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Abstract: A novel approach to modeling stochastic processes of goods exchange 

between multiple agents is presented, considering the possibility of optimizing the 

environment’s characteristics and individual decision-making strategies. The 

proposed model makes it possible to form optimal states when choosing the moments 

of concluding barter and monetary transactions at the individual level of each agent 

maximizing the utility function. A new parallel hybrid Real-Coded Genetic Algorithm 

and Particle Swarm Optimization (RCGA-PSO) has been developed, combining 

methods of evolutionary selection based on well-known heuristic operators with 

methods of swarm optimization and machine learning. The algorithm is 

characterized by the best time efficiency and accuracy in comparison with other 

methods. The software implementation of the developed algorithm and model has 

been performed using the FLAME GPU framework. The possibility of using the 

RCGA-PSO Algorithm to optimize the characteristics of the environment and 

strategies for making individual decisions by agents involved in barter and monetary 

interactions is demonstrated. 

Keywords: Stochastic simulation model; agent-based modeling of barter and 

monetary interactions; optimal control in agent models; real-coded genetic 

algorithms; machine learning methods; particle swarm optimization; FLAME GPU. 

1. Introduction 

In modern times, there is a significant complication of the requirements for economic 

planning Decision Support Systems (DSS), which is due to the need to find the best 

scenarios for control of complex multiagent socio-economic systems. Among such 

systems, more attention should be paid to models of economic dynamics based on the 
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equilibrium of forecasts of economic agents [1, 2], models of random sales [3], and 

models of the behavior of producers and consumers interacting at random moments 

[4, 5]. 

As a rule, in the above multi-agent systems, the description of the interaction 

between sellers and buyers is built as a controlled Markov process [6, 7]. One of the 

issues explored with this approach is the role of money in the economy and the 

existence of barter trade. The same construction can be applied to situations where 

there are several variants of money. The model is based on the interaction between 

random pairs of agents at random times with their mutual consent. At the same time, 

agents can be in a state of readiness or refusal to participate in transactions, thereby 

implementing their trading strategy [2]. The existence of optimal strategies in Markov 

processes with a finite number of states has been theoretically proven [7] However, 

finding the best individual strategies is a difficult problem of optimal control. At the 

same time, it is impossible to use traditional dynamic programming methods based 

on the construction and solution of the Bellman equation to determine the optimal 

strategies of multiple interacting economic agents [2]. Therefore, this paper proposes 

a novel approach using a hybrid genetic algorithm. 

In the past, Real-Coded Genetic Algorithms (RCGAs) have been developed and 

applied to optimize the characteristics of the environment in a multisector bounded-

neighborhood model [8]; to optimize the characteristics of the ecological and 

economic system [9]; to improve the maneuverability of unmanned vehicles on the 

scale of the ‘smart city’ [10, 11], to minimize a simplified model of the energy 

function of the molecule [12]; for grasping an object of a priori unknown shape [13] 

and others. For the first time, the use of heuristic real-coded operators was proposed 

in [14], which made it possible to apply genetic algorithms (of the RCGA class) to 

solve high-dimensional optimization problems. On the other hand, there is a well-

known problem of high computational complexity of RCGA, which is observed when 

solving optimization problems, the objective functionals of which are calculated 

because of simulation modelling [9]. Therefore, in this paper, an attempt is made to 

improve the time efficiency of the genetic algorithm, mainly due to integration with 

the Particle Swarm Optimization Algorithm (PSO Algorithm) [15, 16] and the use of 

an artificial neural network designed and trained to quickly approximate the objective 

functional in the optimization problem under consideration. The advantage of PSO is 

a significantly faster (“swarm”) mechanism for searching for promising solutions, 

which does not require the performance of resource-intensive evolutionary search 

operations used in RCGA. However, swarm algorithms [16] often converge at local 

extrema and give fewer stable solutions. In addition, it is known [17], that the use of 

ANN and some other machine learning methods (such as the support vector machine, 

regression based on Gaussian processes, etc.) allows the fitness-function 

approximation to reduce the total number of recalculations with the original 

simulation model. 

The purpose of this article is to develop a new approach to modeling stochastic 

processes of goods exchange between multiple agents, considering the possibility of 

optimizing the environment’s characteristics and the decision-making of agents using 

the proposed heuristic technique that combines the Real-Coded Genetic Algorithm 

http://www.ccas.ru/mmes/mmest/ecodyn03.htm
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and Particle Swarm Optimization (RCGA-PSO). Within the approach, a software 

implementation of the proposed heuristic algorithm, aggregated by objective 

functions with the developed stochastic model of the exchange of goods between 

multiple agents and its ANN-based surrogate model, has been completed using the 

FLAME GPU supercomputer simulation framework [18-20]. 

2. Stochastic model of goods exchange between multiple agents 

2.1. Model concept 

The initial statement of the problem is presented in [2]. A system is considered in 

which paired interactions are realized between multiple agents (sellers and buyers) at 

random moments of time, provided that their mutual interests coincide (i.e., there is 

a supply and demand for a particular product). Each agent consistently produces, 

exchanges, and consumes a unit volume of one of the fixed sets of products. After 

the consumption of the obtained product, the production of another begins. At random 

moments, a unit volume of a new product is generated at an agent in the state of 

production, which is then transferred or sold to a buyer interested in this particular 

product. Transactions between agents are carried out, provided that they are in a 

certain visibility zone, determined by the radius of trade interaction100 100 . In this 

case, the radius of the trade interaction is determined by the range of cells considered 

neighboring [8]. 

 
Fig. 1. Different scenarios for the initial spatial distribution of agents 

There are not any deals if the pair of agents with money are met. If the agent-

buyer has money, and the agent-seller does not have money, but there is a product 

the buyer needs, and both agents are in a state of readiness for monetary transactions, 

then the corresponding product is transferred from the seller to the buyer for a 

monetary reward. If the agent-buyer and the agent-seller do not have money, but they 

have products that each other needs and both agents are in a state of readiness for 

barter deals, then the corresponding products are exchanged. With the successful 

completion of monetary and barter deals, the individual utility function of each 

interacting agent (both the seller and the buyer) is incremented by an amount 

depending on the distance between the target and the purchased product. At the same 
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time, the seller transitions to the state of waiting for the production of a new product, 

within which the sets of available and target products are updated (that is, the 

characteristics of the supply and demand of this agent change). For simplicity, in the 

considered multi-agent system, the time costs for the production of new products are 

not considered, i.e., agent-sellers produce their new goods immediately after the 

conclusion of deals. 

An important difference between the proposed model and the previously known 

ones [2, 6, 7] is the consideration of the influence of the spatial distribution of agents 

on the dynamics of trade interactions. In particular, various options for the initial 

placement of agents in a discrete space with a limited dimensionality are considered 

(Fig. 1).  

In Fig. 1, the following denotations are used: 

• the “uniform distribution” of sellers (seller agents are marked in black, and 

buyer agents – in grey); 

• the “ring distribution” with a core consisting of seller agents, surrounded by 

agents-buyers; 

• “torus-shaped distribution”, providing alternation of buyers and sellers from 

the center to the periphery; 

• “chess distribution”, providing placement of buyers and sellers in their 

sectors of an equal area; 

• “diagonal distribution”; 

• “cone-shaped distribution”.  

Initially, the population is divided into two conditional groups: sellers with their 

own sets of products, but who do not have money, and buyers, who have money, but 

do not own products. During the simulation period, agents can change their roles 

many times (i.e., sellers become buyers and vice versa depending on whether they 

have money, products, etc.). They can also move in a discrete space with a given 

probability and in a given (fixed) range, which affects the dynamics of interactions 

and transactions between agents. 

2.2. Model description 

A system is considered in which, at each moment of model time, a barter or monetary 

transaction can be carried out between each pair of agents that are in the visibility 

range (i.e., one transaction between a certain pair of interacting agents at each 

moment of time). 

The strategy for making individual decisions by agents consists of the formation 

of optimal states (readiness) for concluding trade transactions for each moment of 

time. Such states are set outside the model using the developed hybrid genetic 

algorithm RCGA-PSO. The remaining states related to the choice of types of 

transactions, etc., are endogenous. 

Here: 

• 
0 1{ ,  ...,  } T t t T= is the set of time moments (by days), T

 
is the total 

number of time moments; 
0t T  and 

T
t T are the initial and final moments of the 

model; 



 91 

• 1 2{ ,  ,  ..., }
I

I i i i=  is the set of indices of agents, where I  is the total number 

of agents, i I  is the sellers’ indices, î I  is the buyers’ indices; 

• 1{ ,  ,  ...,  }i P
P p p p=  is the set of indices of products; P  is the total number 

of products; ( ) ,  ,  ,i k kp t P i I t T    is the indices of products that is available to the 

i-th agent; ( ) ,  ,  ,i k kd t P i I t T    is the index of the product that is needed by the  

i-th agent; 

• { ( ),  ( )} {0,  1},  ,i k i kb t m t i I   is the readiness state of the i-th agent to 

conclude barter and monetary deals, respectively, at the moment 
kt  ( ) :kt T   

0 – the transactions are prohibited, 1 – the transactions are allowed; 

• 
1( ),  ,i kt i I−   is the amount of available money of the i-th agent at the 

moment 
1kt −

 
1( )kt T−  ; 

• 
1( ) {0,  1},  ,  ,

ip k iv t p P i I−     is the available quantity of the ip -th product 

of the i-th agent at the moment 
1kt − 1( )kt T−  ; 

• 
1( ),  ,i ku t i I−   is the value of the utility function of the i-th agent at the 

moment 
1kt −

 
1( );kt T−   

• ˆ( )kii
t  is the distance between the ( )ki

p t -product ( ( ) )ki
p t P  belonging to 

the i -th agent-seller ( i I ) and the ˆ( )ki
d t -product ˆ( ( ) )ki

d t P  belonging to the  

î -th agent-buyer ˆ( )i I , measured along the length of the arc of a numerical circle 

with evenly distributed numbers at the moment
1kt −

 
1( )kt T−  , 

(1)  ˆ ˆ ˆ

1
( ) min ( ) ( ) ,  ( ) ( ) ;

1
k k k k ki iii i i

t p t d t P p t d t
P

 = − − −
−

  

• 0  is the coefficient of contractuality (i.e., threshold compliance) of the 

product of the agent-seller with the interests of the agent-buyer; because of the 

 0,  1 , the coefficient can be interpreted as the probability of a trade. 

Then, the assessment of the level of compliance of the product of the agent-

seller with the interests of the agent-buyer can be given as 

(2) 
ˆ

ˆ

ˆ

1 if ( ) ,
( )

0 if ( ) .

kii

kii
kii

t
t

t

  
 = 

  
 

The states of readiness of the i-th agent ( )i I  to the conclusion of barter and 

monetary transactions are set for each moment of time 
kt  ( )kt T  using lognormal 

distributions with given characteristics: 

(3) 

2

2

2

2

ln ( ,  )
 if ln ( ,  ) 0,

ln ( ,  )( )

0 if ln ( ,  ) 0,  

b b

b b

b bi k

b b

N
N

Nb t

N

        =  


   =  
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(4) 

2

2

2

2

ln ( ,  )
 if ln ( ,  ) 0,

ln ( ,   )( )

0 if ln ( ,  ) 0,  

m m

m m

m mi k

m m

N
N

Nm t

N

         =  


   =  

 

where 2ln ( ,  )b bN   , 2ln ( ,  )m mN    are random values having lognormal 

distributions with parameters 2,  b b   and 2,  m m  , respectively.  

At each moment 
kt  ( )kt T , between the -thi  agent-seller ( )i I  and the  

î -th agent-buyer ˆ( )i I a monetary or barter transaction can be done, the result of 

which is a symmetrical change in the amount of money (during monetary interaction) 

and the products available to agents, i.e., 

(5) 
1

1

( )  if  I is fulfilled, 
( )

( ) if III is fulfilled,

ki

ki

ki

t
t

t

−

−

 +
 = 


  

(6) 
ˆ 1

ˆ

ˆ 1

( ) 1 if I is fulfilled, 
( )

( ) if III is fulfilled,

ki

ki
ki

t
t

t

−

−

 −
 = 


 

(7) 
1

1

( ) 1 if  I or II is fulfilled, 
( )

( ) if III is fulfilled,

i

i

i

p k

p k

p k

v t
v t

v t

−

−

−
= 


  

(8) 
ˆ

ˆ

ˆ

1

1

( ) 1 if I or II is fulfilled,  
( )

( ) if III is fulfilled.

i

i

i

p k

p k

p k

v t
v t

v t

−

−

+
= 


 

Here I, II and III are the next three conditions. 

I. ˆ ˆ ˆ1 1( ) 0 and  ( ) 0,  and  ( ) 1,  and  ( ) ( ) 1k k k k ki ii ii i
t t t m t m t− − =    = = , which 

means that the agent-seller has no money, the agent-buyer has money, the 

seller has a product, the threshold compliance of the product of the agent-seller 

with the interest of the agent-buyer, and the mutual readiness of agents for 

monetary deals. Consequently, monetary interaction is realized between these 

agents. 

II. ˆ ˆ ˆ1 1( ) 0 and ( ) 0,  and ( ) 1,  and ( ) ( ) 1k k k k ki ii ii i
t t t b t b t− − =  =  = = , which 

means that the agent-seller and the agent-buyer have no money, the threshold 

correspondence of the product of the agent-seller to the interest of the agent-

buyer, and the mutual willingness of the agents to barter deals. Consequently, 

barter interaction is realized between these agents. 

III. ˆ1 1( ( ) 0 and ( ) 0)k ki i
t t− −     or  

ˆ ˆ ˆ1 1( ( ) 0 and  ( ) 0,  and  ( ) ( ),  and ( ) ( ) 0)k k k k k ki i ii i i
t t p t d t m t m t− − =   = =  or 

ˆ ˆ ˆ1 1( ( ) 0 and ( ) 0,  and ( ) ( ),  and  ( ) ( ) 0)k k k k k ki i ii i i
t t p t d t b t b t− − =  = = =  or 

ˆ( ) 0kii
t = , which means the meeting of two agents with money or the 

unreadiness of agents for a deal, or the threshold discrepancy between the 
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product of the agent-seller and the interest of the agent-buyer. Therefore, there 

is no interaction between these agents. 

The value of the utility function of the i-th agent ˆ
ˆ( { : ,  ( ) 1})kii

i i i I t   =  at 

the moment is calculated as 

(9) ( )ˆ ˆ( ) ( ) ( ( ) 1)i k k kii ii
t t t r− =   + − . 

Here: 

• [1,  ]r r  is the radius of trade interaction, i.e., the range of cells of the 

discrete placement space of agents considered to be neighbors (see Fig. 1),  

r is the maximum allowable distance between interacting agents; 

• { ,  }v   are the coefficients that determine the impact of the costs of the 

distance between the target and the purchased product, as well as between the 

buyer and the seller, respectively; the values of these coefficients are chosen 

in such a way that the condition ( ) 0  ,  i k kt i I t T     , is observed, for 

example, 1.5,  0.01v =  =  and 20r = . 

To form optimal decision-making strategies for the i-th agent ( )i I  it is 

possible (with some assumption) to replace individual utility functions with the 

average utility of future consumption for an ensemble of agents, which can be defined 

as 

(10) 
0 1

1
( ).

k

T I

i k

t i

U t
I

= =

=   

In this case, it is possible to determine the following control parameters for the 

multi-agent system being studied: 

• , [ 1,  1]b m   − , and 2 2, (0,  1]b m    are the parameters of log-normal 

distributions that determine the readiness of agents to conclude barter and 

monetary transactions; 

• {1,  2, 3, 4, 5, 6}c  is the configuration of the initial distribution of 

agents in a discrete space (see Fig. 1); 

• [0,  1]  is the coefficient of contractuality (i.e., threshold 

compliance) of the product of the agent-seller with the interests of the agent-

buyer, which determines the probability of a deal; 

•  is the radius of trade interaction; 

• [0,  1]h  is the probability of moving agents in the discrete space. 

Then, the problem of seeking optimal strategies for the agents’ behavior and 

improving the environment’s characteristics can be formulated in the following form. 

Problem A. Maximize the average utility of future consumption for an 

ensemble of agents over the sets of control parameters that determine the states of 

agents 2 2{ ,  ,  ,  }b b m m     and environmental characteristics { ,  ,  ,  }:c r h  

 

[1,  ]r r
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(11)  
2 2{ , , , }, { , , , }

max
b b m m c r h

U
    

,  

s.t. 

, [ 1,  1],b m   − 2 2, (0,  1],b m    {1,  2, 3, 4, 5, 6},c  [0,  1],  [1,  ]r r , [0,  1].h  

The developed model has been implemented in the FLAME GPU 

supercomputer agent-modeling environment [18]. This model is aggregated through 

the objective function (10) with the proposed genetic RCGA-PSO Algorithm for 

solving Problem A. 

3. Hybrid genetic optimization algorithm 

3.1. Description of RCGA-PSO  

A novel hybrid genetic optimization RCGA-PSO Algorithm has been developed, 

aggregated by the target functional with the proposed stochastic model for the 

exchange of goods. The developed RCGA-PSO Algorithm is shown in Fig. 2. 
 

 
Fig. 2. Developed hybrid genetic RCGA-PSO Algorithm  
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As shown in Fig. 2, the functional logic of the proposed algorithm is effectively 

distributed between the Central Processing Unit (CPU) and parallel streams of the 

Graphics Processing Unit (GPU). 

The advantage of using a genetic algorithm is the possibility of a relatively fast 

evolutionary search for suboptimal strategies for making individual decisions by 

agents and environmental parameters that ensure the maximization of the objective 

function which is the utility of future consumption for an ensemble of agents.  

A similar problem belongs to the class of simulation-based optimization when the 

value of the objective and fitness functions is calculated as a result of simulation 

modeling [9-11]. Another important advantage of this approach is the ability to use 

both the CPU and GPU system architecture. 

A feature of RCGA-PSO is the combination of an evolutionary search procedure 

based on real-coded heuristic operators (selection, crossover, and mutation) – RCGA 

with a parallel swarm optimization algorithm PSO to achieve the highest 

performance. 

In Fig. 2, the following variables and notations are used: 

• 0 1{ , , ...,  } t t t T= is the set of iterations of the Genetic Algorithm (GA), T  

is the total number of iterations in GA, 
0t T , 

T
t T are the initial and final 

moments of GA; 

• w  is the frequency of alternating the use of RCGA and PSO to search for the 

best potential solutions; 

• LX (Laplace Crossover), SBX (Simulated Binary Crossover), PM (Power 

Mutation), SUM (Scalable Uniform Mutation) are known crossover and mutation 

operators [9]. 

The main characteristic of the RCGA-PSO (common for algorithms of the 

RCGA’s classes) is the fitness function, which is calculated for each individual of 

each agent-process at iteration
kt ( )kt G : 

(12)   

1

( ( ))
ˆ ( ( ))

( ( ))

i i

i i i

i i

j j k

j j k J

j j k

j

f t
f t

f t
=

=



x
x

x

. 

Here: 

• 1 2{ ,  ,  ..., }
I

I i i i=  is the set of indices of agent-processes of RCGA, 

where I is the total number of agent-process; 

• 1 2{ ,  ,  ..., }
i

i i i J
J j j j=  is the set of indices of individuals (consisting of the 

vector of values of the decision-variables and the value of the objective 

function) belonging to the i-th agent-process of RCGA ( )i I , where iJ is the 

total number of individuals in the population of potential solutions; 

• ( ) [ ,  ]
ij kt x x x  is the vector of the decision-variables’ values at the 

moment 
kt ( ),kt T  belonging to the -thij  individual ( )i ij J  of the i-th agent-
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process of RCGA ( )i I  at the moment 
kt  ( ),kt T  where ,  x x  are the lower 

and upper boundary values of the decision-variables; 

• ( ( )),  ,  
i ij j k i if t i I j J x , is the value of the objective function calculated 

for each ij -th individual ( )i ij J  of the i-th agent-process of RCGA ( )i I  at 

the moment 
kt ( )kt T  using the developed stochastic model of goods 

exchange. 
When is using the PSO Algorithm in RCGA-PSO, the velocity vector for the 

decision variables is calculated, which determines the position of the i-th agent-

particle ( )i I , in the space of potential decisions at the moment 
kt , 

( ,  1,  2,  ...,  )kt T k K = : 

(13) *

1 1 1 1 2 1 1( ) ( ) (0,  1)( ( ) ( )) (0,  1)( ( ) ( )),g

i k i k i k i k k i kt t c q t t c e t t− − − − −=  + − + −v v x x x x  

(14)   
1 1 1 1

1 1 1

( ) ( ) if ( ) ( ) [ ,  ],
( )

( ) if ( ) ( ) [ ,  ].

i k i k i k i k

i k

i k i k i k

t t t t
t

t t t

− − − −

− − −

+ + 
= 

+ 

x v x v x x
x

x x v x x
  

Here: 

• 1 2{ ,  ,  ..., }
I

I i i i=  is the set indices of agent-particles of PSO, where I  

is the total number of agent-particles; 

• *

1( )i kt −x , 
1( )g

kt −x  are the best potential decisions obtained by the agent-

particles of PSO during the search period and all agent-particles at the moment 

kt 1( )kt T−  ; 

• (0,  1),  (0,  1)q e  are the random values uniformly distributed on the 

interval [0,  1] ; 

• 
1 2,  ,  c c  are constants, the values of which, as a rule, are set in the 

following ranges: 
1 2[0.4,  1.4],  [1.5,  2],  [2,  2.5]c c   . 

The interaction between RCGA and PSO is provided by the periodic exchange 

of the best potential decisions obtained among all agent-processes of RCGA and 

agent-particles of PSO, respectively (Fig. 2). 

An important feature of RCGA-PSO is the mutation operator applied to each 

element of the decision-variable vector of a pair of descendant individuals 1,2, ( ),  i ktx

previously obtained as a result of selection and crossing over at the level of each i-th 

agent-processes ( )i I  at the moment
kt  ( )kt T : 

(15) 

( )

( )

1,2,

1,2,

1,2,

1,2,

SUM ( ),   if   and (0,  1) 1,
4

MUT ( ),   if ,   and (0,  1)  or
4 2( )

                                     and  (0,  1) , 
2

( )  if (0,  1)

i k k

i k k k m

i k

k m

i k

T
t I t h

T T
t u t t h p

t

T
t h p

t h p

 

 
   

=  

 
  

 



x

x
x

x .m
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Here: ,  m mp p  are the standard and minimum probability of applying the mutation 

operator to the previously obtained (through a crossover) ( ),  ,i kt i Ix decisions; 

( )1,2,SUM ( ),  i kt Ix  is the scalable uniform mutation operator, the performance of 

which depends on the total number of involved agent-processes (see [9]); 

( )1,2,MUT ( ),  i kt ux  is the combined mutation operator selected from the set of 

{UM, PM, SUM}  (uniform, power, etc.), where {1, 2, 3}u  is the random number 

defined in accordance with a discrete uniform distribution; (0,  1)h  is the random 

number uniformly distributed on the segment [0,  1] . 

3.2. Test results for RCGA-PSO  

In Table 1 known test instances that have been carried out to test and verify the 

developed RCGA-PSO Algorithm are presented. 

Table 1. Test instances for RCGA-PSO Algorithm 
Test instances Problem statement and global minimum Feasible ranges 

FT1 – Rastrigin function 
( )2

1

( ) 10 10cos(2 )
n

i i

i

f n x x
=

= + − x , 

(0, 0, ..., 0) 0f =  

5.12 5.12,ix−    

1, 2,...,i n=  

FT2 – Rosenbrock function 
( )

1
2 2 2

1

1

( ) 100( ) ( 1)
n

i i i

i

f x x x
−

+

=

= − + −x , 

(1,1, ...,1) 0f =  

5 5,ix−    

1, 2,...,i n=  

FT3 – Shaffer’s F6 function 
( )

2 2

1

2
2

sin 0.5

( ) 0.5
1 0.001

n

i

i

i

x

f
x

=

 
− 

 
= +

+


x , 

(0, 0, ..., 0) 0f =  

100 100,ix−    

1, 2,...,i n=  

FT4 – Schwefel function 
( )

1

1
( ) sin

n

i i

i

f x x
n =

= − x , 

420.9685 420( ,..., ).9685 418.98289f −=  

500 500,ix−    

1, 2,...,i n=  

FT5 – Styblinski-Tang function 
( )4 2

1

1
( ) 16 5

2

n

i i i

i

f x x x
=

= − +x , 

2.903534 2.903534 39.1661( ,. , ) 6..f n=− − −  

5 5,ix−    

1, 2,...,i n=  

 

Furthermore, the effectiveness of the proposed heuristic algorithm has been 

compared with other parallel algorithms. An evaluation of performance metrics 

values has been performed for the following parallel heuristic algorithms: 

• RCGA1 is the real-coded genetic algorithm with the SBX crossover 

operators and mutation based on uniform distribution [21]. 

• RCGA2 is the real-coded genetic algorithm with the LX crossover operators 

and PM mutation [22, 23]. 

• RCGA3 is the multiagent real-coded genetic algorithm that combines various 

crossover and mutation operators [9, 10]. 

https://www.sfu.ca/~ssurjano/schwef.html
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• PSO is the standard parallel particle swarm algorithm in which an interaction 

between all agent-particles is carried out to find the global one [15]. 

• RCGA-PSO is the hybrid real-coded genetic algorithm that combines the 

multiagent RCGA3 with the PSO. 

Optimization experiments have been carried out on a DSWS PRO 

supercomputer (2×Intel Xeon Silver 4114, 1×NVIDIA QUADRO RTX 6000) with a 

limited number of iterations 100T =  and the total number of required variables 

10n = . The following parameters have been used for the evaluated algorithms: 

• the number of process agents in RCGA algorithms is 100; 

• the number of particle agents in the PSO and RCGA-PSO algorithms is 100; 

• the sizes of the local population (potential solutions of each agent-process) 

and the parent population in the RCGA and RCGA-PSO algorithms are 100 and 10, 

respectively; 

• the standard and minimum probabilities of applying the mutation operator in 

RCGA-PSO are 0.01,  0.001m mp p= = ; 

• the frequency of interleaving and exchanging the best potential solutions of 

RCGA and PSO algorithms in RCGA-PSO is 5w = ; 

• the constants affecting the rate of convergence in PSO algorithms are

1 20.5,  1.5,  2.5c c = = = . 

Table 2. Evaluation of performance metrics of RCGA-PSO 

Test  

instances 
Metrics 

RCGA- 

PSO 

RCGA and PSO algorithms 
Optimum 

RCGA1 RCGA2 RCGA3 PSO 

FT1 ( )F x  0.0000 0.0000 0.0000 0.0000 8.1500 0 

  0.0 0.0 0.0 0.0 4.4 

PT 1.3 s 20.5 s 20.5 s 21.1 s 0.1 s 

FT2 ( )F x  0.0007 8.9915 8.9932 0.0187 7.3472 0 

  0.0 0.0 0.0 0.0 2.2 

PT 1.4 s 18.0 s 20.5 s 22.2 s 0.1 s 

FT3 ( )F x  0.0000 0.0000 0.0000 0.0000 0.0380 0 

  0.0 0.0 0.0 0.0 0.0 

PT 1.3 s 20.4 s 20.6 s 21.1 s 0.1 s 

FT4 ( )F x  –402.213 –351.099 –358.369 –406.375 –374.910 –418.9829 

  1.2 15.8 17.5 9.9 17.8 

PT 1.5 s 14.9 s 16.8 s 16.1 s 0.1 s 

FT5 ( )F x  –391.661 –298.066 –300.985 –391.655 –388.297 –391.6612 

  0.0 10.5 12.3 0.0 6.0 

PT 1.8 s 22.3 s 22.3 s 22.5 s 0.2 s 
 

As criteria for the effectiveness of the algorithms under consideration, the 

following has been used: 

• ( )F x  is the median (among all performed optimization experiments) value 

of the target functional at the moment 100,T =  

•   is the standard deviation (i.e., the stability of the resulting solutions); 
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• PT (seconds) is the average execution time of the heuristic algorithm. The 

test optimization results are presented in Table 2. 

It is clear from Table 2 that RCGA-PSO demonstrates the best time-efficiency 

relative to other Real-Coded Genetic Algorithms (RCGAs), while keeping up the 

required level of accuracy for obtained decisions. While PSO is characterized by the 

best time efficiency among all those considered (see Table 2), it is significantly 

inferior in the quality of decisions (i.e., it is less close to the optimum) in comparison 

with the most efficient genetic RCGA3 Algorithm. Thus, the hybrid RCGA-PSO has 

the advantages of both RCGA3 and PSO algorithms in terms of accuracy and 

optimization rate, respectively.  

Fig. 3 shows a graph of the convergence rate of the objective function to the 

optimum for RCGA-PSO depending on the number of agent-processes (and agent-

particles) implementing evolutionary search procedures using the instance of FT1 for 

10n = . 

 
Fig. 3. Convergence rate in RCGA-PSO for FT1 

It is evident from Fig. 3 that the convergence rate of RCGA-PSO depends non-

linearly on the number of interacting agent-processes of RCGA and agent-particles 

of PSO. At the same time, the implementation of the substandard algorithm on the 

FLAME GPU makes it possible to significantly increase the number of such agents 

compared to the parallelization architecture based on MPI (i.e., Message Passing 

Interface, see [9]), providing higher convergence rates. 

4. Results of simulation and optimization experiments 

Fig. 4 shows the results of numerical Monte Carlo experiments performed using the 

simulation model (1)-(11) with the total number of economic agents 2000I = and 

products 10P = . The total number of runs performed is 1000. At the same time, the 

results of Monte Carlo experiments have been used in the construction of the  

ANN-based surrogate model to provide the fitness-function approximation within 

RCGA-PSO and reduce the number of recalculation needs to estimate the objective 

function values.  
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Fig. 4. Frequency diagram of utility function values for an ensemble of economic agents 

Table 3 presents the values of the control parameters of the model obtained as a 

result of the statistical (frequency) analysis of the results presented in Fig. 4. 

Table 3. The values of the control parameters obtained with the Monte Carlo Algorithm 

Control parameters 
Value ranges of utility function (conv. units) 

0-10 120-129 130-140 

Average utility (conv. units) 2.69 85.84 118.75 

Parameters  

defining  

economic  

agents’ states 

b  max 0.5969 0.9997 0.5450 

avg. –0.7796 0.4744 0.3010 

min –0.9948 –0.5565 –0.1302 
2

b  max 0.9616 0.9686 0.5578 

avg. 0.2507 0.3368 0.2928 

min 0.0068 0.0014 0.1346 

m  max 0.9806 0.9950 –0.0024 

avg. –0.0850 0.0298 –0.5025 

min –0.8478 –0.9798 –0.8587 
2

m  max 0.9682 0.9966 0.5500 

avg. 0.5259 0.5331 0.4001 

min 0.0287 0.0014 0.2780 

Observation  

frequency of  

configurations  

of agents’  

placement с  

1 11 63 3 

2 5 55 0 

3 1 41 0 

4 2 46 0 

5 4 52 0 

6 4 55 0 

Environment’s  

characteristics 

(for assembly  

of economic  

agents)  

Coefficient of  

contractuality  

  

max 0.9865 0.9951 0.3850 

avg. 0.5238 0.5252 0.2569 

min 0.0031 0.0024 0.0866 

Trade  

interaction  

radius r  

max 20.0 20.0 11.0 

avg. 8.4 11.6 8.0 

min 1.0 3.0 5.0 

Probability of  

moving agents  

h  

max 0.9865 0.9951 0.3850 

avg. 0.5238 0.5252 0.2569 

min 0.0031 0.0024 0.0866 

 

Table 4 presents the results of optimization experiments obtained using  

RCGA-PSO for various configurations of the initial distribution of agents in a 

discrete space, providing the maximization of the average utility of future 

consumption for an ensemble of agents. 
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As evident from Tables 3 and 4 increase in the values of the contact coefficient

, trade interaction radius ,r as well as the probabilities of moving agents h  does not 

lead to an increase in average utility. At the same time, the choice of the initial 

configuration for placing agents in a discrete space significantly affects the 

optimization results. In particular, the first (i.e., mixed) configuration (see Fig. 1) has 

an advantage, since as a result, the probability of contracts between closely located 

(initially) agents-sellers and agents-buyers increases. It is noteworthy that with such 

a favorable configuration, it is advantageous for agents to remain in an almost 

stationary state, i.e., do not change their position in space ( 0.0054)h = . The positive 

impact of the desegregated placement of agents on the socio-economic system has 

also been previously noted by the authors earlier in [9], in which a multi-sector model 

of limited neighborhoods has been proposed. In such a model, the increase in contacts 

between the two groups of agents leads to the acceleration of the processes of 

assimilation of migrant agents and their subsequent involvement in high-tech sectors 

of the economy. 

Table 4. The optimal values of the control parameters obtained with RCGA-PSO 
Control parameters Configurations of the initial placement of agents in space  

and optimal values of control parameters 

1 2 3 4 5 6 

136.54 129.98 131.03 131.12 130.72 131.56 

Parameters that  

define agent 

states in time 

b  0.7383 0.2156 0.4619 0.5121 –0.1939 0.9286 

2

b  0.0268 0.0155 0.2960 0.2120 0.0272 0.0239 

m  –0.6936 –0.1739 –0.8091 –0.5984 –0.7561 0.2702 

2

m  0.2497 0.3254 0.0141 0.0735 0.7010 0.2381 

Environment  

characteristics 

Contractuality  

coefficient   
0.0160 0.1973 0.1193 0.2130 0.1838 0.1391 

Trade  

interaction  

radius r 

8 8 8 7 7 7 

Probability  

of moving  

agents h 

0.0054 0.1677 0.0001 0.0004 0.1756 0.0145 

 

Fig. 5 shows the convergence rate of the average utility to the maximum for 

RCGA-PSO in various configurations of the initial placement of agents in space. 
 

 
Fig. 5. Dynamics of convergence of the average utility to the maximum 
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Fig. 6. Dependence of the average utility on values of the most influenced control parameters 

In Fig. 6, the dependence of the average utility on the coefficient of 

contractuality and the radius of trade interaction is presented, obtained for the first 

(most favorable) configuration of the initial placement of agents, the optimal states 

of which are formed using RCGA-PSO. 

It is clear from Figs. 5 and 6 that RCGA-PSO can be applied to optimize the 

characteristics of the environment and the strategies for making individual decisions 

by agents participating in barter and monetary interactions. 

5. Conclusion 

This paper presents a stochastic agent-based model of the exchange of goods between 

multiple agents, implemented in the FLAME GPU agent-based modeling 

environment. The developed model uses the approach, first proposed in [2, 3], based 

on the study of random barter and monetary interactions to maximize the utility of 

future consumption of agents making individual decisions about concluding 

contracts.  

For the first time, a hybrid heuristic optimization algorithm is developed that 

combines the real-coded genetic RCGA Algorithm and PSO. It uses an ANN-based 

surrogate model to improve the characteristics of the agents’ environment and search 

for optimal strategies for making individual decisions. A new genetic RCGA-PSO 

Algorithm based on the combined use and interaction of RCGA and PSO has been 

developed. RCGA-PSO is characterized by the best time efficiency relative to other 

similar algorithms while keeping up the required level of accuracy of the obtained 

decisions. 

The results of the numerical experiments performed using RCGA-PSO and the 

developed stochastic model of goods exchange show the particular importance of 

choosing the initial configuration for agents’ placement in a discrete space when 

solving the problem of maximizing the average utility. 
Further research will be directed to the development of new heuristic operators 

(crossover and mutation), which provide the possibility of more accuracy and 

autonomous optimization of individual decision-making strategies. Such a system 

can be applied when analyzing the trade in information goods. 
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