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Abstract: This paper analyzes the different definitions of a negator of a probability 

mass function (pmf) and a Basic Belief Assignment (BBA) available in the literature. 

To overcome their limitations we propose an involutory negator of BBA, and we 

present a new indirect information fusion method based on this negator which can 

simplify the conflict management problem. The direct and indirect information fusion 

strategies are analyzed for three interesting examples of fusion of two BBAs. We also 

propose two methods for using the whole available information (the original BBAs 

and their negators) for decision-making support. The first method is based on the 

combination of the direct and indirect fusion strategies, and the second method 

selects the most reasonable fusion strategy to apply (direct, or indirect) based on the 

maximum entropy principle. 
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1. Introduction 

This paper deals with Basic Belief Assignments (BBAs) introduced in Dempster-

Shafer Theory (DST) [1]. We propose an involutory negator of a BBA, and its 

application for information fusion. The concept of a complement of a body of 

evidence (i.e., negator) has been introduced by D u b o i s  and P r a d e  [2] in 1986, 

and re-examined by Y a g e r  [3]. The main disadvantage with these negators (and of 

the most recent proposals) is that they are not involutory (An involutory function (or 

involution) is a function f that is its own inverse, that is ( ( ))f f x x for all x in the 

domain of f. This means that applying f  twice produces the original value) in general 

so that the information content of the negator of a negator of a BBA is not equal to 

the information content of the original BBA. This is problematic from the 

informational standpoint because we naturally expect that working with negator of 
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negator of evidence should be equivalent to working with original evidence. The 

problem we address in this paper can be stated as follows: let’s consider a Frame of 

Discernment (FoD) of a problem under concern. Knowing a first expert providing a 

BBA (.)m  defined on the power set of the FoD, is it possible to find a second expert 

with a BBA (.)m  defined on the power set of FoD that expresses the opposite (or 

negation) assessment of the first expert? How can this be done effectively? Based on 

which principle and justifications? The second problem we address is the use of 

negator of BBAs for the information fusion for decision-making support. 

2. Belief functions and entropy  

The Belief Functions (BF) have been introduced by S h a f e r  [1] for modeling 

epistemic uncertainty, reasoning about uncertainty and combining distinct sources of 

evidence (SoEs). The answer of the problem under concern is assumed to belong to 

a known finite discrete frame of discernment (FoD)  1 2   N, ,..., where all 

elements (i.e., members) of  are exhaustive and exclusive. The set of all subsets of 

 is the power-set of   denoted by2 . A normalized BBA (also referred as a normal 

BBA or a proper BBA in the literature), or mass function, is a mapping 

   2 0 1  m . : ,  such that   0  m and  
2

1




X

m X . We omit the 

superscript  in  m .  notation if there is no ambiguity on the FoD we work with. 

The element 2X is called a Focal Element (FE) of  m .  if   0m X . The belief 

and plausibility of X  are defined by [1] 

(1)     
2

Bel
Y Y X

X m Y
 

  ,  

(2)       
2

Pl 1 Bel
Y X Y

X m Y X
  

   , 

where  X \ X  is the complement of X  in  . 

To quantify the uncertainty (i.e., the imprecision) of      Bel PlP X X , X   , 

we use    0 1u X , defined by 

(3)       Pl Belu X X X  .  

If all focal elements of  m . are singletons of 2 , the BBA  m . is a Bayesian 

BBA because 2 X one has      Bel PlX X P X  , and   0u X . The vacuous 

BBA for a totally ignorant SoE [4] is defined by   1vm X  for X , and   0vm X

for all X , X 2 .  

In [5] we have analyzed in details forty-eight Measures of Uncertainty (MoU) 

of BBAs by covering 40 years of research works on this topic. Some of these MoUs 

capture only a particular aspect of the uncertainty inherent to a BBA (typically, the 

non-specificity and the conflict). Most of these MoUs fail to satisfy four very simple 

reasonable and essential desiderata and they are not effective. Only six MoUs can be 
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considered as effective from the mathematical sense presented next, but they appear 

as conceptually defective and disputable [5]. That is why, a better effective measure 

of uncertainty, i.e., generalized entropy of BBAs has been developed in [4]. It is 

defined by 

(4)     
2

 
X

U m s X ,   

with     

(5)                1 log 1s X m X u X m X u X m X     ,  

 s X is the uncertainty contribution related to X named the entropiece of X . This 

entropy  U m  is effective [4] because is verifies the four essential desiderata: 

1)   0U m   for any BBA  m . focused on a singleton X  of 2 ; 

2)    
' '

v vU m U m if     ; 

3)       log
X

U m m X m X


  if the BBA  m . is a Bayesian BBA. Hence, 

 U m reduces to Shannon entropy [6] in this case; 

4)    vU m U m  for any non-vacuous BBA  m .  and for the vacuous BBA 

 vm . defined with respect to the same FoD. 

The maximum of entropy   2 2vU m
    (see derivation in [4]) obtained for 

the vacuous BBA vm  over a FoD  , because vm  characterizes a SoE with a full 

lack of information. It is worth mentioning that one has always    logvU m   . 

Hence, the vacuous BBA has always an entropy greater than the maximum of 

Shannon entropy  log  obtained with the uniform probability mass function (pmf) 

on the frame of discernment . 

3. Negators of pmf and BBA in the literature 

In this section we present several negators proposed in the literature with some 

examples, and we comment them. 

3.1. Dubois and Prade non-involutory negator of a BBA (1986) 

In 1986, D u b o i s  and P r a d e  (DP) [2] introduced in (pp. 202-203) for the first time 

the concept of negation of a BBA. This negator for any X   is defined as 

(6)     m X m X ,  

where  X \ X is the complement of X in the FoD  . 

This simple definition is quite natural except that it does not satisfy the 

involution property because m m in general. Because we consider that the 

involution property must be a very natural property to satisfy by an effective negator, 
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we do not consider Dubois and Prade (DP) negator as effective. Moreover, it is clear 

that the DP negator of the vacuous BBA     1v vm m     is not a proper BBA. 

3.2. Yager’s non-involutory negator of a pmf (2015) 

Y a g e r  [3] has introduced the concept of the negation of a probability distribution 

P in, which has been raised by Zadeh in his Berkeley Initiative in Soft Computing 

(BISC) blog. By the term negation Yager means the representation of the knowledge 

we use if we have the statement not P . The negation of a pmf  P .  over a reference 

set  1 2 n, ,...,    is defined by 

(7)       i iP P    1 , 

where  i i\   is the complement of i  in the set  ,    1i iP P    , and   is 

a normalization factor given by 

(8)       
1 1

1 1
n n

i i
i i

P P n
 

         . 

In the literature [8] definition (7) is called Yager’s negator. Yager’s justification 

for this definition is based on a maximal entropy of the weights associated with each 

focal element. As Y a g e r  [3] pointed out in the definition (7) does not satisfy the 

double negation property in general (when 2  and  P .  is not the uniform pmf), 

that is    P . P . . Yager’s negator is the one that provides the maximum entropy 

among all possible negator definitions. The iterative application of Yager’s negator 

converges towards the uniform pmf for which the entropy is maximal in the 

framework of the probability theory. The uniform pmf is the fixed point of Yager’s 

negator. Note that in the very particular case where  1   (i.e., there is only one 

element in the reference set), we have 1n   and necessarily  1 1P   . Hence, we 

obtain       P P n     1 11 1 0 0 , which is indeterminate. 

A generalization of Yager’s negator has been proposed in [8], which is still not 

involutory. The analysis of the new properties of Yager’s negator has been done by 

S r i v a s t a v a  and M a h e s h w a r i  [9], and S r i v a s t a v a  and K a u r  [10]. Other 

non-involutory extensions of Yager’s negator have been proposed in [11, 12]. 

3.3. Yin’s non-involutory negator of a BBA (2019) 

In 2019, L. Y i n, X. D e n g  and Y. D e n g  [13] proposed a definition of the negator 

of a BBA as a three steps procedure concisely given here by 

(9)          1 1m X m X , 

where   is the normalization constant defined by 

(10)    
 2 0

1 1
X m X

m X N
 

     ,   

where N is the number of focal elements of the BBA  m . . 
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Clearly, Yin’s negator imitates Yager’s negator, but it works with BBA instead 

of pmf. Yin’s negator is disputable because it is non-involutory. More problematic, 

Yin’s negator is indeterminate for the vacuous BBA  vm . for which   1vm   , 

because in this case one has only one focal element equal to  so that 1N  and from 

(9) we get       m m N     1 1 0 0 , which is indeterminate. Actually, this 

is a very serious problem for any BBA focused on only one focal element. Hence, 

Yin’s negator is not a good proposal for a negator of a BBA. We mention that Yin’s 

negator has been used by G a o  and D e n g  [14] with incorrect claims and results. In 

example 1 of [14] authors consider  a,b with     0 5m a m b .   (i.e., a 

Bayesian BBA with 2N   focal elements). Applying (9) we must obtain 

           1 0 5 2 1 0 5 1 0 5 2 1 0 5m a . . , m b . .        , and not 

     0 25 0 25 0 5m a . , m b . , m a b .     as the authors claim. This casts doubts 

on the correctness of the whole technical content of [14]. 

3.4. Xie-Xiao non-involutory negator of a BBA (2019) 

X i e  and X i a o  [15] have defined a new non-involutory negator by 

(11)   m E m , 

where m is the BBA  m .  expressed as a vertical vector of size 2


, and m negation 

vector of the BBA vector m which characterizes the negation of  m . . The matrix E

is a negation symmetrical matrix ije   E  of size 2 2
 
 defined in [15]. This 

negator is based on redistribution factors which appears ad-hoc and counter-intuitive. 

For instance, consider  1 2 3, ,     and the BBA entirely focused on 1 for which 

vector  m  1 1 . The negation matrix ije   E  is explicitly given in the Example 3 

in [15] and the negation of the BBA  m .  is 

     

     
1 2 3

1 2 1 3 2 3

1 6 1 12 1 12

1 4 1 4 1 6

m , m , m ,

m , m , m .

     

        
 

The result is counter-intuitive because this negator commits some mass of belief 

to elements that have non-empty intersection with 1 . This behavior is not appropriate 

because the complement of 1  must have an empty intersection with 1  so the mass 

of 1  must be redistributed only to elements of the power set that have an empty 

intersection with 1  (or to their disjunction). Moreover, the authors present the 

analysis of their negator using Deng’s entropy known to be non-effective [5]. 

3.5. Deng-Jiang non-involutory negator of a BBA (2020) 

D e n g  and J i a n g  [16] have proposed a new negator for any BBA defined as 

follows:  
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(12)     
 ( \ ) XiYi

Y
m X m Y

  
 


 2

.  

As explained in [16] (p. 348) authors consider that the negation of a singleton 

focal element iX   is  i iX \    , and if a focal element X is not a singleton its 

negation is equal to   
i X iX \     . This complementation principle is ad-

hoc and very counter-intuitive because the negation of all non-singleton focal 

elements will correspond to the same complement element  which is the whole 

FoD. This principle is actually inappropriate. Besides its weird complementation 

principle, Deng-Jiang’s negator is not involutory in general. For instance, consider 

the FoD  1 2 3, ,     and the BBA entirely focused on 1 (i.e.,  m  1 1 ) if we 

apply this negator on the negator  m .  we obtain  m    1 2 3 1  which is the 

vacuous BBA and not the original BBA. In the case where   1 and  m  1 1

we have  \   1 1  and applying Deng-Jiang’s formula (12) we will get 

     m m m     1 1 1which is not a proper BBA according to Shafer’s 

definition [1]. Deng-Jiang negator is not acceptable and not effective. 

3.6. Batyrshin’s involutory negator of a pmf (2021) 

In [17, 18] B a t y r s h i n  has proposed an involutory negator of a pmf  P .  defined 

over a reference set (with MP max minP P  ) as follows 

(13)              i iP P nMP MP 1 . 

The uniform pmf is a fixed point for this negator, see [17] for details. Batyrshin’s 

negator of  P .  equals  P .  in the very special case where   1 , because one 

has n 1 and necessarily  P  1 1 . This negator works only for probabilities but its 

real usefulness has to be shown in real applications. Batyrshin’s negator has not yet 

been extended for the framework of the theory of belief functions, and it may be 

interesting to extend it (if possible) for the theory of evidence. 

3.7. Liu’s non-involutory negator of a BBA (2023) 

L i u, D e n g  and L i  [19] propose a new negator defined by 

(14)           
2

1 2 1 2 1 1X Y

Y Y X
m X m X 

     ,   

where X 2 and   is the normalization constant defined by 

(15)       
2

2

2 1 2 1 1X Y

Y Y X
X

m X


 



      .  

This new negator is unfortunately not involutory as proved by the authors in 

[19]. They justify this negator based on Deng’s entropy concept, which is known to 

be non-effective [4, 5]. It is obvious that the concept of complementation used by Liu 

et al. is inappropriate. Indeed, let’s consider  AB  and the vacuous BBA  vm .  
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defined on this FoD by        v v v vm ,m A ,m B ,m A B     0 0 0 1 . By 

applying (14) we will obtain the following Liu’s negator 

       v v v vm , m A . , m B . , m A B     0 0 5 0 5 0  

One can see that this negator is flawed because A  and B  cannot be considered 

as valid complements of A B because  A A B   and  B A B   . 

4. A new involutory negator for BBAs 

In this section we present a new simple definition for an involutory negator of any 

BBA    m . : , 2 0 1 which expresses the opposite evidence of any source of 

evidence characterized by  m . . The opposite (i.e., negator) of the BBA  m .  is 

denoted by  m . , and it is simply defined by 

(16)     
 

0 if

if

X ,

m X m X X ,

m X ,




  
  

  

where X is the complement of the subset X in the FoD  , that is  X \ X . 

This new negator defined by (16) is actually a revised definition of Dubois and Prade 

negator (6). At a first glance for some readers the conditions  m   0and 

   m m    may appear strange. Some readers may dispute why the mass of belief 

committed to the whole ignorance proposition   is kept unchanged in the expression 

(16) of the negator of the source of evidence. This is a legitimate question because 

the (classical) complement   of   in   is equal to the empty set, and because the 

(classical) complement  of the empty set in   is equal to  . As Dubois and Prade 

did, we could consider a priori taking    m m   and    m m   . We think 

however that this option is actually not very reasonable because it would mean that 

the negation of a BBA will not be a proper BBA (as defined by Shafer in [1]). In fact, 

we would have  m   0when  m   0 , and we would always have  m   0

because  m   0 , which is very restrictive. We consider that the most reasonable 

solution is to consider that the negation of the BBA  m . is better defined by (16). 

This new very simple definition for the negator of a BBA presents the great advantage 

to preserve the involutory property of the negator concept of a BBA so that 

   m . m . . Note that the negator of any BBA  m . defined by  m .  in (16) is a 

proper BBA because    m X , 0 1 ,  m   0 , and  
X

m X
 2
1  because the 

focal elements of  m .  belong to 2 and they correspond to the complement of the 

focal elements of ,  m . which is a proper BBA. 
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We mention that our negator of a Bayesian is not a Bayesian BBA in general as 

soon as the FoD   has more than two elements. Also, the negator of the vacuous 

BBA  vm . is equal to itself. Hence, the vacuous SoE has a neutral role with respect 

to this new negator concept. This is not very surprising because from no useful 

information (i.e., the vacuous BBA) we cannot draw any conclusion for making a 

decision in favor of one hypothesis or its opposite. This makes the definition (16) 

coherent with the intuition when working with vacuous BBA and the negator concept. 

Of course, it is always possible to approximate any non-Bayesian BBA (or any non-

Bayesian negator of a BBA) by a pmf (if we want) using different techniques of 

approximation. 

5. Direct and indirect fusion approaches 

5.1. Direct fusion approach 

To make this presentation simple, we present the main formulas for the direct 

combination of two BBAs only. General formulas for more than two BBAs can be 

found in [1, 20, and 21]. More fusion rules are listed in [22]. 

 Conjunctive rule of combination: X  2 , 

(17)       X ,X,
X X X

m X m X m X



 

 1 2

1 2

21 2 1 1 2 2 .  

 Disjunctive rule of combination: X  2 , 

(18)       X ,X,
X X X

m X m X m X



 

 1 2

1 2

21 2 1 1 2 2 .   

 Dempster-Shafer rule of combination [1]:  DS
1 2 0,m   , and  X \  2 , 

(19)          
1 2

1 2

DS
21 2 1 1 2 2 1 21X ,X, ,

X X X

m X m X m X m



 

   .   

 Proportional Conflict Redistribution Rule No 6 [21]:

   PCR6
1 2 0 2,m , X \       

(20)                      
2 2PCR6

1 2 1 2 1 2 1 2 2 1 2 1

2

, ,

Y
X Y

m X m m X m Y m X m Y m X m Y m X m Y





 

     .  

Here we consider only PCR6 rule because we use examples for the fusion of 

only two BBAs to keep the presentation as simple as possible. If one needs to 

combine three BBAs (or more) altogether, we recommend the improved PCR6 rule 

(denoted by PCR6+) presented in details (note that PCR6+ and PCR6 rules coincide 

for the fusion of two BBAs) in [21]. If the SoEs are considered fully reliable the 

conjunctive fusion rule applies. Because the SoEs are often conflicting, the 

conjunctive fusion result  ,m .

1 2 is not a proper BBA. To overcome this problem, 

Dempster-Shafer (DS) rule of combination or PCR6 fusion rule can be used to obtain 

a normalized and combined proper BBA. DS rule offers the main advantage of being 

associative making its use quite easy for the applications, and DS preserves the 

neutrality (the vacuous BBA vm  has no impact on the result when combined to a 
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BBA vm m  with DS rule) of the vacuous BBA vm , which is generally considered 

as a good property for a fusion rule. Unfortunately, DS rule exhibits counter-intuitive 

dictatorial behavior in high and low conflict situations as well [23, 24]. This is one of 

the main reasons (the second reason is that Shafer’s conditioning based on DS rule is 

not consistent with lower and upper bounds of conditional probability [25]) why DS 

rule has been abandoned by many researchers and engineers working with belief 

functions. If the two sources are in total conflict (i.e.,  ,m  1 2 1 ), DS rule does not 

work because of the division by zero in (19). PCR6 rule provides a more reasonable 

fusion result and it works in low and high conflicting situations as well. PCR6 does 

not behave dictatorially. The main disadvantage of PCR6 rule is its high complexity 

because it is not associative that is why all the SoEs must be combined altogether 

(not sequentially) with this rule. PCR6 does not preserve the neutrality of the vacuous 

BBA vm when combining more than two BBAs altogether, but an improved version 

denoted by PCR6+ preserves the neutrality of vm , see [21]. If one of the SoEs is not 

reliable and we do not know which one, the disjunctive fusion rule applies. The direct 

fusion approach of S  BBAs Sm ,m ,...,m1 2 defined over the same FoD   is denoted 

symbolically by 

(21)   DF
1 2 1 2, ,...,S Sm F m ,m ,...,m ,  

where DF means the chosen Direct Fusion (DF) rule used for the combination of the 

S  sources of evidence. 

5.2. Indirect fusion approach using the involutory negator of BBAs 

The fusion of BBAs Sm ,m ,...,m1 2  (with S 1 ) is often problematic if there are some 

conflicts between the SoEs. This means that      S Sm X m X ...m X 1 1 2 2 0  when 

SX X ... X   1 2 for some focal elements SX ,X ,...,X1 2 . When conflicts occur 

the simple conjunctive rule of combination (17) is not able to provide an acceptable 

fusion result because it commits a strictly positive mass of belief to the impossible 

event (i.e., to the empty set), that is , ,...,Sm 1 2 0 . Therefore, it is generally necessary 

to manage the existing conflict between the sources to obtain what we consider a 

reasonable fusion result for decision-making support. That is the reason why many 

fusion rules of combination have been developed and proposed in the literature during 

the last decades [20, 22]. Here we propose a new generic approach to combine the 

sources of evidence thanks to their involutory negator of the BBAs, which is what we 

call the Indirect Fusion (IF) approach. The idea behind the IF approach is rather 

simple. Instead of combining directly the original BBAs by some fusion rules 

(typically by DS rule [1], PCR6 rule [20, 21], DP rule [2], etc.), we propose to 

compute the fusion result indirectly using the negators of BBAs thanks to the 

following three simple steps: 

 Step 1. BBAs negators. 

Calculate the involutory negators of BBAs      Sm . ,m . ,...,m .1 2 using (16). 
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 Step 2. Fusion of negators. 

Combine (i.e., fuse) the S 1BBAs      Sm . ,m . ,...,m .1 2  by a chosen fusion 

rule denoted symbolically by DF to get the direct fusion of negators, that is  

(22)   DF
1 2 1 2, ,...,S Sm F m ,m ,...,m .   

The choice of the direct fusion rule DF for combining the negators is left to the 

fusion system designer. Proponents of DST will prefer DS rule (19), while opponents 

of DS rule will use other fusion rules (typically PCR6 rule (20), etc.). 

 Step-3. Negator of the fused negators. 

Once the fusion result  DF
1 2, ,...,Sm . is obtained, one calculates its negator to get the 

final Indirect Fusion (IF) result of the original BBAs thanks to definition (16) where 

 m .  is replaced by  DF
1 2, ,...,Sm . , that is 

(23)     
 

IF DF
1 2 1 2

DF
1 2

0 if

if
, ,...,S , ,...,S

, ,...,S

X ,

m X m X , X ,

m X .




  
  

  

More concisely, we will write steps 1, 2 and 3 by the symbolic expression   

(24)  IF DF
1 2 1 2, ,...,S , ,...,Sm m ,  

where the negator operator used in (24) (represented by a bar symbol) is the 

involutory negator defined in (16). As it will be discussed in Section 8, in general we 

have    IF DF
1 2 1 2, ,...,S , ,...,Sm . m .  which means that the direct and indirect fusion methods 

provide different results depending on the fusion rule chosen and the distribution of 

masses of belief to focal elements. This is because the fusion rules do not satisfy De 

Morgan’s law when a conflict exists between the sources. Only in the case when 

S 2  and    v vm . m ,or m . m 1 2 one has    IF DF
1 2 1 2, ,m . m . because there is no 

conflict between the two SoEs to deal with in this very particular case. 

6. Some interesting examples 

Here we examine three interesting examples where a conflict exists between two 

SoEs, and we compare the results of direct and indirect fusion methods. 

6.1. Example 1 – Zadeh’s example (two Bayesian BBAs) 

Consider Zadeh’s example [23] where  A,B,C , and two Bayesian BBAs  m .1  

and  m .2  as follows  

   m A . , m C . 1 10 9 0 1  and    m B . , m C . 2 20 9 0 1 . 

 Direct fusion with DS rule 

Using DS rule (19), we obtain the Bayesian BBA  DS
1 2 1,m C  which is 

considered as a counter-intuitive result by Zadeh and by many authors because this 

result means that the hypothesis C  is declared for sure even if both SoEs agree in 
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committing a low belief to the origin C . This example is important because it has 

served as a starting point to question the validity of DS rule by Zadeh. Some 

proponents of DST of argue that DS rule should not be applied without preprocessing 

(i.e., discounting) the SoEs in this high conflict situation and other propoenents argue 

that DS result makes perfectly sense. Both types of proponents defend DS rule based 

on very different contradictory arguments, which amplify the suspicion about the 

validity of DS rule. Actually, these two types of arguments are flawed because DS 

rule behaves dictatorially even in low conflict situation as shown in [24] and in the 

next example. 

 Direct fusion with PCR6 rule 

By applying PCR6 fusion rule (20) to combine  m .1  and  m .2  we get 

     PCR6 PCR6 PCR6
1 2 1 2 1 20 486 0 486 0 028, , ,m A . , m B . , m C .   . 

This Bayesian PCR6 result is more reasonable than DS result because it clearly 

points out the difficulty to make a choice between hypotheses A  and B  because of 

the disagreement of two SoEs while rejecting both the third hypothesis C . 

 Indirect fusion approach 

By applying the indirect fusion approach, after step 1 we get the following BBAs 

negators    m B C . , m A B .   1 10 9 0 1  and    m A C . , m A B .   2 20 9 0 1 . 

We observe that there is no conflict between these two negators so that the 

conjunctive fusion rule can be used, and there is no need to adopt a specific 

management of conflicting masses either by DS rule, or by PCR6 rule because results 

from both rules are equal to the result computed with the conjunctive rule, when no 

conflict occurs. At step-2, we use the conjunctive fusion of m1 and m2 because there 

is no conflict between these negators, and we get 

       , , , ,m A . , m B . , m C . , m A B .       1 2 1 2 1 2 1 20 09 0 09 0 81 0 01 . 

At step 3, we take  ,m .

1 2  as the final indirect fusion result. We obtain (we use 

the notation  IF
1 2,m .  to explicitly specify that the Indirect Fusion (IF) has been done 

with the conjunctive rule symbolized by the   symbol) 

       IF IF IF IF
1 2 1 2 1 2 1 20 81 0 09 0 09 0 01, , , ,m A B . , m A C . , m B C . , m C .          . 

This non-Bayesian indirect fusion result is more acceptable than DS result 

because it reveals clearly the uncertainty between hypotheses A  and B , while 

reinforcing the disbelief of hypothesis C  as we intuitively expect. We observe that 
IF DS
1 2 1 2, ,m m   and IF PCR6

1 2 1 2, ,m m  . The distribution obtained from this indirect fusion 

result coincides with the simple averaging fusion rule which is a common fusion rule 

adopted by users not familiar with belief functions. This behavior is another argument 

against the direct fusion result provided by DS rule. 

6.2. Example 2 – Dezert-Tchamova example (two non-Bayesian BBAs) 

Here we consider another problematic example presented by D e z e r t, W a n g  and 

T c h a m o v a  in [24] to show the dictatorial behavior of DS rule of combination in 

high and low conflicting situations as well. An infinity of problematic examples as 
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this one can be built, see [27] for more examples. We consider the FoD  A,B,C

with the following two (generic) non-Bayesian BBAs with 1 20 1a,b ,b   and 

b b 1 2 1 . 

   

     
1 1

2 1 2 1 2 2 2

1

1

m A a,m A B a,

m A B b ,m C b b ,m A B C b .

   

       
 

The conflict of these two BBAs is actually independent of the BBA  m .1

because  ,m b b    1 2 1 21 .One can easily verify that DS fusion of these two BBAs 

gives    DS
1 2 1,m A m A a  and    DS

1 2 1 1,m A B m A B a     which indicates that 

the fusion result is actually independent of the BBA  m .2 even if  m .2 is not the 

vacuous BBA and the conflict degree can be taken as high or as low as we want. This 

behavior of DS rule is of course counter-intuitive and dictatorial, and that is why we 

do not recommend DS rule in applications. As a numerical example, we take the 

parameters a . ,b . ,b .  1 20 3 0 2 0 3 , and we have 

   

     
1 1

2 2 2

0 3 0 7

0 2 0 5 0 3

m A . ,m A B . ,

m A B . ,m C . ,m A B C . .

  

     
 

Using the conjunctive fusion rule, we obtain  

     , , ,m . , m A . , m A B .      1 2 1 2 1 20 5 0 15 0 35 . 

One sees that there exists a positive conflict  ,m 1 2 between these two sources 

of evidence that needs to be redistributed in order to obtain a proper resulting BBA. 

 Direct fusion with DS rule:  By applying DS rule (19) we obtain 

         DS DS DS
1 2 1 2 1 1 2 10 0 3 0 7, , ,m , m A . m A , m A B . m A B        . 

The same dictatorial DS fusion result may be obtained for other numerical 

values of positive parameters b1 and b2  with b b 1 2 1 . 

 Direct fusion with PCR6 rule: By applying PCR6 rule (20), we obtain 

       PCR6 PCR6 PCR6 PCR6
1 2 1 2 1 2 1 20 0 2062 0 5542 0 2396, , , ,m , m A . , m A B . , m C .      . 

We see that the PCR6 fusion rule does not behave dictatorially, and the PCR6 

fusion result changes with different values of the parameters b1 and b2 . 

 Indirect fusion with DS rule  

If we apply the indirect fusion approach, the negators of  m .1  and  m .2  are  

   

     

  

     

m B C . , m C . ,

m C . , m A B . ,m A B C . .

1 1

2 2 2

0 3 0 7

0 2 0 5 0 3
 

Hence the conjunctive fusion of negators gives 

       , , , ,m . , m B . , m C . , m B C .        1 2 1 2 1 2 1 20 35 0 15 0 41 0 09 . 

Note that    , ,m . m . 1 2 1 2 . Applying DS rule of combination of these negators 

we obtain        DS DS DS DS
1 2 1 2 1 2 1 20 0 23 0 63 0 14, , , ,m , m B . , m C . , m B C .      . 
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After taking the negator of  DS
1 2,m . , using the indirect DS (i.e., IF-DS) fusion 

approach we obtain the following final result 

       IF DS IF DS IF DS IF DS
1 2 1 2 1 2 1 20 0 63 0 23 0 14, , , ,m , m A B . , m A C . , m A .          . 

This result appears a bit more acceptable than the direct DS fusion result without 

being dictatorial because    IF DS
1 2 1,m . m .   and    IF DS

1 2 2,m . m .  . It is worth 

mentioning that this new indirect DS fusion approach does not always circumvent the 

bad dictatorial behavior of DS rule in general thanks to the negators and their DS 

fusion. To emphasize this remark, it is easy to build another (dual) Dezert-Tchamova 

example where the fusion of negators of BBAs really provides a dictatorial behavior 

instead of the direct DS fusion. For instance, consider  A,B,C and the following 

BBAs 

   

     

   

       

m B C a,m C a,

m C b , m A B b b , m A B C b .

1 1

2 1 2 1 2 2 2

1

1
 

It can be verified that the fusion result based on our negators of these BBAs and 

the indirect DS fusion is dictatorial and gives    IF DS
1 2 1,m B C a m B C      and 

   IF DS
1 2 11,m C a m C    . So, the DS rule based on the negators of BBA remains also 

disputable in this case. That is why in any strategy of fusion chosen (direct and 

indirect) we do not recommend DS rule because of its potential dictatorial behavior. 
 Indirect fusion with PCR6 rule 

The indirect PCR6 fusion approach of the negators of  m .1  and  m .2 yields 

         PCR6 PCR6 PCR6 PCR6 PCR6
1 2 1 2 1 2 1 2 1 20 0 15 0 6142 0 09 0 1458, , , , ,m , m B . , m C . , m B C . , m A B .         

After taking the negator of  PCR6
1 2,m .  using Indirect PCR6 (IF-PCR6) fusion 

approach we obtain the following final result 

   

     

IF PCR6 IF PCR6
1 2 1 2

IF PCR6 IF PCR6 IF PCR6
1 2 1 2 1 2

0 0 6142

0 15 0 09 0 1458

, ,

, , ,

m , m A B . ,

m A C . , m A . , m C . .

 

  

   

   
 

We see that direct and indirect PCR6-based fusion methods give distinct results 

because    IF PCR6 PCR6
1 2 1 2, ,m . m .  . The indirect fusion results based on DS rule and PCR6 

rule provide similar maximal mass value for the same focal element A B because 

   IF DS IF PCR6
1 2 1 20 63 0 6142, ,m A B . ,m A B .     .We see that the set of focal elements 

of  IF DS
1 2,m . and  IF PCR6

1 2,m . are different because IF-PCR6 commits a mass 

specifically to the element C which is not a focal element of  IF DS
1 2,m . . Actually, the 

sets of focal elements of BBAs  IF DS
1 2,m .  and  IF PCR6

1 2,m .  are different. 

6.3. Example 3 – Blackman’s example (Bayesian and non-Bayesian BBAs) 

This simple example has been introduced by B l a c k m a n  and P o p o l i  in [28] and 

analyzed by the authors in [29]. We consider the FoD  A,B and the following 

two BBAs 
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     

     

   

   

m A . ,m B . ,m A B ,

m A . ,m B . ,m A B . .

1 1 1

2 2 2

0 5 0 5 0

0 1 0 1 0 8
 

We see that there is no way to decide either AorB in this example because each 

SoE does not bring useful information to help for decision-making. Each BBA  m .1  

and  m .2 is completely symmetrical to A  and B . So intuitively, there is no reason to 

expect an improvement in the decision-making based on the fusion of these two 

BBAs. The conjunctive fusion of  m .1  and  m .2  yields 

     , , ,m . , m A . , m B .     1 2 1 2 1 20 1 0 45 0 45 . 

We see that the conflicting mass  ,m .  1 2 0 10must be redistributed to some 

elements of  \ 2 in order to get a proper fused BBA. 

 Direct fusion with DS rule 

By applying DS rule (19), we obtain      DS DS DS
1 2 1 2 1 20 0 5 0 5, , ,m , m A . , m B . .     

 Direct fusion with PCR6 rule 

By applying PCR6 rule (20), we obtain  

     PCR6 PCR6 PCR6
1 2 1 2 1 20 0 5 0 5, , ,m , m A . , m B .    . 

As intuitively expected, the direct fusion results based on DS rule and on PCR6 

rule do not help to make a rational decision in favor of A  or B . 

 Indirect fusion with DS and PCR6 rules 

Applying BBA negator defined by (16), we obtain 

     

     
1 1 1

2 2 2

0 5 0 5 0

0 1 0 1 0 8

m B . ,m A . ,m A B ,

m B . ,m A . ,m A B . .

   

   
 

Because  2 , we see that we have        m . m . , m . m . 1 1 2 2 . Therefore, 

we will get the same result with the conjunctive fusion of  m .1  and  m .2  as for the 

direct conjunctive fusion of  m .1  and  m .2 . The direct or indirect fusion methods 

based on DS and PCR6 rules will yield actually to the same fusion result, that is 

       

       

DS IF DS PCR6 IF PCR6
1 2 1 2 1 2 1 2

DS IF DS PCR6 IF PCR6
1 2 1 2 1 2 1 2

0 5

0 5

, , , ,

, , , ,

m A m A m A m A . ,

m B m B m B m B . .

 

 

   

   
 

This example is interesting because it is a situation where there is no advantage 

of using direct fusion with respect to indirect fusion and vice-versa. 

7. Two important remarks 

Remark 1. As shown in Zadeh’s example (Section 6.1) the indirect fusion gives 

       IF IF IF IF
1 2 1 2 1 2 1 20 81 0 09 0 09 0 01, , , ,m A B . , m A C . , m B C . , m C .          . 

It is interesting to observe that this result coincides with the fusion result 

obtained with the disjunctive rule of combination (18). Indeed, we have 

       , , , ,m A B . , m A C . , m B C . , m C .         1 2 1 2 1 2 1 20 81 0 09 0 09 0 01 . 
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We may question if the equality    IF
1 2 1 2, ,m . m .  is a general property satisfied 

or only just a coincidence. In fact, it is clear that this is just a simple coincidence due 

to the particular structure of focal elements of the BBAs of Zadeh’s example. This 

property does not hold in general even if there is no conflict between the negators. 

As a simple counter-example, consider the extended Blackman’s example with 

 A,B,C with two BBAs 

     

       

  

     

m A m B m C ,

m A m B m C . ,m A B C . .

1 1 1

2 2 2 2

1 3

0 1 0 7
 

In this case, no conflict exists between the negators  m .1  and  m .2 .The 

indirect fusion approach gives the final result 

       

       

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

0 0 1 3

0 2 3 0 7

, , , ,

, , , ,

m , m A m B m C . ,

m A B m A C m B C . , m A B C . .

   

   

    

        
 

The fusion result obtained with the disjunctive rule of combination (18) for this 

extended Blackman’s example is 

       

       

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

0 0 1 3

0 2 3 0 7

, , , ,

, , , ,

m , m A m B m C . ,

m A B m A C m B C . , m A B C . .

   

   

    

        
 

We see that    IF
1 2 1 2, ,m . m .  in this example, so the property    IF

1 2 1 2, ,m . m . 

is not always satisfied. This means that De Morgan’s law does not hold in general in 

information fusion of BFs. More precisely, the direct disjunctive fusion of BBAs is 

not necessarily equivalent to the negator of the conjunctive fusion of negators. 

Similarly, the direct conjunctive fusion of BBAs is not necessarily equivalent to the 

negator of the disjunctive fusion of the negators. 

Remark 2. The negation of a BBA does not necessarily increase the entropy 

contrary to what is claimed in the literature in some papers cited in Section 3. To 

prove this claim, just consider the FoD  A,B,C and the BBA  m . given by 

     m A B . ,m A C . ,m A B C .      0 7 0 2 0 1 . 

This verifies that the entropy of  m . obtained by the formula (4) is 

 U m . 4 299 nats. Our negator of  m .  is 

     m C . ,m B . ,m A B C .    0 7 0 2 0 1 , whose entropy is  U m .1 254  nats. 

One sees    U m U m  in this simple example. Therefore, the negation of a BBA 

 m . does not necessarily increase the entropy. It really depends on the mass of belief 

committed to focal elements of BBA  m . . 

8. Management of direct and indirect fusions  

As shown in the examples of Section 6 the results obtained with direct fusion 

approach and indirect fusion approach do not coincide except but in very particular 
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cases. In general, we have IF DF
1 2 1 2, ,...,S , ,...,Sm m . Therefore, at this stage of our research 

work, we are facing a new problem: what to do with these two fusion results 

 DF
1 2, ,...,Sm . and  IF

1 2, ,...,Sm .  for decision-making support. This section provides two 

possible answers to this important question. 

Answer 1. Fuse 
 DF

1 2, ,...,Sm .
with 

 IF
1 2, ,...,Sm .

 
The first intuitive answer to the aforementioned question would consist in fusing 

(i.e., combining) the two fusion results  DF
1 2, ,...,Sm . with  IF

1 2, ,...,Sm .  by some chosen 

appropriate rule of combination, typically the PCR6 rule (or the PCR6+ rule if  

S 2 , see [21]). This first answer is unfortunately not very satisfactory and not 

recommended from a theoretical point of view, because  DF
1 2, ,...,Sm . and  IF

1 2, ,...,Sm . are 

actually based on exactly the same original inputs corresponding to BBAs 

     Sm . ,m . ,...,m .1 2 . Therefore,  DF
1 2, ,...,Sm . and  IF

1 2, ,...,Sm . cannot be considered as 

(cognitively) independent and their fusion is not recommended because of redundant 

information, which may generate some biases in the final result and decision-making 

mistakes. If this approach is however used in applications by some users, we suggest 

at least to take into account the quality of each source  DF
1 2, ,...,Sm . and  IF

1 2, ,...,Sm . , 

characterized by their entropies  DF
1 2, ,...,SU m and  IF

1 2, ,...,SU m . 

A very simple fusion method would consist for instance to apply the weighted 

averaging fusion of  DF
1 2, ,...,Sm . with  IF

1 2, ,...,Sm . defined for any X 2 by 

(25)       DF DF IF IF
1 2 1 2, ,...,S , ,...,Sm X m X m X  ,  

where the importance weighting factors  DF DF 0 1, ,    and DF IF 1   .  

Other fusion methods based on discounting techniques and entropies could be 

eventually developed also, but fundamentally we do not recommend to combine 

 DF
1 2, ,...,Sm . with  IF

1 2, ,...,Sm . for the aforementioned reason of underlying dependency of 

original BBAs that have been used to generate direct and indirect fusion results 

 DF
1 2, ,...,Sm . and  IF

1 2, ,...,Sm . . 

Answer 2. Select either  DF
1 2, ,...,Sm . or  IF

1 2, ,...,Sm .  

As we consider that the intuitive previous answer is not satisfactory, we need to 

seriously consider a second option of management of direct and indirect fusion results 

 DF
1 2, ,...,Sm . and  IF

1 2, ,...,Sm . . This second option consists in selecting only one BBA or 

 IF
1 2, ,...,Sm . for decision-making support. However, which one to select? How? 

For selecting the BBA  DF
1 2, ,...,Sm .  or  IF

1 2, ,...,Sm .  we propose to adopt the 

maximum entropy principle which states we should select the BBA which leaves us 

the largest remaining uncertainty. More precisely, we will select  DF
1 2, ,...,Sm . if 

   DF IF
1 2 1 2, ,...,S , ,...,SU m U m , and we will select  IF

1 2, ,...,Sm . if    IF DF
1 2 1 2, ,...,S , ,...,SU m U m . In 

the very rare cases where    DF IF
1 2 1 2, ,...,S , ,...,Sm . m .  no selection is needed because the 
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two BBAs  DF
1 2, ,...,Sm .  and  IF

1 2, ,...,Sm . coincide. This maximum entropy principle is 

rather simple to use in practice because we need only to calculate the entropies 

 DF
1 2, ,...,SU m  and  IF

1 2, ,...,SU m . 

We now provide more details on how to proceed in the interesting examples 

considered in Section 6. 

8.1. For Example 1 – Zadeh’s example (two Bayesian BBAs) 

 With direct fusion using DS rule 

We obtain the Bayesian BBA  DS
1 2 1,m C  . The entropy of DS

1 2,m  is  DS
1 2 0,U m   

nats. This stipulates that there is no uncertainty carried by this very specific BBA 

which is a counter-intuitive result as explained in [23]. 

 With direct fusion using PCR6 rule 

We obtain      PCR6 PCR6 PCR6
1 2 1 2 1 20 486 0 028, , ,m A m B . ,m C .   .The entropy of this 

Bayesian PCR6
1 2,m  based on the formula (4) is  PCR6

1 2 0 8014,U m .  nats. 

 With indirect fusion approach 

We obtain (see Section 6.1) 

       IF IF IF IF
1 2 1 2 1 2 1 20 81 0 09 0 09 0 01, , , ,m A B . , m A C . , m B C . , m C .          . 

The entropy of this non-Bayesian BBA IF
1 2,m  based on formula (4) is  

 IF
1 2 3 8714,U m .   nats. Clearly, the BBA to use for decision-making support 

corresponds to the indirect fusion result IF
1 2,m   because    IF PCR6

1 2 1 2, ,U m U m  . From 

the selected BBA IF
1 2,m   the final decision can be done thanks to different techniques 

that are detailed in [30]. In Zadeh’s example the hypothesis C will be rejected 

whereas even if there is a tie between A  and B  that can be eliminated arbitrarily (if 

we want) by a uniform random draw (i.e., perfect coin tossing) between A  and B . 

8.2. For Example 2 – Dezert-Tchamova example (two non-Bayesian BBAs) 

We consider the Example 2 given in Section 6.2. 

 For direct fusion with DS rule 

       DS DS
1 2 1 1 2 10 3 0 7, ,m A . m A , m A B . m A B      . 

The entropy of DS
1 2,m  is  DS

1 2 0 6108,U m .  nats. 

 For direct fusion with PCR6 rule 

     PCR6 PCR6 PCR6
1 2 1 2 1 20 2062 0 5542 0 2396, , ,m A . , m A B . , m C .    . 

The entropy of PCR6
1 2,m  is  PCR6

1 2 2 917,U m .  nats. 

 For indirect fusion with DS rule 

     IF DS IF DS IF DS
1 2 1 2 1 20 14 0 63 0 23, , ,m A . , m A B . , m A C .       . 

The entropy of IF DS
1 2,m   is  IF DS

1 2 3 4175,U m .   nats. 
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 For indirect fusion with PCR6 rule 

       IF PCR6 IF PCR6 IF PCR6 IF PCR6
1 2 1 2 1 2 1 20 09 0 1458 0 6142 0 15, , , ,m A . , m C . , m A B . , m A C .         . 

The entropy of IF PCR6
1 2,m   is  IF PCR6

1 2 3 4358,U m .   nats. 

One sees that if DS rule is used and preferred by the user (for his own reason) 

and because    IF DS DS
1 2 1 2, ,U m U m   it will be more reasonable for the user to select 

IF DS
1 2,m  rather than DS

1 2,m to draw the final decision. Because we do not recommend DS 

fusion rule in general due to its bad dictatorial behavior, we will actually select 
IF PCR6
1 2,m  for decision-making because    IF PCR6 PCR6

1 2 1 2, ,U m U m  . For this example and 

based on IF PCR6
1 2,m  we will finally decide A  because IF PCR6

1 2,m  is closest to the sure BBA 

defined by  Am A 1  than to the sure BBAs defined by  Bm B 1  and by  Cm C 1 . 

More precisely, for this numerical example, we get 

   IF PCR6 IF PCR6
1 2 BI 1 20 5019 0 6456BI , A , Bd m ,m . ,d m ,m .    and  IF PCR6

BI 1 2 0 7093, Cd m ,m .  , 

where  BId .,.  is the Euclidean belief interval distance between two BBAs, see [30] 

for details. Note that the same decision A  will be drawn incidentally from IF DS
1 2,m  . 

8.3. For Example 3 – Blackman’s example (Bayesian and non-Bayesian BBAs) 

For the simple Blackman’s example of Section 6.3 we have 

       

       

DS IF DS PCR6 IF PCR6
1 2 1 2 1 2 1 2

DS IF DS PCR6 IF PCR6
1 2 1 2 1 2 1 2

0 5

0 5

, , , ,

, , , ,

m A m A m A m A . ,

m B m B m B m B . .

 

 

   

   
 

Therefore, there is no BBA selection to do because all coincide and we have 

   DS IF DS
1 2 1 2 0 6931, ,U m U m .   nats and    PCR6 IF PCR6

1 2 1 2 0 6931, ,U m U m .   nats. 

Because all the masses of belief of A  and B  are equal there is no way to make 

a rational decision towards A  or towards B . The final decision-making in this 

situation (where there is a tie) can be done based either on an arbitrary choice between 

A  and B , or by a (uniform) random choice between A  and B  based on a perfect coin 

tossing experiment. Eventually in a given practical fusion problem (for instance in a 

tracking application) where a tie occurs, we would estimate the main consequences 

generated by the arbitrary (or random) decision chosen (in term of costs and benefits 

for instance) to select the best one. This tie elimination method needs of course extra 

knowledge about the problem under concern. This goes beyond the scope of this 

paper. 

9. Conclusion 

In this paper we have analyzed the different definitions of a negator of a probability 

mass function (pmf) and a Basic Belief Assignment (BBA) existing so far in the 

literature. In order to overcome their limitations we have introduced a new involutory 

negator of BBA. Based on it, a new indirect information fusion method has been 
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proposed which can circumvent the conflict management problem in difficult fusion 

situations. The classical direct and the new indirect information fusion strategies are 

analyzed for three interesting examples of fusion of two BBAs. In order to manage 

properly these two types of fusion, two methods for using the whole available 

information (the original BBAs and their negators) for decision-making support are 

presented. The first method is based on the combination of the direct and indirect 

fusion strategies. The second one selects the most reasonable fusion strategy (direct 

or indirect) to apply based on the maximum entropy principle. A deep analysis of the 

advantages and drawbacks of these two methods has been made. We will evaluate 

these new fusion approaches in different fields of applications (multi-sensor data 

association for tracking, multi-criteria decision-making under uncertainty, perception 

in robotics, risk assessment, etc.) in our future research works. We also invite the 

users of belief functions and the fusion system designers to share and report their 

evaluation of this new approach on their own applications in future publications 
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