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Abstract: Wireless networks have become essential in daily life, with a growing 

number of base stations and connected devices. However, increasing traffic and 

energy consumption pose challenges. This research proposes a Dual Step Hybrid 

Mechanism (DSHM) for energy optimization, incorporating MIMO technologies. 

The first step introduces an optimal algorithm that iteratively updates the probability 

distribution to achieve the best solution. The second step focuses on reducing energy 

consumption while maximizing energy efficiency, using specific techniques and 

strategies to minimize usage without compromising energy maximization. The 

proposed approach is evaluated using parameter settings, including block length, 

path loss, hardware impairments, and bandwidth. The research investigates the 

impact of hardware impairments on energy efficiency and analyzes performance 

under different SINR constraints. The study also examines energy efficiency in active 

user density and base station density, highlighting the superior energy efficiency 

achieved by MIMO configurations. 

Keywords: Wireless network, Energy efficiency, DSHM, QOS, SINR, Multimedia 

services. 

1. Introduction 

Significant growth has been witnessed in the development of wireless 

communication systems, particularly in the realm of fifth-Generation (5G) networks 

and beyond. These advancements aim to achieve higher data rates while maintaining 

sufficient Quality of Service (QoS), all while minimizing energy consumption. 

Although consuming less power to achieve high data rates may initially seem 

contradictory, it is indeed possible. One potential solution to achieve high data rates 
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is network densification. However, this approach faces challenges in terms of 

increased interference at bottlenecks, which subsequently leads to higher power 

consumption. Consequently, the key question that arises is how to increase data rates 

in the network while simultaneously achieving optimal energy efficiency. This 

question has been a focal point for both industries and academia. Unfortunately, the 

realization of energy-efficient wireless networks remains a challenge. The 

telecommunications sector is grappling with the dual objectives of reducing energy 

consumption and accommodating the growing demand for data transmission. In order 

to address this challenge, tailored, efficient, and flexible operations within the 

telecommunication network are required. This will enable industries, individuals, 

governments, and businesses to enhance their energy efficiency while simultaneously 

reducing overall energy consumption. Below are listed some key observations that 

have been highlighted as [2-5]. 

 Data usage is increasing rapidly, requiring more sophisticated networks to 

deliver high reliability, large volumes, and low latency. By 2030, connected devices 

will reach nearly 100 billion, with wireless networks supporting ten times more data 

than 4G networks in 2018. Addressing these growing demands is crucial for 

achieving energy consumption and efficiency targets. 

 Mobile Network Operators (MNOs) aim to reduce energy bills by 40% by 

2030 by meeting increasing traffic demands and reducing greenhouse gas emissions. 

The Third Generation Partnership Project (3GPP) aims to reduce energy consumption 

in 3GPP New Radio (NR) by 90% compared to LTE 3GPP. However, realizing these 

energy savings requires new specifications focusing on energy efficiency and 

individual network site performance. The deployment and operation of the network 

are crucial for achieving these gains. Intelligent network usage is essential to support 

wireless connectivity growth and reduce energy consumption per bit, requiring 

adaptations and optimizations at every network level to achieve a holistic effect. 

 Mobile Network Operators (MNOs) must adopt new approaches in network 

deployment, optimization, planning, and management to achieve efficient energy 

consumption and meet targets. Research shows that wireless networks could use 

140% more energy than 4G networks if energy efficiency is not prioritized. This is 

due to factors like higher density of antennas, base stations, user equipment, and 

cloud infrastructure. To address this issue, MNOs must implement energy-efficient 

practices and technologies across all network aspects, considering the deployment 

and density of network elements and optimizing energy consumption to minimize 

unnecessary usage. 

 To tackle energy consumption in wireless networks, MNOs must analyze and 

report on the most energy-consuming components, particularly the base station 

within the Radio Access Network (RAN). The RAN is projected to contribute to 

50.6% of the network’s energy consumption by 2025. To reduce energy consumption, 

MNOs must re-evaluate the existing network’s architectures and paradigms, which 

are considered unsustainable. Failure to do so will result in energy constraints with 

significant environmental and economic implications. By understanding energy 

consumption patterns, MNOs can develop strategies and implement technologies that 
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optimize energy usage, improve efficiency, and minimize the environmental impact 

of wireless networks. 

 Environmental Concerns: Wireless communication systems, driven by 

carbon-based energy sources, currently account for 5% of global carbon dioxide 

emissions [2, 3]. The rapid increase of connected devices is a result of the growing 

number of devices. 

 Economic concerns arise from the current network design, which aims to 

maximize capacity by scaling up transmit powers. However, increasing device count 

does not accommodate this approach, as higher energy usage increases 

communication capacity, leading to operational costs. Current wireless 

communication techniques are unable to provide the necessary increase in capacity 

by increasing transmit powers [9, 10]. 

 Moreover, considering the impact of energy efficiency, MIMO (Multiple 

Input, Multiple Output) has been one of the key technologies in increasing the speed 

of multimedia transmission, such as video or audio transmission, which requires 

special attention; hence, it is required to develop mechanisms to reduce the energy 

consumption [30-32]. 

1.1. Motivation and contribution 

To combat the energy crisis in wireless networks, a new approach is needed for 

operation and design. The primary focus is to increase capacity by 1000 times while 

maintaining power consumption. This requires increasing the efficiency of every 

energy joule used for information transmission by a factor of 1000 or higher. This 

research work presents an energy-efficient maximization scheme for multimedia 

transmission, optimizing energy allocation and utilization to ensure efficient and 

effective transmission of multimedia data. 

The proposed approach for energy efficiency maximization is called DSHM 

(Dual Step Hybrid Mechanism). DSHM is a two-step mechanism that integrates two 

distinct algorithms to maximize energy utilization in wireless networks. 

 In the first step, an extended algorithm is introduced that aims to generate a 

closed-form solution for optimality. This algorithm considers various constraints, 

such as computation of the lower and upper bounds, given average spectral 

efficiency, and optimal energy consumption. By obtaining a closed-form solution, it 

allows for efficient optimization of energy utilization in the network. 

 In the second step, another algorithm is introduced, which focuses on 

reducing energy consumption while still aiming for energy maximization. This 

algorithm further enhances the energy efficiency of the network by implementing 

specific techniques or strategies to minimize energy consumption without 

compromising on the desired energy maximization goal. 

 To evaluate the effectiveness of DSHM, simulations are performed. These 

simulations consider different constraints and scenarios, such as computing the lower 

bound and upper bound, achieving a given average spectral efficiency, optimizing 

energy consumption, and obtaining the optimality of the system. Through these 

simulations, the performance and efficiency of DSHM can be assessed and compared 

with other existing mechanisms or approaches. 
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Overall, DSHM offers a dual-step approach to maximize energy utilization in 

wireless networks, combining closed-form optimization and energy reduction 

techniques. By evaluating DSHM through simulations, its effectiveness in achieving 

energy efficiency and optimization can be analyzed. 

This particular research is organized in the following way; first section starts with 

the development and background of wireless networks and recent developments for 

multimedia transmission; the further importance of energy efficiency is broadly 

discussed with the motivation and contribution of this research work. The second 

section solely focuses on the different existing approaches developed for reducing 

energy consumption. The third section develops the DSHM for optimality generation 

with variables and reduction in energy with an algorithm and mathematical 

formulation. The Fourth section evaluates the DSHM with different constraints. 

2. Related work 

In [11], a scheme combining load-aware association and Maximum Energy 

Efficiency (MaxEE) is proposed. In [11, 12], a combined User Equipment (UE) 

association and power-based allocation scheme for heterogeneous tier networks is 

proposed. In [13] power allocation and UE association for large-scale wireless 

network scenarios is investigated. In [14], the UE association problem and resource 

allocation in energy-constrained HetNets are studied, along with a proposed 

algorithm for backhaul UE association. In [15], the focus is on downlink performance 

in access radio cloud networks and analysis is done of two coding schemes. A key 

distinction between the aforementioned works [11-14] and the proposed paper lies in 

the consideration of Coordinated MultiPoint (CoMP) scenarios, where UEs can 

access multiple base stations simultaneously. However, CoMP adoption increases 

system complexity. The effectiveness of CoMP technology for improving energy 

efficiency systems is highlighted in [16]. Studies [17-20] emphasize on Simultaneous 

Wireless Information and Power Transfer (SWIPT). [17] addresses EE and SWIPT 

problems in HetNet wireless networks. An energy concept pattern aided by SWIPT 

is proposed in [18]. In [19], the information and power transfer problem in SWIPT is 

investigated. [20] focuses on SWIPT relay problems in wireless networks for 

multiuser forwarding and channel decoding. It is worth noting that the studies 

mentioned above do not consider the recovery of electromagnetic energy from the 

environment at large-scale wireless network base stations using SWIPT technology. 

The proposed paper, however, investigates the deployment of recovery energy 

systems in large-scale wireless network base stations to take advantage of the massive 

number of antennas and reduce power consumption. Numerous research studies have 

also addressed resource allocation and energy efficiency [21-29]. In [22], an EE 

problem and a power-efficient Quality of Service (QoS)-driven allocation scheme are 

proposed for 5G networks. In [23] algorithms for hybrid network energy optimization 

in 5G networks are introduced. [24] analyzes overall performance based on chunk 

subcarrier allocation, considering average error rate constraints in the downlink of 

frequency division multiplexing for multiple users. In [21] a resource allocation 

scheme based on chunk allocation for maximum throughput with power transmission 
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constraints is proposed. [25] proposes a resource allocation scheme considering 

different packet types and their bit error rate requirements in a single data stream. In 

[26] the focus is on interference problems in Ultra-Dense Networks (UDNs) between 

macro cell UEs and femtocell UEs. Table 1 compares the characteristics of the 

existing approaches. 
 

Table 1. Comparison table of the characteristics of the existing approaches 

Refe-
rence 

Topology Initiation 
Control 

overhead 
Dependency 

Mainte-
nance 

Periodic 
control 

message 

Routing 
approach 

[11] 
Massive 
MIMO 
systems 

Joint power 
allocation and 

User association 
Optimization 

Mode-
rate 

Power 
allocation and 

User 
association 

Low Yes 
Optimization-

based 

[12] HetNets 

Backhaul-aware 
user association 

and resource 
allocation 

Low 
Backhaul and 

Resource 
allocation 

Low No 
Optimization-

based 

[13] 
MISO heteroge-
neous cellular 

networks 

Energy efficient 
beamforming 

Low Beamforming Low No 
Heuristic-

based 

[16] 

Two-tier 
heteroge- 

neous 
network 

Energy efficient 
joint user 

association and 
power allocation 

Low 

User 
association 
and Power 
allocation 

Low No 
Optimization-

based 

[17] 
Wirelessly 
powered 

communications 

Analog spatial 
cancellation 

Low 
Spatial 

cancellation 
Low No 

Heuristic-
based 

[19] 
Green 5G mobile 
wireless networks 

Statistical-QoS 
driven energy-

efficiency 
optimization 

Low 
QoS and 
Energy 

efficiency 
Low No 

Optimization-
based 

[20] 

5G radio 
frequency 

chain 
systems 

Energy 
efficiency 

optimization 
Low 

Radio 
frequency 

chain 
optimization 

Low No 
Optimization-

based 

[21] 
Millimeter 

wave cellular 
systems 

Channel 
estimation and 

hybrid precoding 
Low 

Channel 
estimation and 

precoding 
Low No 

Heuristic-
based 

[22] OFDMA systems Chunk allocation Low 
Chunk 

allocation 
Low No 

Heuristic-
based 

[23] OFDMA systems 
Joint chunk, 

power, and bit 
allocation 

Low 
Chunk, power, 

and bit 
allocation 

Low No 
Optimization-

based 

[24] OFDMA systems 

Radio resource 
allocation in 
high speed 

environments 

Low 
Resource 
allocation 

Low No 
Optimization-

based 

[25] 
mmWave 

massive MIMO 
systems 

Machine 
learning-inspired 
energy-efficient 
hybrid precoding 

Low 
Hybrid 

precoding 
Low No 

Machine 
learning-

based 

[26] 

MQAM/OFDM 
systems under 

fast fading 
channels 

Power and rate 
adaptation 

Low Adaptation Low No 
Heuristic-

based 
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The works reviewed propose a scheme combining load-aware association and 

Maximum Energy Efficiency (MaxEE), user equipment association, and power-

based allocation for heterogeneous tier networks. They also investigate power 

allocation and UE association in energy-constrained HetNets, downlink performance 

in access radio cloud networks, and the deployment of recovery energy systems in 

large-scale wireless networks. The existing work also addresses resource allocation 

and energy efficiency in 5G networks, focusing on interference problems in Ultra-

Dense Networks. But fails to take into consideration multiple QoS parameters while 

proposing the approaches. 

3. Proposed methodology 

This research work proposes a network energy optimization approach for multimedia 

networks, specifically focusing on a Base Station (BS) equipped with a large number 

of antennas to serve multiple users simultaneously. The paper addresses system 

modeling and network optimization aspects. It proposes models for wireless 

networks, wave channel systems, and energy-optimized networks. The efficiency of 

energy utilization is discussed in detail, and the paper presents a mathematical 

formulation for energy efficiency. The focus of this proposed work is on the Radio 

Frequency (RF) chains in 5G networks. In general, the RF chains in a 5G network 

comprise two separate frequency bands. 

3.1. Wireless network system model 

The base station equipped with this model has 𝑀 antennas and uses 𝐿 radio frequency 

chains in the 5G network. Considering the downlink of the wireless network, a single 

antenna 𝐽 is active along with the high-speed transfer of data, which is termed a data 

stream. The model has a total of 𝐽data streams at the base stations. The 

communication and maximum throughput of the system are achieved due to the 

constraints on the count of the radio frequency chain’s by the data stream ≤ radio 

frequency chains ≤ number of antennas [𝐽 ≤ 𝐿 ≤ 𝑀]. The transmission vector 𝑟 at 

the base station is concentrated on the network optimized 𝐴 of RF chains and the total 

data streams. The radio frequency optimizer 𝐸 is of radio frequency chain’s as well 

as the number of antennas. The network optimizer allows modification of phase and 

amplitude for the multimedia signal. The modification of only phase can be 

performed by the radio frequency optimizer. Assuming that every radio frequency 

optimizer 𝐸 has amplitude of one unit, the energy network optimizer 𝐴 has been 

designed for limited power transmission. Assuming the presence of a fading channel 

in a medium of the multi-media, the received signal at the J-th mobile station is given 

in the equation below, 

(1)  j j jx g EAr m  . 

Considering the above equation 𝑟 represents the transmission vector where 

 1 2, , ,
s

Jr r r r  which belongs to
1JB 
. Here the transmission vector contains 

every signal of all mobile stations. The single channel coefficient of the J-th mobile 

station is given by the equation below, 
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(2)  J Jg E . 

The signal that is produced at the J-th mobile station is given in the equation 

below, where the digital energy network optimization matrix is denoted Ja , 

(3)  
1

ˆ
J

J J J J J h h j

h

r a r a r m


   . 

From the above equation, the interference and the noise which is attenuated in 

the signal is added to the equation. From the above equation, 

(4)  Interference is given as 
1

J

J h h

h

a r


 , 

Noise is stated as jm . 

The efficiency is evaluated using the equation below, while assuming modulated 

formulation is Gaussian. In the equation below, Sin𝑄𝐽 is the interference signal to the 

ratio of noise of J-th mobile station, 

(5)   2

1

log 1 Sin


 
J

J

j

Q Q , 

(6)  Sin JQ is defined as 

1

Sin






J J J
J J

J h h jh

a r
Q

a r m
. 

3.2. Multi-media channel model 

The channel in the multimedia network obeys conventional fading, since the 

characteristics that are present in it with regard to various propagations are different 

when compared to channels of low frequency. A clustered model of the network 

channel illustrates the scattering feature that is limited in the channel. The network 

channel downlink that is normalized for the J-th mobile station is constructed as a 

summation of the paths for propagation that are scattered into clusters BM in which 

each of the clusters, is involved in the total paths that is denoted as OM . This is given 

in the equation below, where ,

j

b of is used to denoted the complex network channel 

gain of o-th path and the b-th cluster,  

(7)   
1

2

, ,

1 1

1 OB MM
J J

J b o AR b o

b oB O

g f z
M M


 

 
  
 

 . 

Considering Equation (7), for the given network channel the departure angle is 

denoted as ,

J

b o , the response array vector during transmission is denoted as 

( , )( )J

AR b oz  during which the dimension of elevation is ignored. The angle of 

departure has been distributed for a specific range for every cluster. Considering the 

base station and the mobile station array; ignoring the generality loss, a linear uniform 
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array is deployed for modelling. Consider an antenna array 𝑀, the response array 

vector is denoted as ( , )( )J

AR b oz  is given by the equation stated below, 

(8)     
     , ,2  sin 2 1  sin

1
2

,   1,  ,    , 



 

 
  

  

J J
b o b o

S
i c i M c

J

AR b oz N e e
   

 . 

The wavelength of the network is denoted as 𝜕 for a particular carrier frequency, 

whereas the distance between antennas that are adjacent is denoted as 𝑐. Considering 

the half wavelength of an antenna, the response array vector can be obtained using 

Equation (8). This equation can also be applied to antennas of various wavelength 

patterns. The methodology proposed can be applied directly to random antenna 

arrays.  

3.3. Network energy optimizer 

The energy network discussed in this study is fully connected to every antenna 

through radio frequency adders as well as shifters of variable degree, which is done 

for performance improvement and unconstrained maximization. There are 

constrains that are present in the network optimizer where every element has a shift 

applied to it which is given as 

(9)  
    2 2 1 /2,  2 /2 1,  , , 


 

A A
A io p ie e

 . 

In the above equation 
 , o p

  is at the o-th and p-th entry of E . Most of the 

algorithms that are considered in these studies pertaining to network optimization 

breakdown the problem into an analog and digital approach. The maximization of the 

sum rate of channels that is predefined is used for the selection of an analog network 

optimizer E , considering that the work proposed focuses on multimedia 

communication. The digital network optimizer 𝐴 is used to omit any interference that 

occurs among the radio frequency chains. This complexity is reduced by changing 

this fully connected network structure into a semi-connected network structure in 

which the chains of radio frequency are linked to only a degree P which varies 

wherein 
M

P
L

. The radio frequency of the optimized network format is written in 

the following equation, as shown below: 

(10)  

10 0

0

 
 


 
  l

e

E

e

. 

In that equation 𝑒𝑙 is used to indicate the analog optimization vector of the l-th radio 

frequency chain, which has a size of 𝑃 × 1 and every element that is not zero should 

be in the 8-th set. The above stated equations and their complexity can be further 

simplified by replacing the phase shifters with radio frequency switches and a single 

inverter. This, however, fails to perform due to the on-off nature of the connection. 

The optimization performed on the network is a crucial methodology that results in 
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maximum energy efficiency. The energy optimization matrix combined with the 

problems relating to optimization are non-coherent. The optimization matrix is not 

possible to trace even by using exhaust searching, whereas the restrictions that are 

imposed on the optimizer have been managed. Considering completely digital 

wireless network systems, it requires massive effort to obtain energy efficiency using 

a local optimizer.  

3.4. Network energy optimizer for energy efficiency 

Consider the proposed work consists of a large count of antennas, an appropriate 

design of network energy optimizer has an array gain. There are two constraints that 

have to be met simultaneously – firstly, the channel that is equivalent has to be 

maintained well for efficient transmission of the data streams. Secondly, the radio 

frequency chain that are not useful are closed along with the antennas. Due to this 

efficiency, the energy is made as large as possible. The modelling of the design and 

mathematical formulation of the network energy optimizer is performed. The 

proposed algorithm framework, along with the generation of radio frequency chains, 

and the selection algorithm of the radio frequency chains is evaluated in this section. 

Consider the power consumed by the network to be denoted as 𝑂 and the sum 

rate to be denoted as 𝑄, then the efficiency of energy is given by the equation stated 

below, 

(11)   
 

 

,
,

,

Q E A
D E A

O E A
. 

In that equation 𝑄 which is the sum rate is given in Hz per 1 bit per 1 s and the 

consumed power 𝑂 is in watt. The power consumption that is stated in this proposed 

work is given in the equation stated below, 

(12)  AA R QEB R CZB AR OZ AR OR    O O M O M O M O M O , 

where: ARM  as well as RM is the number of the antennas that are active and radio 

frequency chains, respectively: OZ OR QEB,  ,O O O  and CZBO  are the power of the 

amplifiers OR, QE  and CZB,  respectively. Power of the signal that is digital 

during processing is denoted as AAO . The value of each of the powers consumed in 

the above equation is as given,  

AA CZB QEB OR OZ4,  200 mW,  30 mW,  30 mW,  20 mW.    O O O O O  

The difference in a fully connected network that requires more power can be 

easily noticed in the above equation which shows the power consumed by AAO is 

lesser which is a semi-connected network structure and also the radio frequency 

adders is excluded.  

3.4.1. Analog energy network optimization 

The efficiency of the energy consumed is optimized by turning off the unnecessary 

antennas of the base station. This results is a small portion of the total energy 

efficiency. Here, the effective selection of the antennas that have to be shut down is 
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important. The antenna selection process is performed by adding an extra state termed 

as 0 indicating that the particular antenna is off, and the antennas that do not a have 

0 values determine the phase of the antenna that is active. The rate of information for 

the network is high when the number of active antennas increases, but the power used 

by these active antennas is also high. The value calculated for 𝐸 is as given in the 

equation below: 

(13)  
 

 2 2 12

, 2 2 belongs to  0,1, , , 

 
 

 
 
 

A

A A

ii

o p
E e e



. 

We consider a semi-connected network structure in this proposed work, to show 

the energy efficiency that is produced through network optimization with 𝐸 and 𝐴. 

(14)     
 

 
21

, ,

log 1
,  max   ,  max

,




 


J

JJ
E A E AE A D E A

O E A


. 

We consider, is the possibility of the analog network optimizers of a matrix 

satisfying Equations (10) and (13, and for the above Equation (14). 

(15)  
2

E
EA J , 

where E . 

The equivalent of the network baseband channel is as given in the next equation:  

(16)  equivalent 1[ ... ] S S S

JG g g E . 

SINQ is the interference signal to the ratio of noise of J-th mobile station user 

J is as calculated below, 

(17)  

2

2
2

 





 

S
J J

E
J

S
J J Jh J E

g Ea

g Ea

 . 

Considering the above Equation (17), Ja is the J-th column in the digital network 

optimizer 𝐴 where the hybrid optimization is to model 𝐸 under the given constrains. 

An exhaust search is used in this process where there are 𝑀 non zero elements present 

in 𝐸 in which every element has 2 1A
 values hence stating that that there are 

 2 1
M

A
 possibilities. While considering wireless network systems, the 

configuration of these systems is potentially large; therefore, maintaining the 

restrictions that are dependent on the radio frequency optimizer is questionable. 

Hence, the proposed work focuses on optimization by producing a minimum cost 

function and generating tests that reach the near optimum. This is performed as 

follows. 

Step 1. Initialization of the equal optimized matrix 𝑂1. If the possibility of the 

k-th phase of the m-th element which is not of zero value in 𝐸 in which  

1 is lesser than or equal to 𝑘 lesser than or equal to 2 1,A
 and 

1 is lesser than or equal to 𝑚 lesser than or equal to 𝑀. 
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Step 2. Consider power consumed of 𝑂𝑙, in which the iteration is represented as 

𝑙 and in 𝐸𝑅 the random generation is denoted by 𝑅 for every individual 𝐸 to which 

𝐴𝑅 which is corresponding, in which 

1 lesser than or equal to 𝑟 lesser than or equal to 𝑅. 
Step 3. Evaluating the efficiency of energy 𝐷𝑅 using Equation (11) in the order

1 2 }, ,{ , RD D D . In this case a target is picked as the selected batch. 

Step 4. The probability distribution of the network for the energy efficiency is  

(18)   
2 1

, , ,

1 1 1

ln


  

 
AS M

l l l
s s m k m k

s m k

O v o . 

In that equation, the indicator for the binary activity is indicated by , ,

l

s m k . The 

selected batch weight is given by the next equation:  

(19)  

1

weight







s S

s S

s Ss

Q Q

Q Q
. 

Step 5. The matrix of probability is improvised as follows 

(20)  
1  min ( )  l

l l

O
O O . 

This can be further simplified as follows: Minimum [ℙ(𝑂𝑙)] is  

(21)  

2 1

,

1

1





A

l

m k

k

O  in which 1, , m M . 

To further simplify the above equation, we use multipliers m  where 

1, , m M  the function pertaining to the optimization of the power is given as  

(22)   
2 1 2 1

1 , , , ,

1 1 1 1 1

, , ,  weight ln 1
 

    

 
     

 
   

A AS M M
l l l

m s s m k m k q m k

s m k q k

O o o   l . 

After solving the above equation, we obtain 

(23)   1, , ,  0 l

mO  l ,  

1,  1, 2 1 1      AM q M m k . 

The final result after computation of the following equations is  

(24)  
, ,1 1

, 2 1

, ,1 1

weight

weight

 



 




 
A

S l
s d m kl s

m k S l
s d m ks k

O




 

in which 1, 2 1 1    AM m k . 

Step 6. Consider 1l l  after which the loop has to be restarted from the 

second step until the weight of the selected batch is equal to 0 or it has reached the 

maximum iterations. Therefore, we obtain the output output output and  E A  having the 

highest 
outputD . The algorithm that is proposed has the weight of the selected batch 

weight𝑠 creates an unfairness for every selection which provides a criterion that has 

a simple ending as in Step 6. 
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Algorithm 1. Proposed Hybrid Energy Network Optimization Algorithm 

Input: 
2,G   

Output: E, A  and D 

Step 1. Loop 

Step 2. for r where 1,...,r R  

Step 3.         
RE is generated according to

l
 

Step 4.         
RA is evaluated by using Equation (27) 

Step 5.         
RD is evaluated using Equation (11) 

Step 6.  end for 

Step 7.  for s where 1,...,s S  

Step 8.           Evaluate weight𝑠 using Equation (19) 

Step 9.   end for 

Step 10. Check merging 

Step 11. for m where 1, ,  m M   

Step 12.       for k where 1,..., 2 1 Ak  

Step 13.          Updating of 
1,l

mO  using Equation (24) 

Step 14. end for 

Step 15.  end for 

Step 16.           1l l   

Step 17.   end Loop 

Step 18.   return the output output output output,   and E A D  

3.4.2. Selection of radio frequency chain 

In this section, we evaluate the selection of the radio frequency chain which we 

obtain from the Equation (16) by calculating equivalentG . 

Algorithm 2. Proposed Selection of Radio Frequency Chain Algorithm 

Input: equivalentG  

Output: A 

Step 1. Initialization of equivalent , ,  h i j MG G H , 

Step 2. Decompose: G PQ where   JQ Q B  

Step 3. while ℎ, 𝑖 where in 
,

1 JB 1 
h i

Q  

Step 4.         Updating: equivalent ,  h i jG  

Step 5.         Decompose: G PQ where  JQ Q B  

Step 6. end while 

Step 7.          evaluate A using Equation (27) 

Step 8. return A 
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For selection of the radio frequency chain, we calculate the matrix for 

permutation as follows 

(25)   equivalent 1 2G G G . 

Considering Equation (25), 𝐺1 has 𝐿 columns that are independent which 

implies to condition one of equivalentG . 𝐺1has a best combination with 𝐺2 such that

1 2G G  is very small which implies to condition 2. Therefore, the conclusion that 

is obtained to performing permutation of the matrix is as follows. Where ,h iQ Q , 

using which, the determinant ratio is as given. 

(26)  
 
 

,

derterminant 

determinant


J h i

Q B

QQ
. 

In the above Equation (26), only the h-th and i-th column of the Equation (26) 

holds a greater threshold. In the proposed work, increase in the determinant causes 

an increase in the magnitude; therefore, the final optimization calculation is as shown 

below 

(27)  
     

  

1/2 1
1 1 1

2
1

1 1 1

( )

( )

 




G G

GG

E

J G G G
A

E G G G

. 

The optimization selection of the radio frequency chains is explained in detail 

in Algorithm 2.  

4. Performance evaluation 

Energy efficiency is the amount of energy used to achieve a task, particularly in 

wireless communication. Defined as the number of bits reliably transmitted per unit 

of energy consumed, energy efficiency is crucial for optimizing resource utilization, 

reducing energy consumption, and enhancing network performance. However, 

achieving high energy efficiency in wireless networks presents significant challenges 

due to their complexity and variability. To maximize energy efficiency and improve 

user experience, it is essential to consider the unique characteristics and demands of 

wireless communication systems when developing energy-efficient mechanisms and 

strategies. 

4.1. Parameter settings 

The DSHM (Dual Step Hybrid Mechanism) is evaluated for energy efficiency 

maximization by adjusting parameter settings. The evaluation includes the following 

parameter values: Block Length of 400, path loss of 3.76, and varying levels of 

hardware impairments with a bandwidth of 20 MHz and more details are listed in 

Table 2. These settings are utilized to assess the performance and energy efficiency 

achieved by the DSHM mechanism. 
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Table 2. Simulation parameters 

Parameters Values 
Simulator Matlab 
Simulation time  300 s 
Node movement Random Direction 
Pausetime 0/50/ 150 ms 
Traffic UDP 
Packet size 512 KB 
Transmission rate 4/s 
Mobility speed 20/50 ms 

4.2. Computation of lower bound and upper bound 

A lower bound on a problem represents a big Omega bound on the worst-case running 

time of any algorithm that solves the problem. For example, it is known that any 

comparison-based sorting routine takes Ω (nlogn) time. Fig. 1 illustrates the energy 

efficiency as a function of base density, considering other optimized variables, and 

with three different Signal-to-Interference-plus Noise Ratio (SINR) values: 1, 3, and 

7. The figure provides a visual representation of how energy efficiency varies with 

different base densities and SINR values. An upper bound for a function f is a number 

U so that: for all x, we have f(x) ≤ U.  

 
Fig. 1. Lower bound energy efficiency 

 
Fig. 2. Upper bound energy efficiency 

Fig. 2 shows the upper bound with three different SINR values. Through Figs 1 

and 2, it is observed that there is only a slight difference between the upper and lower 

bounds and curves seem to behave in a similar way, which validates the optimality.  

4.3. Optimal energy consumption 

Fig. 3 shows the optimal energy efficiency with a 3D diagram; moreover, the aim is 

to project the global optimum. In order to evaluate, the initialization point is set and 
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it is observed that for certain Base stations and user equipment’s, optimality is 

observed. 

 
Fig. 3. Energy efficiency 

4.4. Hardware impairments 

Additionally, when considering hardware impairments as constraints, we evaluate the 

DSHM mechanism with three SINR constraints. It is noted that hardware 

impairments have a marginal impact on energy efficiency. The evaluation reveals that 

as the SINR constraints increase, the energy efficiency performance of the DSHM 

mechanism decreases. This observation suggests that higher SINR constraints result 

in lower energy efficiency in the system. 

 
Fig. 4. Energy efficiency over hardware impairments 

4.5. Energy efficient v/s active users 

Fig. 5 illustrates the energy efficiency of active user density at a SINR level of 3. It 

also depicts energy efficiency as a function of user equipment density.  

 
Fig. 5. Energy Efficiency over user equipment density 
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The figure includes two reference curves: the green curve represents the energy 

efficiency of a single-user system with a single input and multiple outputs, while the 

blue curve represents the energy efficiency of a multiple-input and multiple-output 

system. Both of these curves are considered optimal references in the analysis. 
 

 
Fig. 6. Performance evaluation by number of nodes v/s reliability 

 
Fig. 7. Performance evaluation of mobility speed v/s throughput 

4.6. Discussions 

Wireless networks are one step towards achieving high energy utilization in wireless 

networks, which can be attained through deploying either a large number of base 

stations or base station antennas. In order to obtain the optimal configuration, the 

DSHM is proposed. Through the dual-step mechanism, an average lower bound on 

spectral efficiency is made tractable, and energy efficiency is maximized with respect 

to base station density and transmission capability. Moreover, optimality is achieved 

by considering optimal variables, hardware characteristics, and the respective 

environment through performance evaluation. The following observations can be 

made: 

 Energy efficiency can be maximized by increasing base station density. As 

the density of base stations increases, energy resources are utilized more efficiently, 

resulting in improved energy efficiency in the network. 

 Energy efficiency decreases with an increase in the Signal-to-Interference-

plus-Noise Ratio (SINR) constraint. When the SINR constraint becomes more 

stringent, more energy is required to achieve the desired level of performance, leading 

to decreased energy efficiency. 
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 From Figs 4 and 5, it is observed that energy efficiency becomes independent 

when the density is large. In Fig. 6, it is observed that a single user requires nearly 

ten times higher base station density, which reduces energy efficiency. 

 From Figs 6 and 7, it is observed that the proposed DSHM gives better 

performance than SIMO in terms of reliability and throughput. 

By considering these observations and optimizing various factors, the proposed 

DSHM aims to achieve optimal energy efficiency in wireless networks. 

5. Conclusions 

Wireless networks have undergone rapid evolution in the past decade due to the high 

demand for multimedia services, such as video and audio transmission. Energy 

efficiency has become a crucial performance indicator for both present and future 

wireless networks, but it remains a challenging phenomenon to achieve. This research 

work focuses on designing and developing the Dual Step Hybrid Mechanism 

(DSHM) for energy-efficient maximization. The performance analysis conducted in 

this study demonstrates that decreasing cell size can lead to higher energy efficiency. 

Additionally, the addition of base stations increases the number of equipment per cell. 

While this paper aims to achieve a balance between energy efficiency and spectral 

efficiency, it also considers economic factors and deployment costs. Although this 

research work presents an algorithm to achieve energy-efficient maximization, it is 

important to acknowledge that there are numerous constraints that need to be 

considered based on the specific services being provided. These constraints should 

be taken into account in order to optimize energy efficiency effectively. 
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