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Abstract: A Stream Cipher (SC) is a symmetric-key encryption type that scrambles 

each piece of data in clear text to conceal it from hackers. Despite its advantages, it 

has a substantial challenge. Correct handwriting of the script code for the cipher 

scheme is a challenge for programmers. In this paper, we propose a graphical 

Domain-Specific Modeling Language (DSML) to make it easier for non-technical 

users and domain specialists to implement an SC domain. The proposed language, 

SCLang, offers great expressiveness and flexibility. Six different methods of 

keystream generation are provided to obtain a random sequence. In addition, fifteen 

tests in the NIST suite are provided for random statistical analysis. The concepts of 

the SC domain and their relationships are presented in a meta-model. The evaluation 

of SCLang is based on qualitative analysis and is presented to demonstrate its 

effectiveness and efficiency.  

Keywords: Stream cipher; keystream generation methods; graphical domain-specific 

modelling language; meta-model.  

1. Introduction 

A Stream Cipher (SC) is a cipher type that scrambles data in the origin message 

encrypting one bit/byte at a time to protect it from outsiders, resulting in low 

complexity, a serial nature, and ease of encryption [1]. Through bit-by-bit processing, 

SC allows companies that manage messages written in a trickle to send information 

as soon as it is ready rather than waiting for completion [2]. Most web browser 

engines, real-time applications, and IoT technology use this cipher type  

[3, 4]. Fig. 1 shows other modern applications that use SC. 
The SC Algorithm is based on three essential components: the plain text, a 

symmetric key, and an eXclusive-OR (XOR) logic gate. Cryptographers refer to this 

symmetric key as a keystream. The keystream is generated by a random key generator 

method, which is considered the most challenging process in SC schema, as many 

tests and statistical analyses must be passed to determine its suitability for the 

encryption process [5].  
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Fig. 1. Modern applications of SC 

To make keystream generation in SC schema easier, faster, and more efficient, 

we use the Model-Driven Development (MDD) strategy known as Domain-Specific 

Modeling Language (DSML) [6]. DSMLs can reduce the complexities of a generated 

and tested random sequence by providing a higher abstraction level, which in turn, 

together with generating the random sequence automatically, enhances the 

performance of the cipher schema (in both design and implementation) and increases 

efficiency by reducing the likelihood of mistakes. 

The contribution of this research is SCLang, a new graphical DSML that 

significantly increases the flexibility, expressiveness, and ease of SC schema design 

and implementation. In short, SCLang provides automatic and safe transformation of 

plain text computations into the corresponding cipher text. This language serves 

beginner and expert programmers. It provides the main components needed to 

construct the SC schema, and six different keystream generation methods that can be 

used in a hybrid fashion. In addition, it provides fifteen tests of the NIST suite as 

graphical components to facilitate the statistical analysis of encrypted results. 

The remainder of this paper is structured as follows. The fundamental 

terminology used in SCLang is presented in Section 2. The development of SCLang 

and its implementation are discussed in Sections 3 and 4. The evaluation of SCLang 

development is presented in Section 5. Conclusions and future research are presented 

in Section 6. 

2. Basic terminology  

To understand better the proposed SCLang, an analysis of the SC operation 

mechanism is presented. Randomness with its test methods is explained. DSML and 

some related research are presented. 

2.1. Stream ciphering 

The operation mechanism of SC is based on using the same keystream in the 

encryption and decryption processes. SC encrypts the plain text using this keystream, 

a pseudorandom sequence with bits of plain text to generate cipher text, usually using 

an XOR gate. To encrypt uniquely each character depending on the matching digit in 

the keystream, the string of pseudorandom digits is created from a seed (real key) that 

spans the entire length of the plain text [5]. Fig. 2 explains the SC operation 

mechanism (basic schema). 
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Fig. 2. SC operation mechanism  

There are two types of stream ciphers: synchronous and asynchronous [5]. A 

synchronous keystream is created based on internal states that are unrelated to the 

plain text or cipher text. This is the type that SCLang uses. An excellent cipher 

example to comprehend SC is the one-time pad [8]. It is the only theoretically secure 

cipher that can generate a truly random key sequence as long as the message.  

The randomness term is the probability-based uncertainty of each event in the 

event collection. The random sequence should meet three requirements in terms of 

statistics and cryptanalysis [9]: it follows a uniform distribution, each element is 

independent of the others, and the remaining elements cannot be predicted from any 

previous sequences. The wide use of random numbers in areas other than 

cryptography, such as statistical sampling, completely randomized designs, computer 

simulation, numerical analysis, decision-making, and others, highlights their 

significance [10-12].  

There are two categories of random numbers, according to how they are 

produced: True Random Numbers Generator (TRNGs) and Pseudo-Random 

Numbers Generator (PRNGs) [13]. TRNG creation must be based on an 

unpredictably changing physical external variable. PRNGs use a seed as input and 

functions to produce an output sequence. They are used extensively for their 

efficiency and speed. There are many methods of generating PRNGs, such as a 

Feedback Shift Register (FSR), of which there are three types: Linear Feedback Shift 

Register (LFSR), Non-Linear Feedback Shift Register (NLFSR), and Feedback Carry 

Shift Register (FCSR), respectively [14], PANAMA-Like based, Geffe method, 

Random shuffled, Block cipher based and Blok cipher work mode [15].  

To guarantee the randomness of PRNGs, many tests are required. Use of a non-

random sequence results in weak cryptographic algorithms and vulnerabilities in 

applications. A sequence is statistically examined to determine if the output sequence 

randomness test exhibits the features of a true random number sequence. In general, 

there is more than one battery of tests [16, 17]; the most common is the NIST test 

suite used with SCLang. 

2.2. Domain-Specific Modeling Language (DSML) 

DSML is a type of Domain-Specific Language (DSL), a programming language 

approach that focuses on a particular domain but has restricted expressiveness [18]. 

This type of programming language is developed for a particular domain and specific 

problems. DSL development can be classified in three categories based on specific 

characteristics. Internal/external DSL determines whether the generated language 

depends on the host language or was created entirely from scratch [19].  

A textual/graphical DSL is based on a compiler approach (textual) and a projection 

approach (graphical) [20]. Domain-Specific Visual Language (DSVL), Domain-
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Specific Model Language (DSML), and Domain-Specific Embedded Language 

(DSEL) represent the three categories of DSL. These classifications are 

interconnected [19].  

Models seem to be the current orientation of language development rather than 

traditional technologies [20, 21]. Model definition, and conversions from one model 

to another, and from a model to text are essential components in creating automated 

systems. In this context, a model is a condensed portrayal of a certain reality with the 

intention of better comprehending it. Whether the model is expressed graphically or 

textually, this abstraction requires the removal of irrelevant features from the model 

[19]. In this study, a graphical approach has been used, as it is simple and easily 

learned. Models are created using DSMLs and consist of three distinct parts [22]: the 

abstract syntax, which consists of fundamental concepts of a specific domain and 

relationships between them; the concrete syntax, or DSML notation, which is a 

collection of helpful graphical symbols for drawing diagrams; and the semantic 

definition, which is a validation rule to determine whether a model is well-formed 

according to the domain rules. The advantages of creating and using such a particular 

language type include reduced size of potential errors, increased productivity, 

improved communication with subject matter experts, easier adaptation to changes, 

allowing users to specify what the system should do but not how it is carried out [22]. 

The field of modeling and meta-modeling is too wide to be discussed in detail here 

[23]. The design and implementation of DSML have recently been considered in 

different research areas [24]. Some research areas that have designed and 

implemented DSML as a solution for domain difficulties are presented. 

A DSML known as DSML4CP, created and developed by E l a h e h, E l h a m  

and M o h a r r a m  [25] is backed by a graphical modeling tool for concurrent 

programming. The greater abstraction level offered by DSML4CP can lessen the 

complexity. By increasing the degree of abstraction and automatically creating 

artifacts, it is possible to improve software development performance. Efficiency can 

be increased by reducing the likelihood of mistakes. A background for developing 

the abstract syntax, concrete syntax, and semantics of DSML4CP is produced by 

creating a meta-model that allows concurrent programs and interaction. Code 

generation is completed using the Xpand language transformation rules, instance 

model, and abstract syntax. Only 21% of the final code and 14% of the functions are 

contributed manually in the two case studies used to test DSML4CP; 79% of the final 

code and 86% of the functions have been created automatically. 

Two graphical DSMLs are proposed by J u a n, G u a d a l u p e  and 

I n m a c u l a d a  [26], the first – to assist domain specialists in defining Complex 

Event Processing (CEP) domains, and the second – to assist non-technical users in 

defining event pattern definitions. The suggested languages offer high expressiveness 

and flexibility and are not dependent on the implementation code for event patterns 

and actions. Experts without specialized knowledge of Eltron Programming 

Language (EPL) can specify pertinent event types and patterns in the initial DSML. 

In the second DSML users have an intuitive and user-friendly means of describing 

circumstances that must be found in a specific domain through defining of event 
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patterns, and actions that must be sent to interested users by email, social networking 

services, or other methods.  

C a m p o s  and G r a n g e l  [27] have unveiled a brand-new DSML for 

Corporate Social Responsibility (CSR) allowing the creation of corporate models that 

are centered on the CSR dimension using this language as an Enterprise Modeling 

Language (EML). To specify the artifacts of the CSR meta-model, several firms have 

produced worldwide standards, manuals with laws, and CSR plans. To distinguish 

between the components directly connected to the CSR domain and those required 

for modeling (CoreElements), the CSR meta-model has been developed using two 

packages (CSRElements). A UML profile is used to construct the modeling tool and 

provide icons that resembled actual things. A useful case study using this DSML is 

presented as a last step to enhance and validate the proposed CSR meta-model and to 

demonstrate its application in actual use. 

C h u n l i n  et al. [28] have provided an executable DSML known as xSHS to 

capture both stochastic and hybrid behaviors. Eclipse Studio uses xSHS as its 

implementation. Two layers (the parent layer and child layer) in xSHS are modified 

to construct a meta-model of the dynamic behavior of CPS. Contrary to the abstract 

syntax used for internal representations, the concrete syntax of xSHS is primarily 

intended for users. Sirius is used to define the graphical concrete syntax of this 

language. Based on formal rules, operational semantics are defined. The SCILab jar 

files are incorporated into Eclipse Studio to run the language. An xSHS model for a 

temperature control system has been built to show the usefulness of xSHS. 

Graphical InvaRiant Language (GIRL) is introduced by M a r z i n a, M a s s o n i  

and R a m a l h o  [29]. GIRL is a DSL based on set theory used to express the 

structural invariants of software requirements. The Meta Object Facility (MOF) 

meta-model, consisting of items such as an integer, an operation, and their 

connections, provides the GIRL abstract syntax. Alloy Analyzer can assess the 

consistency of the structural requirement using translational semantics without user 

input. This translational technique offers the advantages of formal analysis by 

enabling early discovery of discrepancies in the requirement definitions. Ten 

software engineers participated in mixed empirical research for a qualitative survey 

to assess the provided GIRL. 

S a d i k  and G e y l a n i  [30] have proposed a DSML4DT, or DSML for Device 

Trees (DTs). DTs offer descriptions of devices and peripherals found inside an 

embedded system and node specs. The DSML4DT language has been used to create 

a Model-Driven Development (MDD) of DT development technique, allowing 

developers to visually design and construct DT-based embedded systems. The 

suggested model-driven technique comprises automated code generation for precise 

DT implementations and system modeling. The meta-model for DSML4DT has been 

made up of more than 70 meta-entities and their connections. Constraint checks and 

static semantics controls are conducted automatically inside the environment in 

accordance with DSML4DT model validation rules created using Acceleo Query 

Language (AQL) on the Sirius platform. The next phase is to generate and finish the 

DT software code. DT models are transformed into DT code for a specified embedded 
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system. The output of the automated code generation process is DT source files, 

which may be used later in the OS as needed. 

A n a  et al. [31] suggest a graphical DSML to help domain specialists retrieve 

event logs from Enterprise Resource Planning (ERP) systems. In particular, domain 

experts are able to locate conceptually where instances and events are stored inside a 

database. Following automated validation, these conceptual models are converted 

into SQL code. This modeling language is designed to address complicated 

conditions when using ERP systems. The modeling language applicability has been 

demonstrated via a case study with actual data to show that the language contained 

the necessary components. These constructs make it possible for domain specialists 

to focus on modeling data during the log extraction stage without learning how to 

program, which simplifies the querying of process data. 

3. SCLang development  

In this section, the SCLang design is explained in detail. The meta-model 

representing the structure of the SCLang language (the valid model) is defined by: 

1) The abstract syntax based on the SC concepts (components) and the rules that 

govern them in the encryption/decryption processes; 

2) The concrete syntax is defined by selecting meaningful symbols (icons) to 

describe the components; 

3) The semantic is defined by determining the correct connection and defining 

the method of notifying and handling if there are invalid or missing connections. 

A valid SCLang meta-model is the result of all of these definitions and is 

implemented as an internal graphical DSML using the advantages of the 

infrastructure already existing in Python (the host language), and is run as a graphical 

editor. Fig. 3 shows the architecture of the SCLang language. 
 

 
Fig. 3. The architecture of SCLang language 
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3.1. Abstract syntax of SCLang 

The principles of the SC domain are used to construct the SCLang meta-model. The model 

is divided into five packages, as shown in Fig. 4. Each package consists of a number of 

related classes to represent all SC concepts and their relationships. 

 
Fig. 4. SCLang meta-model 

3.1.1. Domain element classes 

The first package (Environment) is for defining all aspects of the graphical 

environment implementation. The presented graphical environment is based on 
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PyQt5, Matplotlib, and Orange canvas libraries. The four packages in the SCLang 

meta-model are described as follows. 

• Basic Comps is the main package of the SCLang meta-model. It contains 

three classes (components): Plaintext, Ciphertext, and Decryptedtext. The basic 

scenario of the encryption process involves using Plaintext and Ciphertext classes 

respectively. On the other hand, Decryptedtext and Ciphertext are used for decryption 

process. Plain text is encoded to a byte array, and each byte is converted into a bit 

array. UCS Transformation Format 8 (UTF-8) is used for encoding. The bit length is 

computed in both Plaintext and Ciphertext.  

• Logic Gates is the second package in the SCLang meta-model, consisting of 

two main classes: the NOT class and the Gates class. OR, XOR, and AND are 

derivative from the Gate class. The classes in this package use all classes in the Basic 

Comps and Keystream Comps packages based on directed association relation. The 

OR, XOR, and AND subclasses use all attributes and methods defined in the 

superclass Gate class in addition to their own attributes and methods.  

• Keystream Comps is a package with five main classes for six different 

keystream generation methods. These methods are (Section 2.1): LFSR, Combine 

LFSRs, NLFSR (Fibonacci and Galois types), randomly shuffled, and the Geffe 

method. Each method of keystream generation is implemented as a separate 

component. Each method has fundamental parameters such as length of the shift 

register, initial state, number and value of tap locations, and the equation form in 

some of these methods. The ability to set these parameter values and reconfigure them 

during the run time is provided by SCLang. In the encryption process, the cipher 

schema is configured by connecting a plaintext component with a keystream 

generation method; each one connects to the same XOR gate component, and the 

XOR component connects to a ciphertext component. The difference in decryption is 

that the ciphertext component is connected with a keystream generation method and 

the XOR component connects with the decryptedtext component. The length of 

plaintext/ciphertext in the encryption/decryption process is passed to the keystream 

generation component. Keystream bits equal in length are generated based on the 

configured parameter values of the method.  

The parameters in the LFSR shift register are the initial state, shift register 

length, and the number and value of tap locations. The ability to set these values and 

reconfigure them during the run time is provided by SCLang. The LFSR component 

form is explained in Fig. 5 (1). Combining LFSRs is the second keystream generator 

method provided by SCLang. This method is based on the A5/1 cipher algorithm for 

keystream generation. It consists of three LFSRs (R1, R2, R3). The initial states of 

these LFSRs and the tap location values are determined by the user. Combining 

LFSRs is explained in Fig. 5 (2). In the Geffe keystream generator method, the user 

can set the number of LFSRs according to the equation (2*n+1) and determine the 

length, initial state, and tap locations (number and value) for each LFSR. This method 

is explained in Fig. 5 (3). In the Fibonacci NLFSR keystream generator method user 

can set the length of the shift register, its initial state, and configure the nonlinear 

equation, as shown in Fig. 5 (4). In the Galois NLFSR keystream generator method 

user can set the length of the shift register, its initial state, and configure the two 
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nonlinear equations, as shown in Fig. 5 (5). In the random shuffled keystream 

generator method user can set the length of the shift register, its initial state, and the 

value of (n). According to the value of n, the values of each T and S are initiated. The 

random shuffled method is explained in Fig. 5 (6). 

 

  
(1) (2) 

  
(3) (4) 

  
(5) (6) 

 

Fig. 5. Keystream generator methods; (1) LFSR form; (2) Combine LFSRs form; (3) Geffe form;  

(4) Fibonacci NLFSR form; (5) Galois NLFSR form; (6) Random Shuffled form 

• Test Comps is the last package in the SCLang meta-model, it consists of 

fifteen classes that represent NIST tests. These tests are implemented as reported in 

[32]. Three of the tests are shown in Fig. 6. This package is used through directed 

association relation by the ciphertext class in the Basic Comps package and by any 

class in the Keystream Comps package. 
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(1) (2) (3)  

Fig. 6. NIST tests; (1) DFT(spectral) test form; (2) frequency(Block) Test form; (3) overlapping 

template matching test form  

3.1.2. Domain rules  

The validation rules of the SC domain are represented by the relations between 

classes in the meta-model. Table 1 shows the validation rules and their descriptions; 

any SC schema (SC instance model) confirmed in the meta-model must satisfy these 

rules.  

Table 1. Description of SCLang domain rules 

Package Name Rules description 

Basic Comps Ciphertext class in this package uses (by association direction relation) all 

classes in the Test Comps package 

Decryptedtext class in this package uses (by directed association relation) all 

classes in the Logic Gates package 

Logic Gates In the Logic Gates package, the three logic gates classes XOR, OR, AND are 

based on the Gate class 

Each class in this package uses the plaintext class in Basic Comps  

Each class in this package uses all classes in the Keystream Comps package 

Keystream 

Comps 

In this package, there are two classes (Fibonacci and Galois classes), each of 

which is a type (subclass) of NLFSR 

Each class in this package can use (by directed association relation) all classes 

in the Test Comps package 

The generated keystream length should be equal to the plaintext length in the 

encryption process. Each class in the Keystream Comps package should use (by 

directed association relation) the plaintext class in the Basic Comps package 

The generated keystream length should be equal to the ciphertext length in 

the decryption process. Each class in the Keystream Comps package should use 

(by directed association relation) the Decryptedtext class in the Basic Comps 

package 

Each keystream generation method should have an initial value 

3.2. Concrete syntax of SCLang 

There are two primary types of concrete syntax: Graphical Concrete Syntax (GCS) 

and Textual Concrete Syntax (TCS). Both are used in various languages. The 

concrete syntax type used by SCLang is GCS. A collection of appropriate icons for 

the meta-elements in the meta-model have been chosen with this objective and the 

ideas and relations of the SC domain in mind. The next subsections provide a detailed 

explanation of the concrete syntax for meta-elements and their connections. 
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3.2.1. Concrete syntax of components 

After defining all concepts (components) and the relations (connections) between 

them, a meaningful icon that describes the concept is selected for each component, 

and the description for each connection is determined.  

Table 2. GCS of SCLang components 
Package name As component Its connections 

I/O Details Number of 

connection 

Basic Comps 

  

  

 

Its Input - - 

Its Output Connect to any class in Keystream Comps 

package and any class in Logic Gates package 

many 

 

Its Input Accept connect from any class in Logic Gates 

package 

one 

Its Output Connect to any class in Test Comps package 

and any class in Logic Gates package 

many 

 

Its Input Accept connect from xor class in Logic Gates 

package 

one 

Its Output - - 

Keystream 

Comps 

 

Its Input Accept connect from plaintext or /and 

ciphertext class in Basic Comps package 

one 

Its Output Connect to any class in Logic Gates package 

and any class in Test Comps package 

many 

 

Its Input Accept connect from plaintext or /and 

ciphertext class in Basic Comps package 

one 

Its Output Connect to any class in Logic Gates package 
and any class in Test Comps package 

many 

Logic Gates 

 

Its Input Accept connect from plaintext class in Basic 
Comps package and any class in Keystream 

Comps package 

two 

Its Output Connect to ciphertext class in Basic Comps 
package and any class in Logic Gates 

many 

 

Its Input Accept connect from plaintext, ciphertext class 
in Basic Comps package, and any class in 

Keystream Comps package 

two 

Its Output Connect to ciphertext and Decrypted class in 

Basic Comps package and any class in Logic 
Gates package and Keystream Comps package 

many 

Test Comps 

 

Its Input Accept connect from ciphertext class in Basic 

Comps package and any class in Keystream 
Comps package 

one 

Its Output - - 

 

Its Input Accept connect from ciphertext class in Basic 

Comps package and any class in Keystream 
Comps package 

one 

Its Output - - 

 

The number of connections in the meta-model can be one-to-one, one-to-many, 

and many-to-many relationships. For example, a ciphertext component can have 

more than one connection with NIST tests. The direction of the association relation 
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determines the source and destination of that relation. Inheritance and directed 

association are the two types of relations that the SCLang meta-model defines. The 

established generalized relation in the meta-model syntax naturally imposes some 

limitations in building the instance model. In an instance model, a subclass has all of 

the attributes and methods of its super-class, in addition to its own properties and 

methods. The gate class in the Logic Gates package is the best example. Some GCS 

of SCLang components are shown in Table 2. 

3.2.2. Concrete syntax of connections 

The relations between the components are represented by edges. Each edge has a 

description used to explain the type of connection and represent the concrete syntax 

of the SCLang language, as shown in Table 3. 

 

Table 3. GCS of connections (edges) in SCLang  

Package name Edge Description 

Basic Comps 

  

Connect plaintext with a keystream 

method    

Basic Comps 

  
Connect plaintext with one of the 

logic gates     

Logic Gates 

 

Connect xor gate with ciphertext 

Keystream Comps 

 

Connect keystream method with xor 

gate 

Basic Comps 

  

Connect ciphertext with one test 

Basic Comps 

 
 

Connect ciphertext with xor gate 

Basic Comps 

  

Connect ciphertext with a keystream 

method 

Logic Gates 
 

Connect xor with decryptedtext 

Keystream Comps 
 

Connect keystream method with a 

test 

3.3. Semantics of SCLang 

One of the key problems with language development is the provision of concepts. The 

semantics of the concepts are as important as their syntax. Static semantics based on 

constraint checks form the foundation of SCLang. The language response for an 

incorrect connection or attempting to hook a component with one that is not allowed 

is either an error message or refreshing the previous workspace one step back.  

Figs 7 (1) and 7 (2) depict valid object diagram models for the encryption and 

decryption processes, respectively. 
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(1) 

 
(2) 

Fig. 7. Object diagram: (1) encryption process; (2) decryption process 

4. Implementation  

To complete successfully the challenging process of designing SCLang, one needs 

expertise in language engineering and the SC domain. SCLang is built as a new 

library of five packages. The host language Python is used to implement it as an 

internal graphical DSML, with PyCharm serving as the Integrated Development 

Environment (IDE) using an Intel Core i7CPU, 8 GB of RAM, and the Windows 10 

operating system. The graphical user interface is based on PyQt5, Matplotlib, and 

Orange. canvas library GUI templates. The meta-model has been created using the 

Software Ideas Modeler tool.  

The main user interface of the SCLang consists of two parts. The first part is the 

dashboard (main control panel), containing the four packages and their components 

(building blocks such as plaintext, XOR). The second part is the workspace 

(modeling area); the components are used to configure the cipher schema with drag-

and-drop functionality. The user is able to develop and implement programs by 

constructing SC schemas. After the SC schema is configured, plain text is input and 

the keystream method parameters are set. The encryption process runs directly, and 

the encrypted information is presented in the decryptedtext component. SCLang has 

a capability for randomness analysis, provided by NIST tests. In addition to the other 

advantages, the SCLang can accept any change or update in plaintext input or 

keystream parameters while the program (cipher schema) is running. 

Five examples of SC schemas that can be constructed and implemented by 

SCLang are demonstrated in Figs 8-12, respectively. 
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Fig. 8. Example_1. This example shows that all NIST tests can be connected to the ciphertext 

constituent to compute the randomness of the result 

 
Fig. 9. Example_2. This is the simplest SC schema that can be created. It is the traditional cipher in 

SC, where the plaintext is xored with the keystream to obtain the ciphertext and present it using the 

ciphertext constituent, as explained in this example 

 
Fig. 10. Example_3. The encryption and decryption processes are shown in this example 
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Fig. 11. Example_4. This example shows that more than one encryption subsystem can be 

connected to produce one result 

 
Fig. 12. Example_5. Parallelism and the ability to configure more than one SC schema in the same 

workspace are also possible, as explained in this example. 

5. Evaluation  

According to the quality and performance requirements of graphical modeling 

languages, the assessment used in this study aims to estimate and determine the scope 

of the proposed language. Five subjective criteria are used for a qualitative analysis 

based on the “goal-question-metric” paradigm [33]. According to the definition, these 

five criteria are visual nature, functionality, simplicity of comprehension, paradigm 

support, and scalability. Table 4 presents a set of more specific metrics for evaluating 

each of these five criteria. The evaluation of the SCLang based on visual feature 

criteria achieved “mostly visual” for its initial metric, “meaningful icons” for its 

second metric, “Applicable throughout the language” for the third, and “Effective 

use” for all the rest of the metrics. The functional criteria that have been achieved for 

the first metric are, “specific intent”, and for its second metric, “To one domain”. For 

the third criterion, it was “much easier” for all the metrics in this category. The 

evaluation of the presented language based on paradigm support criteria has achieved 

“very limited” for its first metric and “one domain” for the second metric. For 
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“Scalability” the last criterion, has achieved “strong” for all its metrics as explained 

in Table 4. 

Table 4. Definitions and assessment standards for graphical language 
Assess Highest rating   Lowest rating 

1. Visual feature How much information is displayed graphically, such as through icons, 

diagrams, and graphs? 

1.1. Graphics use completely graphic, 

such as iconic 

mostly visual only a little graphic 

with text 

completely 

textual 

1.2. Graphic used type Meaningful icons  Less icons Very little No icons 

1.3. Graphic use Thoroughness Applicable throughout 

language 

Less icons only a few 

meanings 

No icons 

1.4. Utilizing space effectively Effective use Useful in several 
aspects 

a minimally 
effective 

insufficient 

1.5. Effectiveness of color use Effective use Using color 

effectively 

minimal use of 

color 

No use of 

color 

2. Functionality The language's wide applicability as opposed to its confinement to a single 
sector of use. 

2.1. Functioning perfection General purpose lacking some 

Functions 

Applicable to 

several areas 

specific intent 

2.2. Naturalness of 
implementation 

To all domains To many 
domains 

To very few 
domains 

To one 
domain 

3. Ease of comprehension The simplicity with which this language's programming may be 

comprehended. 

3.1. Ease for programmers Much easier Moderate Moderate Much less 

3.2. simplicity for non-technical 

programmers 

Much easier Moderate Moderate Much less 

3.3. Expert user Much easier Moderate Moderate Much less 

4. Paradigm support How well the proposed language supports the programming paradigm it has 

been designed for? 

4.1. Support for a paradigm Strong Moderate Weak very limited 

4.2. Support for a domain All domains Moderate Very few One domain 

5. Scalability A metric for this language’s capacity to write complex programs. 

5.1. support for modularity Strong Moderate Weak Nothing at all 

5.2. support for abstraction  Strong Moderate Weak Nothing at all 

5.3. Support for information 

concealing 

Strong Moderate Weak Nothing at all 

5.4. support for data encapsulation Strong Moderate Weak Nothing at all 

6. Conclusion  

A graphical DSML for the SC domain is proposed in this paper. For the SC domain, 

this language offers high-level abstraction. DSMLs have changed the way software 

is developed in several important ways. They are appropriate in particular areas as 

they accelerate development, reduce structural complexity, and improve productivity. 

Instead of creating a general language, a particular language is focused on a single 

field, allowing it to perform many tasks in a flexible manner. When there are errors, 

they are specific to the domain; thus, developing a specific language allows for easy 

understanding and use. SCLang has been proposed for both beginner and expert users 

working in the cipher domain. SCLang provides the essential components of SC 

graphically. This allows the implementation of many SC schemas using models. In 

addition to hiding, the implementation details, SCLang provides a highly expressive 

graphical user interface with drag-and-drop capability. Users have a versatile, 

straightforward, and user-friendly method for creating and implementing a wide 

range of schemas in the SC domain. The main advantage of SCLang is that expert 
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users can easily generate hybrid keystreams using provided keystream generation 

methods. Users with no programming language expertise can learn this domain and 

quickly configure cipher schemas. The fifteen NIST tests allow for analysis of the 

results. The graphical editor of SCLang enables users to design and configure single-

level or multi-level cipher schema in the same workspace. This enables comparison 

of different analysis results for the same plain text. A key feature of SCLang is the 

ability to change and reconfigure the cipher schema during the run time. The ability 

to use hybrid schemas based on the six keystream generation methods allows greater 

productivity. In future research, SCLang can be extended to include components of 

other cipher types and other types of randomness analysis tests. 
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