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Abstract: The paper presents the statement of the problem of dynamical system 

„crane-load” optimal control. The acceleration period is under consideration and 

control must meet the minimum duration condition as well as load oscillations 

elimination. The objective function, which ensures the final condition satisfaction, is 

developed and analyzed in terms of its topology features. It includes three arguments 

and their searching is the essence of the benchmark problem. Two variants of the 

problem are proposed with varied objective function parameters. Twelve agent-

based optimization algorithms have been applied to find solutions to a bunch of 

problems. A brief analysis of the performance of the algorithms reveals their 

weaknesses and advantages. Thus, the proposed real-world problem may be 

exploited to estimate the optimization algorithms’ search performance. 

Keywords: Optimization, Metaheuristics methods, Benchmark, Oscillation 

elimination, Control. 

1. Introduction 

There is a great need for efficient optimization methods in a plethora of areas in 

modern science and production. For some of them, optimization is a “core”, the 

mandatory procedure. It is impossible to imagine neural network training without the 

application of an optimization technique [1]; optimally tuned controllers allow to 

minimize of energy and materials consumption in many productions [2]; optimal 

scheduling is an important problem for a huge number of organizations [3]; urban 

traffic optimal control allows to improve transport services, decrease pollutions and 

fuel consumptions [4]. The full list of examples is enormous. 

The efficiency of optimization techniques may be measured in two ways: by 

application to a class of real-world problems, or with involving of some benchmarks 

(synthetic objective functions). Both of the ways have drawbacks and advantages, 

and it is desirable to approve a new optimization algorithm (or a new modification of 

an existing one) by its application to these two classes of optimization problems [5]. 

However, most real-world optimization problems, which are presented in scientific 
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works, are quite simple. As a result, the performance of the applied optimization 

algorithms slightly deviates from each other, i.e., it is almost impossible to reveal 

optimization algorithms’ search features. 

In this work, we propose two types of optimization problems, which are 

extracted from real-world control problems and have practical value. In addition, as 

it will be shown in further, this is quite complicated to minimize. That is why, we 

believe, it may be widely used to assess the performance of optimization algorithms. 

The article is built in the following manner: the next section presents the 

literature review on the problem field, and some most important results are noted 

here. The third section gives the statement of the optimal control problem; in the 

fourth section, the objective function is derived and some of its topology features are 

presented; the results of the application of twelve metaheuristic optimization 

algorithms are discussed in the fifth section, and its brief analysis is provided as well. 

The article ends with conclusions. 

2. Literature review 

A solution of duration/time-optimal control may be obtained via Pontryagin’s 

maximum principle [6]. Note, that the mandatory element of this problem is control 

constraints. Indeed, there is no sense in the problem without control constraints, since 

the following expression is truthful: 

(1) 


aclim 0
u

t ,  

where tac is duration of a system controlled period, and u – the control function. 

Expression (1) is quite general and there is a wide range of u interpretation. 

The structure of the duration-optimal control problem solution is known: control 

u must switch from an upper constraint to the lower one, and vice versa. One may 

imagine the simplest case: one-mass system acceleration from the rest state to a 

steady velocity v. For this example, control u equals only upper constraint during 

some period (depending on the steady velocity v value). For more general cases u 

switches between constraints several times. The number of such switches depends on 

the order of the system only in the case when the system is not oscillatory [7]. Thus, 

the initial problem may be reduced to the problem of switching moments 

determination. 
The problem of duration-optimal control of a crane with a load is well known 

and a great number of papers refer to it. In further literature analysis, we focus on the 

methods of its solution, not on the results and their practical significance. 

There are two general classes of control applied to this problem: closed-loop 

and open-loop. Since the latter is considered in this study, we will give the stress to 

that class of control. However, some articles [8-11], where closed-loop control is 

found, are worth mentioning. Here, for instance, the modification of Particle Swarm 

Optimization (PSO) [8] has been applied to find coefficients of a linear controller of 

the system „crane-load”. The same method has been applied to train an Artificial 

Neural Network (ANN) as a controller [9] as well, but with the extended criterion 

(duration and power RMS), and additional constraints (the rate of drive force is 

limited). In the work [10], an ANN has been exploited to solve the problem. It has 
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been trained with the Levenberg-Marquardt algorithm with Bayesian regularization. 

Closed-loop optimal control may be derived based on open-loop control [11] by 

Pontryagin’s maximum principle [6]. In this case, the performance of the controller 

is slightly worse than for open-loop control. 

A class of open-loop problems, as it was mentioned earlier, requires switching 

moments determination. For this PSO [12] has been applied. In this paper, two types 

of control constraints are considered and the difference in system dynamics under 

these controls is shown. Laboratory experiments [13] have confirmed obtained 

theoretical results. The authors of article [14] have reduced the minimum-time anti-

swing motion planning problem of crane motion to a solution of a sequence of fixed-

time maximum-range Linear Programming (LP) problems. Theoretical proof of this 

approach is given as well. Authors of work [15] have considered the duration-optimal 

control problem as LP one. For its solution, CVX package [16] has been used. In the 

work [17] the sequential quadratic programming method is used to solve the duration-

optimal control problem. To achieve this goal, they have involved MATLAB toolbox 

GPOPS [18]. In some investigations [19-21] phase plan approach is used to find 

moments of control switching. They are found as points, where a system changes 

movement from one phase trajectory to another. Authors of work [22] determine the 

moment of control switching as a solution to a system of transcendental equations. 

The method of moments also may be applied to find time-optimal control [20, 23]. 

However, it requires relatively difficult calculations. 

All solutions in the mentioned articles refer to some predetermined set of 

problem parameters (mass of a load, length of a cable, etc.). Thus, the following 

question appears: how applied approaches will work on a varied set of parameters? 

The current article manages with variety of parameters and requires solutions not a 

single problem, but a bunch of problems (two kinds of them with different 

parameters). Such an approach may guarantee (to some extent) the generality of 

results [24] and an optimization algorithm, applied for their solving and may be 

estimated in relation to its sensitivity. 

3. Problem statement 

Let us state the optimal control problem. The plant to control is a crane with a load 

on the flexible suspension (cable). This dynamical system may be presented as a 

mathematical pendulum with a movable pivot (Fig. 1). 

The mathematical model, which corresponds to the Fig. 1, is  

(2) 
1 1 2 2 1

1 2 2

sign ,m x m x F W (x )

l
x x x ,

g

  



 


 

where: m1 and m2 are the reduced masses of crane and load respectively; x1 and x2 are 

the positions of the masses m1 and m2, respectively; l is the length of the cable; g is 

the free-fall acceleration; F and W are reduced to the mass m1 drive and resistance 

forces correspondingly. 
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Fig. 1. Dynamical model of the system “crane-load” 

 

System of differential Equations (2) may be reduced to one fourth-order 

differential equation: 

(3) ,2
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where Ω and Ω0 are the frequencies of the natural load oscillation with movable and 

the stationary pivots, respectively (
l

g

m

mm
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21  , 
l

g
0

). 

Acceleration of the system “crane-load” may be described by the following 

boundary conditions: 

(4) 1 2 1 2

1 2 1 2

(0) 0, (0) 0, (0) 0, (0) 0,

( ) ( ), ( ) , ( ) ,

x x x x

x T x T x T v x T v

   


  

 

where T is the duration of the system acceleration to the steady velocity, and v is the 

steady velocity of the system. Taking into account the second line of the system (2) 

we may rewrite boundary conditions only for one function x2: 

(5) 
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Meeting boundary conditions (5) allows the steady velocity v to be reached and 

pendulum load oscillations eliminated, within time T. Its value must be minimized. 

Thus, the criterion of the optimal control problem follows: 

(6) .min
0

 Tdt

T

 

As mentioned above, there is no sense of minimizing (6) without control constraints. 

For this problem, they are: 

(7) ,maxmin FFF   

where Fmax and Fmin are the drive force maximum and minimum values. 

4. An objective function and its brief analysis 

4.1. Problem solution 

Analysis of the multiple works [12-15, 17, 19-23], where the problem (3)-(7) is being 

solved under similar statements, allows obtaining the structure of its solution: force 

F must switch from Fmax to Fmin, and vice versa. The number of such switches is two. 
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Thus, the whole acceleration period may be considered as three subperiods, where 

force F is of constant, Fmax or Fmin value. This fact allows obtaining the analytical 

solution of the differential Equation (3) for i-th subperiod: 

(8) 

2
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where Fi is the the constant value of the drive-force in the i-th subperiod (whether 

Fmax or Fmin), and τi-1 is the moment of i-th subperiod beginning (Fig. 2).  
 

 
Fig. 2. Time coordinates of the subperiods 

 

The next step of computing is a substitution with the proper expressions for each 

of the subperiods into the law (8): 
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where t1, t2, t3 are the durations of the first, the second, and the third subperiods, 

respectively (Fig. 2). 

As a result, we have obtained three solutions, which correspond to three 

subperiods. Let us denote them as x2.1, x2.2, and x2.3 (subscripts 1, 2, and 3 indicate the 

subperiod). Having all the solutions (for three subperiods) we impose constraints on 

solutions joints in the moments τ1, τ2: 

(10) 
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These calculations bring the solution x2.3 = x2.3(t). Substitution t→t1+t2+t3 gives 

the final coordinate x2.3(t1+t2+t3) and its higher derivatives by time. Thus, we have 

)( 3213.2 tttx  , )( 3213.2 tttx  , )( 3213.2 tttx  . In order to meet final conditions (5) 

we put into consideration the Terminal Energy (TE) of the system – the function, 

which reflects (in some sense) the level of the final conditions (5) satisfaction: 
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(11) 
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The first term in the brackets corresponds to the kinetic „over- or under-energy” 

of the mass m2. This value shows the deviation of the mass m2 energy at the moment 

t1+t2+t3 from the value m2v
2/2. The second and third terms are potential and kinetic 

energies of the load (pendulum) oscillations. 

In addition to that, we should note the values Fmin in the function (11). This value 

influences the duration T: the smaller Fmin, the smaller T. 

On the other hand, switching from Fmax to Fmin is a severe mode for crane drive 

and metal structure. Thus, in order to decrease dynamic impacts, we set Fmin=0 [12]. 

In the known problem solutions [14, 15, 17-23] symmetrical constraints have been 

used Fmin= –Fmax. We propose to refer to the problem with constraints Fmin = –Fmax as 

Type-1, and refer to the problem with Fmin=0 as Type-2. 

Thus, we have reduced the initial problem to the following one: 

(12) 


1 2 3

1 2 32
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Here ∆ is some conditional threshold of energy, where the value of TE is insignificant 

and that is why it may be neglected (in the frame of the current study ∆=10-2 J); w is 

the weight coefficient, which increases the significance of TE minimization (we set 

w=106). 

The first term of the expression (12) in the brackets, is the specific energy of the 

system. The second one – is the specific system acceleration duration. Both of the 

terms are dimensionless. 

The exact solution of the problem reduces the first term of criterion (12) to the 

value, that is smaller than ∆, and all of the final conditions (5) are almost met (the 

deviation of final values of phase coordinates from (5) governs by ∆. The smaller ∆, 

the closer final phase coordinates to the final conditions (5)). 

Involving values w and ∆ in the objective function (12) may be explained by a 

two-stage search process. In the first stage, the E value is minimized, in the second 

one – an algorithm is searching for a minimal T value (since E=0). Such structure of 

the objective function (12) allows for avoiding false solutions of the initial problem 

(3)-(7). Indeed, one may imagine at least two examples of this: 

a) w=1, then t1→0, t2→0, t3→0. For that case, the objective function (12) has a 

global minimum, which equals 1. The second and third terms of TE (11) in brackets 

(first line of expression) are zero, only the first term equals to v; 

b) ∆=0, then at some stage of the objective function (12) minimization product 

w‧TE will be decreased to a value, that is comparable with values t1, t2, and t3. This 
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means w‧TE and (t1+t2+t3)Ω/2π terms compete in minimization. In this case, there is 

no guarantee of criterion (6) complete minimization. 

4.2. Objective function brief analysis 

In order to solve problem (12) we should assign some numerical values of the system 

(Table 1). 

Table 1. Numerical values of the system 

Parameter Unit Value 

m1 kg 42,000 

v m/s 0.7 

Fmax N 24,107 

Fmin N –24,107 (Type-1) or 0 (Type-2) 

W N 0.01(m1+m2)g 
 

The objective function (12) has a complicated topology. In order to show it we 

substitute values (Table 1), m2=10000 kg and l=6 m into expression (12) and assume 

t3=t1 (the case, which is common for most of the problem solutions). 

Farther, we study function TE(t1, t2) only since it greatly influences objective 

function (12), at least until condition TE≤∆ is not satisfied (the second term of 

criterion (12) linearly depends on values t1, t2, and t3. Thus, there are no big 

difficulties for an algorithm to find its sum minimum). 

Illustrations of the function TE(t1, t2) features for both problems (Type-1 and 

Type-2 problems) are given in Fig. 3 and Fig. 4, respectively. In these plots, the red 

dot shows the location of the global minimum. 

Function TE(t1, t2) for both cases is multimodal, non-separable. Its plateau is 

quite flat (Fig. 3a, and Fig. 4a), and that fact complicates the search for the global 

minimum location. 

The gradient field (Fig. 3b, and Fig. 4b) has two separated canyons. The first 

one reflects the maximum (hill) of the function TE(t1, t2), and the other – its minimum 

(lower plateau). On the curve of the latter, the global minimum is located (for both 

cases Type-1 and Type-2). Thus, it is expected, that gradient-based optimization 

techniques may fail to reach the global minimum. 

In order to clearly show global minimum location logarithm of TE(t1, t2)  

plots (Fig. 3c and Fig. 4c) are built. The attractor of the global minimum is quite small 

and an algorithm should make a proper number of iterations to reach it with the 

needed accuracy. 

We should stress, that we set t3=t1. The presented brief analysis refers to  

TE(t1, t2, t3) only to some extent. The general case where t3≠t1 is more complex. 

There is a non-convexity at the objective function (12) bottom (Fig. 5). Red dot 

denotes a minimum location. It is on the edge of the lower pit (Fig. 5). However, as 

stated earlier, the topology of the lower pit is simple. It is sloped without any 

nonlinearities (canyons, minimums with narrow attractors, etc.). 
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a) 

  
b) 

  
c) 

Fig. 3. Function TE (Type-1) topology features (three-dimensions and contour plots): a) TE function; 

b) 
2

1 2

1 2

TE( , )t t

t t



 

 function; c) log(TE) function 
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a) 

  
b) 

  
c) 

Fig. 4. Function TE (Type-2) topology features (three-dimensions and contour plots): a) TE function; 

b) 
2
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TE( , )t t

t t



 

 function; c) log(TE) function 
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a) b) 

Fig. 5. Objective function (12) topology features near its bottom (global minimum): a) Type-1 case;   

b) Type-2 case 
 

The width of the lower pit is determined by ∆ value. As soon as an optimization 

algorithm has found the objective function (12) lower pit, it slides down to the global 

minimum, and the optimal control problem is solved. 

5. Results and discussion 

In order to assess the efficiency of the optimization algorithms we have applied them 

to problem (12) multiple times with different values of m2 and l. In algorithms’ runs, 

m2 is varied from 500, to 25,000 kg with the step 500 kg; l is varied from 3 up to  

10 m with the step 1 m. Thus, the problem has been solved 400 times (each time with 

slightly different parameters m2 or l). We denote these bunch of solutions as a round. 

In the current work, we estimate the search performance of twelve optimization 

metaheuristic algorithms. The modifications of well-known (parent) metaheuristics 

(PSO, Differential Evolution (DE), Gray Wolf Optimization (GWO), Harmony 

Search (HS), and Cuckoo Search (CS)) are under consideration. For each algorithm, 

the number of its agents (particles – for VCT-PSO [25], LDW-PSO [26] and ME-D-

PSO [27]; vectors – for DE best/1/bin [28], DE rand/1/bin [29, 30] and SADE [31]; 

wolves – for mGWO [32] and GWOEPD [33]; fireflies – for RaFA [34]; harmonies 

– for ABHS [35] and PAHS [36]; cuckoos – for ACS [37]) is the same for all of the 

runs. It equals 25. 

The parameters of the applied optimization algorithms are given in Table 2. 

For each round, the number of algorithm iterations has been increasing from 40 

up to 400. 

An indicator for algorithms evaluation is a specific number of Failed Algorithm 

Runs (FAR): 

(13) OR
FAR 1 100%,

SR

 
  
 

 

where OR is the Overall algorithm Runs, and SR is the number of Successful 

algorithm Runs.  
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Table 2. Parameters of optimization algorithms 
Parent 

algorithm 

Common algorithms 

parameters 

Applied 

algorithms 
Specific algorithms parameters 

PSO 

c1=c2=1.19 
VCT-PSO 

RC=5; 

w=0.72 

LDW-PSO wmax=0.9; wmin=0.4 

- ME-D-PSO 

AR=0.05; 

wmax=2; wmin=0; 

c1.max=2; c1.min=0; 

c2.max=2; c2.min=0 

DE 

CR=0.5; SF=0.6 
best/1/bin - 

rand/1/bin - 

- SADE 
τ1= τ2=0.1; 

SFlow=0.1; SFup=0.9 

GWO - 
mGWO - 

GWOEPD - 

FA - RaFA a=1 

HS - 

ABHS 
HMCRmax=1.0; HMCRmin=0.9; 

PARmax=1.0; PARmin=0.3 

PAHS 

HMCRmax=0.99; HMCRmin=0.7; 

PARmax=0.99; PARmin=0.01; 

BWmin=0.001 

CS α=1, pa=0.25 ACS - 
 

A successful algorithm run must meet the following condition T<2π/Ωmin, i.e., 

the final solution of the problem must be lower, that some set in advance threshold 

(in a practical sense it prevents acceleration of the system during a period of natural 

load oscillation). We set the most stringent condition and select the smaller period, 

referred to considered values l and m2. In the studied case 2π/Ωmax=5.02 s.  

All obtained data, which reflect optimization algorithms’ performance, are 

collected in Table 3. 

Table 3. FAR values of optimization algorithms performance 
Parent algorithm PSO DE GWO FA HS 

Algorithms 
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C

T
-P

S
O

 

L
D

W
-P

S
O

 

M
E

-D
-P

S
O

 

b
es

t/
1
/b

in
 

ra
n

d
/1

/b
in

 

m
G

W
O

 

G
W

O
E

P
D

 

R
aF

A
 

A
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Type-1 optimization problem 

40 4.8 4.5 15.0 4.2 * 3.5 37.2 64.2 * 

100 4.0 3.5 8.8 3.8 8.0 5.2 53.0 19.2 * 

200 4.0 3.8 6.0 3.0 5.0 3.8 * 6.2 77.0 

400 3.8 3.0 5.8 4.5 7.5 3.2 69.0 4.8 22.8 

Type-2 optimization problem 

40 16.8 12.5 24.5 26.2 * 38.0 37.5 45.8 * 

100 20.5 13.2 23.2 20.8 * 33.0 45.2 22.0 * 

200 15.2 19.2 22.2 15.2 * 42.2 51.8 21.5 61.5 

400 14.0 16.0 21.2 21.8 * 35.5 * 12.8 39.5 

* Indicator FAR is bigger, than 100%. In some cases, an algorithm did not find all of the needed 

solutions, and its runs have been interrupted. 
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Algorithms CS, PAHS, and SADE for both optimization problems have failed. 

Their efficiency is low; indicator FAR for all of them is bigger than 100%. That is 

why they are not shown in Table 3. 

Successful runs of different algorithms have led to solutions (values t1, t2, and 

t3), that correspond to the global minimum of the objective function (12). It is 

supported by the values t1, t2, and t3: different algorithms found almost the same 

values. In order to illustrate the solutions plots Fig. A1 have been built  

(Appendix A). Their brief analysis is given there as well. 

Analysis of data, presented in Table 3, evidences: Type-2 optimization problem 

is more complicated than the one of Type-1. Indeed, indicator FAR of the three most 

successful algorithms for Type-2 problem is 11.5,…, 17.1% greater, than the one for 

Type-1. However, we should stress some exceptions: overall performance of RaFA, 

GWOEPD, and ABHS do not support the statement about prevailing complexity of 

Type-2 problem. Here we observe „no free lunch” theorem [38] consequences. 

No one of the algorithms has reached zero value of indicator FAR (perfect case, 

when each algorithm’s run leads to the problem solution). Thus, there are possibilities 

of improvement of the algorithms in such a way, which decreases FAR up to zero. 

The most efficient algorithms for considered problems are DE/best/1/bin,  

VCT-PSO, and LDWPSO. The latter is a leader in the class of applied metaheuristics 

(Table 3). Algorithm VCT-PSO is slightly worst, but very close to the leader. 

In order to carry out analysis of some algorithms search activity, plots have been 

built (Fig. 6). Figs 6a and 6c refer to the Type-1 optimization problem, Fig. 6b and 

6d refer to the Type-2 problem. 

For both cases under poor computational resources (40 iterations) all algorithms, 

except LDWPSO and DE/best/1/bin, have not found problem (12) solution. At the 

end of the search, they are at the stage of function TE(t1, t2, t3) minimization, i.e., at 

the upper pit of the objective function (12). Thus, LDWPSO and DE/best/1/bin have 

successful runs, the rest of the algorithms shown in Fig. 6 have failed. 

An increased number of iterations positively influences the algorithms’ 

performances. All of them (for both cases Type-1 and Type-2) have reached the lower 

pit of the objective function. The only difference is the number of iterations needed 

for that. The “fastest” (in terms of spent iterations) algorithms compared are 

DE/best/1/bin and LDWPSO. For them up to a hundred iterations is enough to find 

both problems’ solutions. The most “slow” algorithm is mGWO. It found problems’ 

solutions almost at the end of the search process: for Type-1 case, mGWO fell down 

to the objective function lower pit at 396-th iteration, and for Type-2 case – at the 

387-th iteration. mGWO restarts may not bring acceptable results (in terms of 

condition T<2π/Ωmin satisfaction). RaFA and ABHS have an average efficiency. 

These data lead us to the conclusion: PSO-based algorithms (even relatively 

simple ones) are fitted for the Type-1 and Type-2 optimization problems. 

Comparing plots, which are presented in the left and right columns, we do not 

note any significant differences. However, here we have illustrated only single runs 

of the algorithms, which do not reflect the statistical differences in their performance. 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 6. Algorithms search activity: a) for 40 iterations (Type-1 problem); b) for 40 iterations (Type-2 

problem); c) for 400 iterations (Type-1 problem); d) for 400 iterations (Type-2 problem) 
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6. Conclusion 

A real-world optimization problem is proposed to solve in the article. Optimization 

algorithms performance estimation is used. Since it is connected with pendulum 

effects, the objective function of the problem includes trigonometric functions. This 

feature makes criterion topology highly complicated for searching its global 

minimum: its attractor is relatively narrow, and the function itself is non-separable, 

multimodal, and non-convex. Two cases of the problem have been proposed, which 

relate to two values of lower control constraint. 

In order to reveal some of the problem’s features twenty metaheuristic 

algorithms have been applied. Three of them have not managed to find all the problem 

solutions for a variety of objective function parameters. Based on the developed 

indicator of algorithms efficiency three of the most efficient ones have been 

determined: DE/best/1/bin, VCT-PSO, and LDWPSO. 

Further issues in this field are connected with the extension of a number of 

optimization algorithms to apply and the estimation of their performance. In addition, 

there is a possibility of problem modification by taking into account initial non-zero 

values of the dynamical system phase coordinates. This direction requires some 

analytical calculations and rebuilding of the control function (the drive-force F during 

the first subperiod may be not positive). 
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Appendix A. System characteristics under optimal control 

Comparative analysis of the plots, presented in Fig. A.1 shows the „on-off” form of 

the optimal control. However, for the solution of Type-2 problem, there is no driving 

force F sign-changing. In practice, it is desirable, as it does not require a change of 

electromagnetic torque sign, i.e., dynamical impacts caused by Type-2 solution are 

much lower, that for the case of Type-1 solution. A maximal gap of the driving force 

F for Type-2 control is lesser by a factor of two. 

Constant sign for consumed power is another advantage of Type-2 problem 

solution: this means, that there is no need to embed the drive of the crane with 

additional power equipment – an inverse inverter. 

The steady velocity v is achieved, and load pendulum oscillations are eliminated 

for both of the cases. There is only a minor (by 1.4%) increase of T for Type-2 control, 

compared with Type-1 control (Fig. A.1). Magnitudes of load oscillations for  

Type-1 and Type-2 controls are almost the same. However, for the rest of the m2 and 

l values duration T and magnitude of load oscillations variates. In the general case, 

they are some functions of m1, m2, Fmax, Fmin, W, v, and l. 

Summing everything up, we may state: Type-2 control allows decreasing of 

power and dynamical loads on crane drive and metal structure by virtue of a slight 

increase of acceleration duration T. 
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a) 

 

 
b) 

Fig. A1. Plots of „crane-load” system characteristics under optimal control: a) Type-1 problem 

solution; b) Type-2 problem solution 
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