dropout layers by drop 

rate, dense perceptron layers by number of perceptrons and activation function, and 

undecorated dendritic layers by number of neurons, number of dendrites per neuron, 

and activation function. 

 
Fig. 7. Fashion MNIST CNN + UD architecture 

 

 
Fig. 8. Fashion CNN + perceptrons architecture 

 

Fig. 9. CIFAR-10 CNN + perceptrons architecture 
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Fig. 10. CIFAR-10 CNN + perceptrons + UD architecture 

 

 

Fig. 11. Breast Cancer Wisconsin UD architecture 

 

 

Fig. 12. Breast Cancer Wisconsin perceptrons architecture 

The models shown in Fig. 7 and Fig. 8 are different, but they are compared with 

each other. This is because they are the best performing ones from all that have been 

tested. The architecture shown in Fig. 7 has also been tested with perceptrons but it 

achieved a lower accuracy that did not make the list of best performing neural 

networks and in turn is not shown in Table. 2. 

These results give us more ground to believe the dendritic neuron model is 

inherently better than or at least as good as the perceptron neuron model. More testing 

is still needed, as the idea behind the model was to serve as a representation of the 

dendritic neuron structure in its simplest form as an effort to better compare it to the 

perceptron model. 
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4.3. Results on the multi-activation dendritic neuron model 

Testing has been done on the Iris, Fashion MNIST, and Breast Cancer Wisconsin 

(Diagnostic) datasets. As the testing of the undecorated dendritic model the 

architectures are made up of perceptron layers, multi-activation dendritic neuron 

layers and others. All architectures including perceptrons have also been tested in the 

same structure but with some or all perceptron layers swapped out for multi-

activation dendritic neuron layers. For the models utilizing a sigmoid activation 

function, the function sigmoid(𝑥) =
1

1+exp(−𝑥)
 is used. 

4.3.1. Hyperparameter tuning 

As the structure of this model is more complex and has tunable parameters, we need 

to find the most fitting values for them. The best-performing hyperparameters for the 

model have been established during training on the Fashion MNIST dataset. The 

hyperparameters tested for have been the number of dendrites, the number of 

activation functions, and the activation functions themselves. 

With the increasing number of dendrites per neuron, the accuracy of the model 

has increased, and the loss decreases. This is observed up until 10 dendrites per 

neuron, after this bound is crossed the trainable parameters become too many and the 

architecture begins to express randomized behavior that stabilizes too slowly for 

research purposes. 

The number of activation functions used in the field is quite small, but the best 

performance has been achieved using 2 or 3 activation functions. There is room for 

more experimentation as there are no bounds set for the number of activation 

functions or their kind in the model. 

Results indicate that models utilizing the softmax and sigmoid functions in the 

dendrites and the softmax function in the soma perform best overall. Good results 

have also been achieved on neurons utilizing only the ReLU function. 

4.3.2. Results on the Fashion MNIST dataset 

As seen in Table 3, results from the fashion MNIST dataset show a big lead for the 

models utilizing the multi-activation dendritic neurons. Networks utilizing 

convolutional neural network paradigms perform better overall, as expected. An 

interesting result is that the best-performing architecture has been achieved by 

swapping out all perceptrons for the proposed dendritic neurons. It has a slightly 

larger loss, but it achieves the best accuracy overall. Results from testing on networks 

that do not utilize convolution again show a lead for the architectures utilizing 

dendritic neurons. When utilized, the softmax functions Ha a dimension of 10 as that 

is the number of classes in the dataset. The loss function used was binary cross 

entropy. 

An interesting observation is that architectures that use multi-activation 

dendritic neurons that use the ReLU and the softmax or sigmoid function have a 

significantly higher loss but still achieve great accuracy. This could be explained by 

the fact that the value of the ReLU function can be a very large number and it can 
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shadow the value of the softmax and sigmoid functions, which in turn messes with 

the training process. 

Table 3. Best-performing architectures from testing on the Fashion MNIST dataset 

Structure 
Number of dendrites 

per neuron 

Used activation functions 

for dendrites 
Loss Accuracy 

CNN + dendritic 

neurons 
10 Softmax and sigmoid 0.0527 0.9173 

CNN + perceptrons - - 0.0224 0.9143 

DNN with only 

dendritic neurons 
10 Softmax and sigmoid 0.1133 0.9035 

DNN with only 

dendritic neurons 
10 ReLU 0.1230 0.9018 

DNN with only 

dendritic neurons 
4 ReLU 0.1276 0.8989 

The architectures of the models in Table 3 are shown in Figs 13-17. The same 

pattern for describing the layers is used. The difference is that undecorated dendritic 

layers are not used; the used dendritic layers here are multi-activation dendritic 

neuron layers or MaDN layers. They are described by the number of neurons, the 

number of dendrites per neuron, the activation functions for the dendrites, and on a 

new line the activation function of the neuron. 

 
Fig. 13. CNN + dendritic neurons architecture 

 

 

Fig. 14. CNN + perceptrons architecture 
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Fig. 15. DNN with only dendritic neurons,10 dendrites with softmax and Sigmoid activation 

architecture 

 

 
Fig. 16. DNN with only dendritic neurons, 10 dendrites with ReLU activation architecture 

 
Fig. 17. DNN with only dendritic neurons, 4 dendrites with ReLU activation architecture 

4.3.3. Results on the Iris dataset 

This dataset is very simple, so it is very easily fully learned by networks in turn 

experimenting on this dataset is used as a showcase that the multi-activation dendritic 

neuron model layer is not just a morphology of two perceptron layers. The simplest 

multi-activation dendritic neuron architecture that fully learns the dataset is a single 

layer with three neurons, each one having three dendrites with all activation functions 

set to sigmoid. In an effort to debunk our hypothesis that the multi-activation 

dendritic and two perceptron layers behave differently, we train an architecture 

composed only of perceptrons against the structure made up of three multi-activation 

dendrite neurons. It is a two-layer perceptron network where every layer is composed 

of three perceptrons. In testing this architecture does not always learn the dataset and 

in the cases in which it succeeds it does so slower. 
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These results reveal that there is a strong boundary between the multi-activation 

dendritic neuron model and a normal two-layer perceptron neuron network. The 

results also favor the model utilizing dendrites. 

4.3.4. Results on the Breast cancer Wisconsin (diagnostic) dataset 

As this dataset is also quite simple in structure, testing has been done again in a 

peculiar manner. The architectures tested were a perceptron based neural network 

with the following structure: one layer containing 20 perceptrons, a dropout layer, a 

perceptron layer containing 10 perceptrons and a layer containing one perceptron.  

The last layer utilizes the sigmoid function, and the other layers use the ReLU 

function. The other structure tested follow the same architecture with the difference 

that the perceptrons have been swapped out for multi-activation dendritic neurons. 

The neurons have two dendrites utilizing the ReLU function. Each architecture has 

been put through the training process five times. The results for each of the runs is 

the best results achieved throughout the learning process. Accuracy is prioritized and 

after that loss. The used loss function is binary cross-entropy. The results are seen in 

Table 4. and Table 5. 

Results indicate a clear lead of the architecture utilizing dendrites into its 

structure. The perceptron models achieve a better loss overall but their accuracy 

lacks. An interesting observation made during the training process is that after the 

perceptron model reaches its peak accuracy and the training process continues, the 

loss begins to steadily increase. This phenomenon is not observed in the architecture 

utilizing dendrites into its structure. 

Table 4. Results from testing on the Breast Cancer Wisconsin (diagnostic) dataset with a 

perceptron neural network 

Perceptron neural network 

Loss Accuracy 

0.2683 0.9825 

0.1550 0.9825 

0.0815 0.9825 

0.1282 0.9737 

0.1369 0.9649 

Table 5. Results from testing on the Breast Cancer Wisconsin (diagnostic) dataset with a 

multi-activation dendritic neural network 

Neural network utilizing dendrites 

Loss Accuracy 

0.2730 0.9825 

0.2634 0.9912 

0.2806 0.9825 

0.2671 0.9912 

0.2671 0.9825 
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4.4. Comparison with existing models 

A comparison between our proposed models, most importantly the multi-activation 

dendritic neuron model, and the ones proposed in [11, 12] cannot be made. The cited 

models have been tested only on existing datasets that are morphed into binary 

classification datasets. This has been done because the cited papers only explore 

single neurons. The step into a deep dendritic neural network has not been made and 

without it a direct comparison between the models cannot be made.  

5. Conclusion and future work 

Testing on all models provides extremely interesting results. These results seem to 

favor architectures using neurons utilizing dendrites. In other words, neurons 

utilizing dendrites perform better than the perceptron model that has been used for 

years on end. Results of the model in shown in the related work section show a lead 

for the dendritic neuron model. Results from the first presented model give us a base 

to conclude that artificial neurons utilizing dendrites have an inherent ability to learn 

data, which leads to them performing as well as or even better than the perceptron 

neuron model. This is important, as it could have been that the addition of the 

dendrites botched the learning capabilities of the neural networks. Results from the 

second presented model show that artificial neurons utilizing dendrites are not just 

some morphology of perceptron put under another name. The dendritic neurons once 

again outperform the perceptrons. Results also show that the architectures that use 

dendritic neurons learn information in a better manner than those that use 

perceptrons. 

The area of research of artificial neuron models different from the perceptron is 

still in very early stages and the branch of artificial neurons utilizing dendrites is in 

even earlier stages. Literature on the subject is scarce and in turn few experiments 

have been carried out by researchers. This paper dives in the field and produces very 

interesting and promising results but further testing and experimenting are still crucial 

both on the proposed models and into other models. 

The research team is working on different paths in searching for new 

architectures: dendritic computing, spiking computing, connectome and network 

analysis, and computational topology.  
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