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Abstract: In parallel and distributed computing, cloud computing is progressively 

replacing the traditional computing paradigm. The cloud is made up of a set of 

virtualized resources in a data center that can be configured according to users’ 

needs. In other words, cloud computing faces the problem of a huge number of users 

requesting unlimited jobs for execution on a limited number of resources, which 

increases energy consumption and the network cost of the system. This study provides 

a complete analysis of classic scheduling techniques specifically for handling data-

intensive workloads to see the effectiveness of the energy and network costs of the 

system. The workload is selected from a real-world data center. Moreover, this study 

offers the pros and cons of several classical heuristics-based job scheduling 

techniques that take into account the time and cost of transferring data from multiple 

sources. This study is useful for selecting appropriate scheduling techniques for 

appropriate environments.  

Keywords: network-intensive, energy cost, data center, workload, cloud computing. 

1. Introduction 

Cloud computing is a framework that controls a huge number of data, and records to 

contribute to the intensive service. Mainly, the cloud environment is operated on a 

data center which is a network consisting of a huge number of physical machines 

whether they are heterogeneous or homogenous. In a data center, the system owner 

has the primary goal to reduce the overall system cost such as energy consumption 

of the system. Furthermore, in this platform physical machines are virtualized. These 

virtualized machines are combined with network virtualization. So, users can access 

many Virtual Machines (VM) [1]. Today, cloud computing has extended its service 

to data-intensive, computing-intensive, and network-intensive on distributed 

platforms, such as, Hadoop Distributed File System (HDFS) and Map-Reduce (MR) 

paradigm. Cloud computing is an independent system to control the big load of an 
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application data, which may be data-intensive or computing-intensive as well as 

network-intensive applications through the proceeding of scheduling. These intensive 

functions can also be expanded by customer demands [2]. Network-intensive 

application is used to display a large and increasing number of functions in cloud 

framework. The functions are intermittently subjected to bottlenecks in 

communication speed and relationship among machines on which they are displayed. 

Network-intensive has the idea of executing numerous categories of services (i.e., 

LAN, SAN, or IPC) on an exclusive Ethernet-based network. Ethernet is low-cost 

accessible, and comparatively easy to use [3].  

In the current age, large investments have been made in enormous data centers 

supporting cloud services, by companies [5] such as Facebook, eBay, Microsoft, 

Yahoo!, and Google. Further, [5] considers different components to quantify data 

center housing costs, e.g., infrastructures (Power, Distribution, and cooling), servers 

(CPU, memory, storage systems), network links, transit, equipment, and Power draw 

(Electrical utility costs). In recent years, networks in cloud computing have also been 

a source of study for the marketplace [6]. The core design concern for data center 

operators is network infrastructure. It represents a significant portion of the initial 

investment and does not directly contribute to future earnings. Therefore, a key driver 

for maximizing data center profits by reducing network infrastructure costs.  

Cloud computing is a recently popular and helpful field in distributed 

computing. It helps in scheduling users’ requests, i.e., jobs in a good way. The 

scheduler is required to manage equivalence between Quality of Services (QoS) and 

jobs in order to achieve high performance of a system [4]. Scheduling is a highest 

problem in cloud computing because cloud server has to facilitate more than one 

customer in cloud computing system and provide a service for the system owner to 

achieve the goal of energy efficiency. The major concept of scheduling is to increase 

system needs and decrease alter time of tasks. Most of the existing job scheduling 

techniques do not meet the required standards and requirements. Therefore, an 

efficient scheduling technique has become an important problem to be solved in cloud 

computing. So, this study provides a complete analysis of classic scheduling 

techniques, specifically for handling data-intensive workloads to see the 

effectiveness of energy and network cost of the system. The workload is selected 

from a real-world data center. Moreover, this study provides advantages and 

disadvantages of several classical heuristics-based job-scheduling techniques that 

consider the time and cost of data transfer from multiple sources, as this study is 

useful for selecting appropriate scheduling techniques for an appropriate 

environment. For the evaluation of scheduling strategies, we consider the following 

performance metrics, (a) network cost in cluster (NCC), (b) Network Cost in Racks 

(NCR), (c) Overall energy consumption (mJoul), (d) Overall running times, (e) 

Cluster-based Running Time (RTC) and (f) cluster-based energy consumption 

(mJoul) 

In the organization of this paper, Section 2 shows a literature review; Section 3 

explains the data center information; Section 4 shows research methodology, and 

Section 5 explains the results and discussion. 
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2. Literature review  

Cloud data centers have geographically end-users and are distributed across the globe 

in a large-scale cloud computing infrastructure. The main difficulty for cloud data 

centers is how to efficiently and correctly process service in the millions of requests 

that come in from end-users on a regular basis, these apps and services are accessible 

via the internet. The related research is reviewed and depicted in Table I.  

Table 1. Summary of state-of-the-art of Scheduling techniques extracted from literature 

Sr. 

No 

Literature Review 

Research Applications Research Techniques References 

1 
Scientific Application, Workloads: 

CIWs, DIWs 

Improved Particle Swarm 

Optimization 
[10] 

2 
Scientific Application, 

Workloads: CIWs 
Resource allocation, load balancing [11] 

3 
Scientific Application, Workloads: 

CIWs 

Classical-Job Scheduling-(FCFS, SJF, 

LJF) 
[8] 

4 
Scientific Application, 

Workloads: CIWs 

Linear Programming, Combinatorial 

and Stochastic 
[12] 

5 
Scientific Application, 

Workloads: CIWs, DIWs 

Resource Scheduling Algorithm 

(RSAs) 
[13] 

6 
Scientific Application, 

Workloads: CIWs 

Classical-Job Scheduling- 

(FCFS, SJF-FF, LJF-FF,MinET-

FF,MaxET-FF) 

[8] [9] 

7 
Scientific Application, 

Workloads: CIWs, DIWs 
Goal Programming, Game Theory [14] 

8 
Scientific Application, 

Workloads: CIWs 
Thermal Power Technique [15] 

 

The author in [7] focuses on the characterization of datacenter workload for 

optimization. The same study determined the overall data center load efficiency and 

energy efficiency. DVFS and DPM techniques have been used for energy efficiency. 

Simple statistic methods are used to characterize the workload. However, the 

behavior of jobs and physical machines i.e., nodes have been investigated before and 

after the scheduling process [8]. Moreover, the same research study discovers 

distinctive features in the workload as a result of the characterization as follows:  

(i) the majority of jobs require a single CPU for execution; (ii) the leftover jobs exact 

an even number of CPUs for execution; (iii) half of all jobs run for less than an hour; 

(iv) half run for more than an hour. 

In the same study, authors [8] present the issues scheduling of Virtual Machine 

(VM) in an Infrastructure as a Service (IaaS) cloud environment to decrease operating 

cost and to focus on the system meets the Quality of Service (QoS) factors. The 

research studied traditional scheduling schemes combined with power management 

technology namely DVFS, i.e., dynamic voltage and frequency scaling. To explore 

the environment a strategy based on the FCFS two policies based on Scale namely 

Minimum Work First (SMJF) and SHortest Job First (SHJF) and spot replacement 

AGgressive BackFill priority (AGBF) strategy have been considered. The study has 

identified the advantages and disadvantages of the investigated scheduling strategies 

for virtual machines and provided suggestions to choose the solution that best suits 
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the environment. Moreover, researchers have used a real-world HPC workload 

collected from a production data center to run simulations.  

Studies [9, 24] provide a comparison of job scheduling in large-scale parallel 

systems as follows: (i) reduce queue time, response time, and energy consumption; 

(ii) maximize the overall use of the system. Additionally, the study examines the 

behavior of thirteen different work scheduling policies, i.e., priority-based first-fit 

backfilling and window-based policies. All of the policies have been extensively 

simulated and their performance metrics used in comparisons. For the simulation, an 

actual data center workload consisting of 22,385 jobs has been employed in the 

experiment depending on their performances. In addition, this paper also gives a 

detailed workload characterization to optimize system performance and the design of 

the scheduler. The most important aspects of the workload is (a) wide (b) narrow  

(c) long and (d) short jobs are characterized by in-depth investigation of the situation 

performance of the scheduler. This research focuses on the advantages considering 

the benefits and drawbacks of various job scheduling policies in order to select a 

suitable employment scheduling policy in a given situation scenario.  

The data-intensive applications involving the analysis of large data sets are 

becoming increasingly important as many fields of science and business face 

thousands of data growth. The explosive growth of data is mainly due to the internet, 

smart cities, and social networks. Terabytes to petabytes of data are stored in data-

intensive systems. In order to conduct sophisticated queries and deliver fast results 

such systems demand a lot of storage as well as a lot of computing power. 

Furthermore, the velocity at which this data is generated creates significant storage 

connecting and processing issues. Users take benefit from the abstraction of high 

availability, usability, and efficiency provided by a data-intensive cloud. 

On the other hand, data-intensive workloads impose essentially no burden on 

the computer servers but necessitate large data transfer. Data-intensive workloads are 

designed to represent applications such as video file sharing in which a simple user 

request transforms into a video streaming process. As a result, the data center 

interconnection network rather than processing capability becomes a bottleneck for 

data-intensive workloads. For any working environment, the primary task is 

scheduling and its actions are ordered by the processor. As there is no way to properly 

designate resources to ensure maximum skills in a strict and practical way and since, 

cloud services require a high level of control and resource management, effective 

scheduling is important for managing jobs and tasks scale and because the 

management system executes an essential role. Scheduling is used in cloud 

computing in order to achieve high performance and optimal system throughput. The 

speed, efficiency, and optimal use of resources are largely determined by the type of 

schedule selected for the cloud computing environments. The various scheduling 

criteria are maximum CPU usage and minimum throughput [22, 23]. 

3. Datacentre and research methodology  

Cloud data centers are highly multiplexed shared environments that allow several 

tenant’s VMs and processes to co-exist in the same cluster to achieve cost efficiencies 
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in on-demand scaling. These applications are largely disorganized and mutually 

trustworthy because they come from unrelated clients [16]. In this paper, we use the 

important notations, and their descriptions are shown in Table II. 

Table 2. Nomenclature 

Notation Description 

VM Virtual Memory 

QoS Quality of Services 

NCC Network Cost of Clusters 

NCR Network Cost of Racks 

RTC Overall Running Time of Cluster 

OEC Overall Energy Consumtions 

ORT Overall Running Time 

DVFS Dynamic Voltage and Frequency Scale 

DPM Dynamic Power Management 

DCN DataCenter Networks 

FCFS First Come First Serve 

SJF Shortage Job First 

LJF Largest Job First 

Min-Min (MinMI) Minimum Job with Minimum Execution / Millions of Instructions 

ABF Aggressive Backfilling 

FF First Fit 

NC Network Cost 

ECC Energy Consumption of Cluster 

3.1. Datacenter architecture 

Switching infrastructure of two or three-tier data centers is generally used in 

traditional Data Center Networks (DCNs). The core, aggregation, and access layers 

are the three most common layers of the data center. The three-tiered data center 

network DCN architecture is well-defined in [17]. 

3.2. Job scheduling algorithms 

The job scheduling algorithm can be preemptive or non-preemptive. In the non-

preemptive scheduling algorithm, no force can prevent the execution of jobs on the 

other hand due to many factors [18]. Job execution may stop in the preemptive 

scheduling algorithm. There are many popular scheduling algorithms in the cloud and 

the focus of this study is on a set of five job scheduling algorithms incorporating with 

First Fit (FF) strategy that is discussed in this section. 

3.2.1. First Come First Serve (FCFS) 

FCFS algorithm is very simple and fast. The main purpose of this algorithm is to 

execute a job that is placed in a queue. FCFS works like the first come name indicates 

the first job to be served and first fed and executed in the CPU. The drawback of 

FCFS is one of the non-preemptive and slow scheduling schemes [19], however, the 

fairness in job placement is its advantage.  
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3.2.2. Shortest Job First (SJF) 

SJF does the job with the shortest job first manner. In addition, the job with the largest 

size waits for execution. The queue takes a long time to complete the process. This 

technique of scheduling can be either preemptive or non-preemptive [20].  

3.2.3. Largest Job First (LJF) 

LJF is a scheduling algorithm based on the size of the job. The processes are sorted 

into the ready queue by their job size, which is listed in descending order. This 

algorithm is based on the fact that the job with the largest size is handled first, as the 

name implies [15]. 

3.2.4. Min-Min Algorithm 

Min-Min starts with a set of unassigned tasks at first; it calculates the minimum 

execution time for all tasks on all resources and then selects the minimum value 

among these minimum durations of all tasks on a resource. Then, schedule the task 

on the resources spend as little time as possible on the resources, and update the time 

available for the resources for all other tasks. In other words, this algorithm is based 

on the fact that the job with the minimum millions of instructions is handled first [17].  

3.2.5. Aggressive backfilling 

Aggressive Backfilling is a scheduling improvement that enables a scheduler to 

utilize resources more effectively by running operations out of sequence. This 

algorithm is an extended version of FCFS, in which fairness is not affected. It uses a 

variety of criteria to prioritize the jobs in the queue before sorting them into a list 

with the highest priority listed first. Until it reaches a job it cannot start, it steps 

through the priority list starting each job one at a time. Because every work and 

reservation has a start time and a wall clock limit, it is possible to estimate when 

every job in the queue will be finished [18]. 

3.3 Cloud-based simulation framework 

In the cloud-based framework, there are PCs from PC1 to PCn as illustrated in  

Fig. 1. The request for VM initializes the process, and then the request is forwarded 

into task queue, the list of requests stored separately. The task sent to the task manager 

for the processing of CPU intensive, memory intensive, I/O intensive, 

communication intensive. There are several VM machines, and ten groups of 

machines have assigned a cluster and multiple clusters have been created for task 

distribution by which the minimum energy will be consumed and produce the 

efficiency of the system. Moreover, the each VM processed to the host manager, 

which forwards to the suitable host.  

Table 3 indicates the simulation configuration of network cost effective job 

scheduling strategies. An event-based simulator is designed to simulate the study of 

energy cost and network cost effective job scheduling strategies of cloud-virtualized 

environment. Moreover, the study tested job-scheduling strategies with the real-

world workload in simulation. On the dedicated HPC cloud, CPU is divided into 

classes based on network cost computing. These classes are categorized into three 
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groups as in previous studies [12, 24]. We further design these groups of clusters via 

different racks in a cluster. As each cluster has nine racks, holding machines belong 

to different classes. 
 

Fig. 1. Cloud-based framework 
 

Table 3. Simulation configuration 

Class 
Cluster-I Cluster-II Cluster-III  

Racks CPU Total CPU Racks CPU Total CPU Racks CPU Total CPU Total CPU 

Class-I (3.0 GHz) 4 40 160 4 40 160 4 40 160 480 

Class-II (3.3 GHz) 3 80 240 3 80 249 
2 80 

200 680 
1 40 

Class-III (3.3 GHz) 
1 160 

240 
1 160 

240 
1 160 

240 720 
1 80 1 80 1 80 

   640   640   600 1880 
 

 
 

Fig. 2. Complete block-wise steps of the studied simulation process 
 

Furthermore, we provide the complete steps of our simulation in Fig. 2. 

Database holds the dataset of datacenter system and workloads. The workload may 

be compute-intensive, data-intensive, or network-intensive workload as an input. An 

event-based simulator connects with database for resource monitoring and queuing 

the satisfied resources and workloads by applying the particular job scheduling 
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strategy, such as FCFS, SJF, ABF, etc., DVFS scaling process for minimizing energy-

cost and job distribution on cluster and racks for minimizing network-cost are 

eventually done by the simulator. The interval (i.e., 10 minutes) is set to eventually 

execute the job scheduling strategies for updating the datasets, monitoring resources 

and handling the queue. 

3.4. Performance metrics 

In this study, for performance evaluation, we select the following six performance 

metrics in order to understand the energy and network cost-effectiveness of job 

scheduling strategies in especially heterogeneous environment. (a) Network Cost in 

Cluster (NCC) is considered as primary performance metrics, in which, the cost is 

calculated if the tasks in a job run on more than one cluster. For example, a job has 

two tasks and both tasks get chance to execute on two different clusters (i.e., Cluster-

A and Cluster-B) a specific cost value would be added as network cost. In this study, 

we assume 0.1 value as network cost [25]. (b) Network Cost in Racks (NCR) is the 

similar to NCC performance metric, however NCR is calculating the cost value (i.e., 

0.1) if tasks in a job get chance to execute on more than one racks on a cluster.  

(c) Overall Energy Consumption (OEC) is considered as a second important 

performance factor of the job scheduling strategies, in which, we calculate the energy 

consumed by each task in a job then it is accumulated from all jobs executed on the 

system, as defined in [15, 24]. (d) Overall Running Time (ORT) is used to calculate 

the running time of each task in a job then it is accumulated as a total running time 

from all jobs running on the system [9]. (e) Cluster based Energy Consumption (ECC) 

is used to calculate the energy consumption of each cluster. In other words, the energy 

consumption of each task in all jobs executing on a cluster is calculated to see the 

consumption of each cluster. (f) Cluster based Running Time (RTC) is similarly 

calculating the running time of each task in all jobs being executed on a cluster. 

4. Results and discussions  

This part describes the findings and explanations of the energy cost and network cost 

effective job scheduling strategies for cloud-virtualized environment. As the primary 

goal of this study is to reduce network costs and energy cost, we first assess how well 

the different network cost effective job scheduling strategies perform in terms of 

Network Cost of Clusters (NCC). The y-axis of the following graph (i.e., Fig. 3) 

shows the NCC in aspect to cluster system, while the x-axis represents the network 

cost effective job scheduling strategies (ABF-NC, LJF-FF-NC, FCFS-FF-NC, SJF-

FF-NC, and MinMI-FF-NC) to reduce network cost by using clusters with on-

demand power management scheme. The figure clearly demonstrates that the FCFS-

FF-NC and MinMI-FF-NC network cost effective job scheduling strategies give the 

best performance, while the LJF-FF-NC network cost effective job scheduling 

strategy gives the worst performance in aspect to Network Cost of Clusters (NCC). 
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Fig. 3. Job scheduling strategies of Network Cost in Cluster (NCC) 

Secondly, we evaluate how well the different network cost effective job 

scheduling strategies perform in terms of Network Cost of Racks (NCR). The y-axis 

of the following graph (i.e., Fig. 4) shows the NCR, while the x-axis represents  

the network cost effective job scheduling strategies (ABF-NC, LJF-FF-NC,  

FCFS-FF-NC, SJF-FF-NC, and MinMI-FF-NC) to reduce network cost by using 

racks with on-demand power management scheme. The figure clearly demonstrates 

that the FCFS-FF-NC and ABF-NC network cost effective job scheduling strategies 

give the best performance, while the LJF-FF-NC and SJF-FF-NC network cost 

effective job scheduling strategies give the worst performance in aspect to Network 

Cost of Racks (NCR). 
 

 
Fig. 4. Job scheduling strategies of Network Cost in Racks (NCR) 

Thirdly, we evaluate how well the different network cost effective job 

scheduling strategies perform in terms of Overall Energy Consumption (OEC). The 

y-axis of the following graph (i.e., Fig. 5) shows the OEC, while the x-axis represents 

the network cost effective job scheduling strategies (ABF-NC, LJF-FF-NC,  

FCFS-FF-NC, SJF-FF-NC, and MinMI-FF-NC) to reduce energy cost by using 

clusters and racks with on-demand power management scheme. The figure clearly 

demonstrates that the FCFS-FF-NC and SJF-FF-NC network cost effective job 

scheduling strategies give the best performance, while the ABF-NC network cost 
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effective job scheduling strategy gives the worst performance in aspect to Overall 

Energy Consumption (OEC). 
 

 

Fig. 5. Overall Energy Consumption (OEC) (mjoul) by job scheduling strategies 

Fourthly, we evaluate how well the different network cost effective job 

scheduling strategies perform in terms of Overall Running Time (ORT). The y-axis 

of the following graph (i.e., Fig. 6) shows the ORT in particular seconds time unit, 

while the x-axis represents the network cost effective job scheduling strategies  

(ABF-NC, LJF-FF-NC, FCFS-FF-NC, SJF-FF-NC, and MinMI-FF-NC) to reduce 

running time cost by using clusters and racks with on-demand power management 

scheme. The figure clearly demonstrates that the ABF-NC and LJF-FF-NC network 

cost effective job scheduling strategies give the best performance, while the  

SJF-FF-NC and FCFS-FF-NC network cost effective job scheduling strategy gives 

the worst performance in aspect to Overall Running Time (ORT). 
 

 
Fig. 6. Overall Running Times (ORT) of job scheduling strategies  

Additionally, we evaluate how well the different network cost effective job 

scheduling strategies perform in terms of Energy Consumption in each Cluster 

(ECC). The y-axis of the following graph (i.e., Fig. 7) shows the ECC, while the  

x-axis represents the network cost effective job scheduling strategies (ABF-NC,  
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LJF-FF-NC, FCFS-FF-NC, SJF-FF-NC, and MinMI-FF-NC) to reduce energy 

consumption cost by using clusters and racks with on-demand power management 

scheme. The figure clearly demonstrates that the Cluster-C gives the best 

performance, while the Cluster-A and Cluster-B give the worst performance in aspect 

to Energy Consumption in each Cluster (ECC). 
 

 

Fig. 7. Job scheduling strategies of Cluster-based Energy Consumption (mjoul) (ECC) 

Furthermore, we provide the analysis of cluster-based energy consumption in 

aspect to percentage of energy consumed by each cluster shown as in the Fig 8 The 

x-axis shows the percentage of energy consumption in mJoul, while y-axis shows the 

studied job scheduling strategies placing the jobs on three clusters such as Cluster-A, 

Cluster-B, and Cluster-C. From the figures, we can easily see that all of the studied 

job scheduling strategies similarly are generating energy on the clusters. Such as 

Cluster-C in all job-scheduling strategies (i.e., lightest bar in each color group in the 

figure of all job scheduling strategies) consumed less energy compared against other 

clusters. 
 

 

Fig. 8. Job scheduling strategies of Cluster-based Energy Consumption (mjoul) (ECC) in percentage 

Additionally, we evaluate how well the different network cost effective job 

scheduling strategies perform in terms of Running Time in each Cluster (RTC). The 

y-axis of the following graph (i.e., Fig. 9) shows the RTC in particular seconds time 
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unit, while the x-axis represents the network cost effective job scheduling strategies 

(ABF-NC, LJF-FF-NC, FCFS-FF-NC, SJF-FF-NC, and MinMI-FF-NC) to reduce 

energy consumption cost by using clusters and racks with on-demand power 

management scheme. The figure clearly demonstrates that the Cluster-C gives the 

best performance, while the Cluster-A and Cluster-B give the worst performance in 

aspect to Running Time in each Cluster (RTC). 
 

 
Fig. 9. Job scheduling strategies of Cluster-based Running Time (RTC) 

Moreover, similar to Fig. 8, we also provide the analysis of cluster-based overall 

running time in aspect to percentage of running time by each cluster shown as in the 

Fig 10. The x-axis shows the percentage of running time, while y-axis shows the 

studied job scheduling strategies placing the jobs on three clusters such as Cluster-A, 

Cluster-B, and Cluster-C. From the figures, we can easily see that all of the studied 

job scheduling strategies similarly tacking time of the jobs on the clusters. Such as 

Cluster-C in all job-scheduling strategies (i.e., lightest bar in each color group in the 

figure of all job scheduling strategies) took less running time compared against other 

clusters. 
 

 
Fig. 10. Job scheduling strategies of Cluster-based Running Time (RTC) in percentage 
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Conclusion  

This study represent a comparative analysis of energy-efficient VM job scheduling 

strategies for HPC workloads in a virtualized environment. In order to reduce the 

network cost effective job scheduling strategies in cloud virtualized environment, this 

study looks at VM job scheduling strategies for HPC workloads in a cloud virtualized 

environment and examines a five common timeliness: SHJF, LJF, FCFS, AgBF and 

MinMI. Our investigation shows that a single job scheduling strategy is insufficient 

for managing resources in virtualized systems in a network cost and energy-efficient 

manner. 
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