
 54

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 23, No 2

Sofia • 2023 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2023-0013

SCLang: Graphical Domain-Specific Modeling Language

for Stream Cipher

Samar Amil Qassir1, Methaq Talib Gaata1, Ahmed T. Sadiq2
1Department of Computer Science, College of Science, Mustansiriyah University, Baghdad, Iraq
2Computer Science Department University of Technology Iraq, Baghdad, Iraq

E-mails: samarqassir@uomustansiriyah.edu.iq dr.methaq@uomustansiriyah.edu.iq

Ahmed.T.Sadiq@uotechnology.edu.iq

Abstract: A Stream Cipher (SC) is a symmetric-key encryption type that scrambles

each piece of data in clear text to conceal it from hackers. Despite its advantages, it

has a substantial challenge. Correct handwriting of the script code for the cipher

scheme is a challenge for programmers. In this paper, we propose a graphical

Domain-Specific Modeling Language (DSML) to make it easier for non-technical

users and domain specialists to implement an SC domain. The proposed language,

SCLang, offers great expressiveness and flexibility. Six different methods of

keystream generation are provided to obtain a random sequence. In addition, fifteen

tests in the NIST suite are provided for random statistical analysis. The concepts of

the SC domain and their relationships are presented in a meta-model. The evaluation

of SCLang is based on qualitative analysis and is presented to demonstrate its

effectiveness and efficiency.

Keywords: Stream cipher; keystream generation methods; graphical domain-specific

modelling language; meta-model.

1. Introduction

A Stream Cipher (SC) is a cipher type that scrambles data in the origin message

encrypting one bit/byte at a time to protect it from outsiders, resulting in low

complexity, a serial nature, and ease of encryption [1]. Through bit-by-bit processing,

SC allows companies that manage messages written in a trickle to send information

as soon as it is ready rather than waiting for completion [2]. Most web browser

engines, real-time applications, and IoT technology use this cipher type

[3, 4]. Fig. 1 shows other modern applications that use SC.
The SC Algorithm is based on three essential components: the plain text, a

symmetric key, and an eXclusive-OR (XOR) logic gate. Cryptographers refer to this

symmetric key as a keystream. The keystream is generated by a random key generator

method, which is considered the most challenging process in SC schema, as many

tests and statistical analyses must be passed to determine its suitability for the

encryption process [5].

mailto:samarqassir@uomustansiriyah.edu.iq
mailto:dr.methaq@uomustansiriyah.edu.iq
mailto:Ahmed.T.Sadiq@uotechnology.edu.iq

 55

Fig. 1. Modern applications of SC

To make keystream generation in SC schema easier, faster, and more efficient,

we use the Model-Driven Development (MDD) strategy known as Domain-Specific

Modeling Language (DSML) [6]. DSMLs can reduce the complexities of a generated

and tested random sequence by providing a higher abstraction level, which in turn,

together with generating the random sequence automatically, enhances the

performance of the cipher schema (in both design and implementation) and increases

efficiency by reducing the likelihood of mistakes.

The contribution of this research is SCLang, a new graphical DSML that

significantly increases the flexibility, expressiveness, and ease of SC schema design

and implementation. In short, SCLang provides automatic and safe transformation of

plain text computations into the corresponding cipher text. This language serves

beginner and expert programmers. It provides the main components needed to

construct the SC schema, and six different keystream generation methods that can be

used in a hybrid fashion. In addition, it provides fifteen tests of the NIST suite as

graphical components to facilitate the statistical analysis of encrypted results.

The remainder of this paper is structured as follows. The fundamental

terminology used in SCLang is presented in Section 2. The development of SCLang

and its implementation are discussed in Sections 3 and 4. The evaluation of SCLang

development is presented in Section 5. Conclusions and future research are presented

in Section 6.

2. Basic terminology

To understand better the proposed SCLang, an analysis of the SC operation

mechanism is presented. Randomness with its test methods is explained. DSML and

some related research are presented.

2.1. Stream ciphering

The operation mechanism of SC is based on using the same keystream in the

encryption and decryption processes. SC encrypts the plain text using this keystream,

a pseudorandom sequence with bits of plain text to generate cipher text, usually using

an XOR gate. To encrypt uniquely each character depending on the matching digit in

the keystream, the string of pseudorandom digits is created from a seed (real key) that

spans the entire length of the plain text [5]. Fig. 2 explains the SC operation

mechanism (basic schema).

 56

Fig. 2. SC operation mechanism

There are two types of stream ciphers: synchronous and asynchronous [5]. A

synchronous keystream is created based on internal states that are unrelated to the

plain text or cipher text. This is the type that SCLang uses. An excellent cipher

example to comprehend SC is the one-time pad [8]. It is the only theoretically secure

cipher that can generate a truly random key sequence as long as the message.

The randomness term is the probability-based uncertainty of each event in the

event collection. The random sequence should meet three requirements in terms of

statistics and cryptanalysis [9]: it follows a uniform distribution, each element is

independent of the others, and the remaining elements cannot be predicted from any

previous sequences. The wide use of random numbers in areas other than

cryptography, such as statistical sampling, completely randomized designs, computer

simulation, numerical analysis, decision-making, and others, highlights their

significance [10-12].

There are two categories of random numbers, according to how they are

produced: True Random Numbers Generator (TRNGs) and Pseudo-Random

Numbers Generator (PRNGs) [13]. TRNG creation must be based on an

unpredictably changing physical external variable. PRNGs use a seed as input and

functions to produce an output sequence. They are used extensively for their

efficiency and speed. There are many methods of generating PRNGs, such as a

Feedback Shift Register (FSR), of which there are three types: Linear Feedback Shift

Register (LFSR), Non-Linear Feedback Shift Register (NLFSR), and Feedback Carry

Shift Register (FCSR), respectively [14], PANAMA-Like based, Geffe method,

Random shuffled, Block cipher based and Blok cipher work mode [15].

To guarantee the randomness of PRNGs, many tests are required. Use of a non-

random sequence results in weak cryptographic algorithms and vulnerabilities in

applications. A sequence is statistically examined to determine if the output sequence

randomness test exhibits the features of a true random number sequence. In general,

there is more than one battery of tests [16, 17]; the most common is the NIST test

suite used with SCLang.

2.2. Domain-Specific Modeling Language (DSML)

DSML is a type of Domain-Specific Language (DSL), a programming language

approach that focuses on a particular domain but has restricted expressiveness [18].

This type of programming language is developed for a particular domain and specific

problems. DSL development can be classified in three categories based on specific

characteristics. Internal/external DSL determines whether the generated language

depends on the host language or was created entirely from scratch [19].

A textual/graphical DSL is based on a compiler approach (textual) and a projection

approach (graphical) [20]. Domain-Specific Visual Language (DSVL), Domain-

 57

Specific Model Language (DSML), and Domain-Specific Embedded Language

(DSEL) represent the three categories of DSL. These classifications are

interconnected [19].

Models seem to be the current orientation of language development rather than

traditional technologies [20, 21]. Model definition, and conversions from one model

to another, and from a model to text are essential components in creating automated

systems. In this context, a model is a condensed portrayal of a certain reality with the

intention of better comprehending it. Whether the model is expressed graphically or

textually, this abstraction requires the removal of irrelevant features from the model

[19]. In this study, a graphical approach has been used, as it is simple and easily

learned. Models are created using DSMLs and consist of three distinct parts [22]: the

abstract syntax, which consists of fundamental concepts of a specific domain and

relationships between them; the concrete syntax, or DSML notation, which is a

collection of helpful graphical symbols for drawing diagrams; and the semantic

definition, which is a validation rule to determine whether a model is well-formed

according to the domain rules. The advantages of creating and using such a particular

language type include reduced size of potential errors, increased productivity,

improved communication with subject matter experts, easier adaptation to changes,

allowing users to specify what the system should do but not how it is carried out [22].

The field of modeling and meta-modeling is too wide to be discussed in detail here

[23]. The design and implementation of DSML have recently been considered in

different research areas [24]. Some research areas that have designed and

implemented DSML as a solution for domain difficulties are presented.

A DSML known as DSML4CP, created and developed by E l a h e h, E l h a m

and M o h a r r a m [25] is backed by a graphical modeling tool for concurrent

programming. The greater abstraction level offered by DSML4CP can lessen the

complexity. By increasing the degree of abstraction and automatically creating

artifacts, it is possible to improve software development performance. Efficiency can

be increased by reducing the likelihood of mistakes. A background for developing

the abstract syntax, concrete syntax, and semantics of DSML4CP is produced by

creating a meta-model that allows concurrent programs and interaction. Code

generation is completed using the Xpand language transformation rules, instance

model, and abstract syntax. Only 21% of the final code and 14% of the functions are

contributed manually in the two case studies used to test DSML4CP; 79% of the final

code and 86% of the functions have been created automatically.

Two graphical DSMLs are proposed by J u a n, G u a d a l u p e and

I n m a c u l a d a [26], the first – to assist domain specialists in defining Complex

Event Processing (CEP) domains, and the second – to assist non-technical users in

defining event pattern definitions. The suggested languages offer high expressiveness

and flexibility and are not dependent on the implementation code for event patterns

and actions. Experts without specialized knowledge of Eltron Programming

Language (EPL) can specify pertinent event types and patterns in the initial DSML.

In the second DSML users have an intuitive and user-friendly means of describing

circumstances that must be found in a specific domain through defining of event

 58

patterns, and actions that must be sent to interested users by email, social networking

services, or other methods.

C a m p o s and G r a n g e l [27] have unveiled a brand-new DSML for

Corporate Social Responsibility (CSR) allowing the creation of corporate models that

are centered on the CSR dimension using this language as an Enterprise Modeling

Language (EML). To specify the artifacts of the CSR meta-model, several firms have

produced worldwide standards, manuals with laws, and CSR plans. To distinguish

between the components directly connected to the CSR domain and those required

for modeling (CoreElements), the CSR meta-model has been developed using two

packages (CSRElements). A UML profile is used to construct the modeling tool and

provide icons that resembled actual things. A useful case study using this DSML is

presented as a last step to enhance and validate the proposed CSR meta-model and to

demonstrate its application in actual use.

C h u n l i n et al. [28] have provided an executable DSML known as xSHS to

capture both stochastic and hybrid behaviors. Eclipse Studio uses xSHS as its

implementation. Two layers (the parent layer and child layer) in xSHS are modified

to construct a meta-model of the dynamic behavior of CPS. Contrary to the abstract

syntax used for internal representations, the concrete syntax of xSHS is primarily

intended for users. Sirius is used to define the graphical concrete syntax of this

language. Based on formal rules, operational semantics are defined. The SCILab jar

files are incorporated into Eclipse Studio to run the language. An xSHS model for a

temperature control system has been built to show the usefulness of xSHS.

Graphical InvaRiant Language (GIRL) is introduced by M a r z i n a, M a s s o n i

and R a m a l h o [29]. GIRL is a DSL based on set theory used to express the

structural invariants of software requirements. The Meta Object Facility (MOF)

meta-model, consisting of items such as an integer, an operation, and their

connections, provides the GIRL abstract syntax. Alloy Analyzer can assess the

consistency of the structural requirement using translational semantics without user

input. This translational technique offers the advantages of formal analysis by

enabling early discovery of discrepancies in the requirement definitions. Ten

software engineers participated in mixed empirical research for a qualitative survey

to assess the provided GIRL.

S a d i k and G e y l a n i [30] have proposed a DSML4DT, or DSML for Device

Trees (DTs). DTs offer descriptions of devices and peripherals found inside an

embedded system and node specs. The DSML4DT language has been used to create

a Model-Driven Development (MDD) of DT development technique, allowing

developers to visually design and construct DT-based embedded systems. The

suggested model-driven technique comprises automated code generation for precise

DT implementations and system modeling. The meta-model for DSML4DT has been

made up of more than 70 meta-entities and their connections. Constraint checks and

static semantics controls are conducted automatically inside the environment in

accordance with DSML4DT model validation rules created using Acceleo Query

Language (AQL) on the Sirius platform. The next phase is to generate and finish the

DT software code. DT models are transformed into DT code for a specified embedded

 59

system. The output of the automated code generation process is DT source files,

which may be used later in the OS as needed.

A n a et al. [31] suggest a graphical DSML to help domain specialists retrieve

event logs from Enterprise Resource Planning (ERP) systems. In particular, domain

experts are able to locate conceptually where instances and events are stored inside a

database. Following automated validation, these conceptual models are converted

into SQL code. This modeling language is designed to address complicated

conditions when using ERP systems. The modeling language applicability has been

demonstrated via a case study with actual data to show that the language contained

the necessary components. These constructs make it possible for domain specialists

to focus on modeling data during the log extraction stage without learning how to

program, which simplifies the querying of process data.

3. SCLang development

In this section, the SCLang design is explained in detail. The meta-model

representing the structure of the SCLang language (the valid model) is defined by:

1) The abstract syntax based on the SC concepts (components) and the rules that

govern them in the encryption/decryption processes;

2) The concrete syntax is defined by selecting meaningful symbols (icons) to

describe the components;

3) The semantic is defined by determining the correct connection and defining

the method of notifying and handling if there are invalid or missing connections.

A valid SCLang meta-model is the result of all of these definitions and is

implemented as an internal graphical DSML using the advantages of the

infrastructure already existing in Python (the host language), and is run as a graphical

editor. Fig. 3 shows the architecture of the SCLang language.

Fig. 3. The architecture of SCLang language

 60

3.1. Abstract syntax of SCLang

The principles of the SC domain are used to construct the SCLang meta-model. The model

is divided into five packages, as shown in Fig. 4. Each package consists of a number of

related classes to represent all SC concepts and their relationships.

Fig. 4. SCLang meta-model

3.1.1. Domain element classes

The first package (Environment) is for defining all aspects of the graphical

environment implementation. The presented graphical environment is based on

 61

PyQt5, Matplotlib, and Orange canvas libraries. The four packages in the SCLang

meta-model are described as follows.

• Basic Comps is the main package of the SCLang meta-model. It contains

three classes (components): Plaintext, Ciphertext, and Decryptedtext. The basic

scenario of the encryption process involves using Plaintext and Ciphertext classes

respectively. On the other hand, Decryptedtext and Ciphertext are used for decryption

process. Plain text is encoded to a byte array, and each byte is converted into a bit

array. UCS Transformation Format 8 (UTF-8) is used for encoding. The bit length is

computed in both Plaintext and Ciphertext.

• Logic Gates is the second package in the SCLang meta-model, consisting of

two main classes: the NOT class and the Gates class. OR, XOR, and AND are

derivative from the Gate class. The classes in this package use all classes in the Basic

Comps and Keystream Comps packages based on directed association relation. The

OR, XOR, and AND subclasses use all attributes and methods defined in the

superclass Gate class in addition to their own attributes and methods.

• Keystream Comps is a package with five main classes for six different

keystream generation methods. These methods are (Section 2.1): LFSR, Combine

LFSRs, NLFSR (Fibonacci and Galois types), randomly shuffled, and the Geffe

method. Each method of keystream generation is implemented as a separate

component. Each method has fundamental parameters such as length of the shift

register, initial state, number and value of tap locations, and the equation form in

some of these methods. The ability to set these parameter values and reconfigure them

during the run time is provided by SCLang. In the encryption process, the cipher

schema is configured by connecting a plaintext component with a keystream

generation method; each one connects to the same XOR gate component, and the

XOR component connects to a ciphertext component. The difference in decryption is

that the ciphertext component is connected with a keystream generation method and

the XOR component connects with the decryptedtext component. The length of

plaintext/ciphertext in the encryption/decryption process is passed to the keystream

generation component. Keystream bits equal in length are generated based on the

configured parameter values of the method.

The parameters in the LFSR shift register are the initial state, shift register

length, and the number and value of tap locations. The ability to set these values and

reconfigure them during the run time is provided by SCLang. The LFSR component

form is explained in Fig. 5 (1). Combining LFSRs is the second keystream generator

method provided by SCLang. This method is based on the A5/1 cipher algorithm for

keystream generation. It consists of three LFSRs (R1, R2, R3). The initial states of

these LFSRs and the tap location values are determined by the user. Combining

LFSRs is explained in Fig. 5 (2). In the Geffe keystream generator method, the user

can set the number of LFSRs according to the equation (2*n+1) and determine the

length, initial state, and tap locations (number and value) for each LFSR. This method

is explained in Fig. 5 (3). In the Fibonacci NLFSR keystream generator method user

can set the length of the shift register, its initial state, and configure the nonlinear

equation, as shown in Fig. 5 (4). In the Galois NLFSR keystream generator method

user can set the length of the shift register, its initial state, and configure the two

 62

nonlinear equations, as shown in Fig. 5 (5). In the random shuffled keystream

generator method user can set the length of the shift register, its initial state, and the

value of (n). According to the value of n, the values of each T and S are initiated. The

random shuffled method is explained in Fig. 5 (6).

(1) (2)

(3) (4)

(5) (6)

Fig. 5. Keystream generator methods; (1) LFSR form; (2) Combine LFSRs form; (3) Geffe form;

(4) Fibonacci NLFSR form; (5) Galois NLFSR form; (6) Random Shuffled form

• Test Comps is the last package in the SCLang meta-model, it consists of

fifteen classes that represent NIST tests. These tests are implemented as reported in

[32]. Three of the tests are shown in Fig. 6. This package is used through directed

association relation by the ciphertext class in the Basic Comps package and by any

class in the Keystream Comps package.

 63

(1) (2) (3)

Fig. 6. NIST tests; (1) DFT(spectral) test form; (2) frequency(Block) Test form; (3) overlapping

template matching test form

3.1.2. Domain rules

The validation rules of the SC domain are represented by the relations between

classes in the meta-model. Table 1 shows the validation rules and their descriptions;

any SC schema (SC instance model) confirmed in the meta-model must satisfy these

rules.

Table 1. Description of SCLang domain rules

Package Name Rules description

Basic Comps Ciphertext class in this package uses (by association direction relation) all

classes in the Test Comps package

Decryptedtext class in this package uses (by directed association relation) all

classes in the Logic Gates package

Logic Gates In the Logic Gates package, the three logic gates classes XOR, OR, AND are

based on the Gate class

Each class in this package uses the plaintext class in Basic Comps

Each class in this package uses all classes in the Keystream Comps package

Keystream

Comps

In this package, there are two classes (Fibonacci and Galois classes), each of

which is a type (subclass) of NLFSR

Each class in this package can use (by directed association relation) all classes

in the Test Comps package

The generated keystream length should be equal to the plaintext length in the

encryption process. Each class in the Keystream Comps package should use (by

directed association relation) the plaintext class in the Basic Comps package

The generated keystream length should be equal to the ciphertext length in

the decryption process. Each class in the Keystream Comps package should use

(by directed association relation) the Decryptedtext class in the Basic Comps

package

Each keystream generation method should have an initial value

3.2. Concrete syntax of SCLang

There are two primary types of concrete syntax: Graphical Concrete Syntax (GCS)

and Textual Concrete Syntax (TCS). Both are used in various languages. The

concrete syntax type used by SCLang is GCS. A collection of appropriate icons for

the meta-elements in the meta-model have been chosen with this objective and the

ideas and relations of the SC domain in mind. The next subsections provide a detailed

explanation of the concrete syntax for meta-elements and their connections.

 64

3.2.1. Concrete syntax of components

After defining all concepts (components) and the relations (connections) between

them, a meaningful icon that describes the concept is selected for each component,

and the description for each connection is determined.

Table 2. GCS of SCLang components
Package name As component Its connections

I/O Details Number of

connection

Basic Comps

Its Input - -

Its Output Connect to any class in Keystream Comps

package and any class in Logic Gates package

many

Its Input Accept connect from any class in Logic Gates

package

one

Its Output Connect to any class in Test Comps package

and any class in Logic Gates package

many

Its Input Accept connect from xor class in Logic Gates

package

one

Its Output - -

Keystream

Comps

Its Input Accept connect from plaintext or /and

ciphertext class in Basic Comps package

one

Its Output Connect to any class in Logic Gates package

and any class in Test Comps package

many

Its Input Accept connect from plaintext or /and

ciphertext class in Basic Comps package

one

Its Output Connect to any class in Logic Gates package
and any class in Test Comps package

many

Logic Gates

Its Input Accept connect from plaintext class in Basic
Comps package and any class in Keystream

Comps package

two

Its Output Connect to ciphertext class in Basic Comps
package and any class in Logic Gates

many

Its Input Accept connect from plaintext, ciphertext class
in Basic Comps package, and any class in

Keystream Comps package

two

Its Output Connect to ciphertext and Decrypted class in

Basic Comps package and any class in Logic
Gates package and Keystream Comps package

many

Test Comps

Its Input Accept connect from ciphertext class in Basic

Comps package and any class in Keystream
Comps package

one

Its Output - -

Its Input Accept connect from ciphertext class in Basic

Comps package and any class in Keystream
Comps package

one

Its Output - -

The number of connections in the meta-model can be one-to-one, one-to-many,

and many-to-many relationships. For example, a ciphertext component can have

more than one connection with NIST tests. The direction of the association relation

 65

determines the source and destination of that relation. Inheritance and directed

association are the two types of relations that the SCLang meta-model defines. The

established generalized relation in the meta-model syntax naturally imposes some

limitations in building the instance model. In an instance model, a subclass has all of

the attributes and methods of its super-class, in addition to its own properties and

methods. The gate class in the Logic Gates package is the best example. Some GCS

of SCLang components are shown in Table 2.

3.2.2. Concrete syntax of connections

The relations between the components are represented by edges. Each edge has a

description used to explain the type of connection and represent the concrete syntax

of the SCLang language, as shown in Table 3.

Table 3. GCS of connections (edges) in SCLang

Package name Edge Description

Basic Comps

Connect plaintext with a keystream

method

Basic Comps

Connect plaintext with one of the

logic gates

Logic Gates

Connect xor gate with ciphertext

Keystream Comps

Connect keystream method with xor

gate

Basic Comps

Connect ciphertext with one test

Basic Comps

Connect ciphertext with xor gate

Basic Comps

Connect ciphertext with a keystream

method

Logic Gates

Connect xor with decryptedtext

Keystream Comps

Connect keystream method with a

test

3.3. Semantics of SCLang

One of the key problems with language development is the provision of concepts. The

semantics of the concepts are as important as their syntax. Static semantics based on

constraint checks form the foundation of SCLang. The language response for an

incorrect connection or attempting to hook a component with one that is not allowed

is either an error message or refreshing the previous workspace one step back.

Figs 7 (1) and 7 (2) depict valid object diagram models for the encryption and

decryption processes, respectively.

 66

(1)

(2)

Fig. 7. Object diagram: (1) encryption process; (2) decryption process

4. Implementation

To complete successfully the challenging process of designing SCLang, one needs

expertise in language engineering and the SC domain. SCLang is built as a new

library of five packages. The host language Python is used to implement it as an

internal graphical DSML, with PyCharm serving as the Integrated Development

Environment (IDE) using an Intel Core i7CPU, 8 GB of RAM, and the Windows 10

operating system. The graphical user interface is based on PyQt5, Matplotlib, and

Orange. canvas library GUI templates. The meta-model has been created using the

Software Ideas Modeler tool.

The main user interface of the SCLang consists of two parts. The first part is the

dashboard (main control panel), containing the four packages and their components

(building blocks such as plaintext, XOR). The second part is the workspace

(modeling area); the components are used to configure the cipher schema with drag-

and-drop functionality. The user is able to develop and implement programs by

constructing SC schemas. After the SC schema is configured, plain text is input and

the keystream method parameters are set. The encryption process runs directly, and

the encrypted information is presented in the decryptedtext component. SCLang has

a capability for randomness analysis, provided by NIST tests. In addition to the other

advantages, the SCLang can accept any change or update in plaintext input or

keystream parameters while the program (cipher schema) is running.

Five examples of SC schemas that can be constructed and implemented by

SCLang are demonstrated in Figs 8-12, respectively.

 67

Fig. 8. Example_1. This example shows that all NIST tests can be connected to the ciphertext

constituent to compute the randomness of the result

Fig. 9. Example_2. This is the simplest SC schema that can be created. It is the traditional cipher in

SC, where the plaintext is xored with the keystream to obtain the ciphertext and present it using the

ciphertext constituent, as explained in this example

Fig. 10. Example_3. The encryption and decryption processes are shown in this example

 68

Fig. 11. Example_4. This example shows that more than one encryption subsystem can be

connected to produce one result

Fig. 12. Example_5. Parallelism and the ability to configure more than one SC schema in the same

workspace are also possible, as explained in this example.

5. Evaluation

According to the quality and performance requirements of graphical modeling

languages, the assessment used in this study aims to estimate and determine the scope

of the proposed language. Five subjective criteria are used for a qualitative analysis

based on the “goal-question-metric” paradigm [33]. According to the definition, these

five criteria are visual nature, functionality, simplicity of comprehension, paradigm

support, and scalability. Table 4 presents a set of more specific metrics for evaluating

each of these five criteria. The evaluation of the SCLang based on visual feature

criteria achieved “mostly visual” for its initial metric, “meaningful icons” for its

second metric, “Applicable throughout the language” for the third, and “Effective

use” for all the rest of the metrics. The functional criteria that have been achieved for

the first metric are, “specific intent”, and for its second metric, “To one domain”. For

the third criterion, it was “much easier” for all the metrics in this category. The

evaluation of the presented language based on paradigm support criteria has achieved

“very limited” for its first metric and “one domain” for the second metric. For

 69

“Scalability” the last criterion, has achieved “strong” for all its metrics as explained

in Table 4.

Table 4. Definitions and assessment standards for graphical language
Assess Highest rating Lowest rating

1. Visual feature How much information is displayed graphically, such as through icons,

diagrams, and graphs?

1.1. Graphics use completely graphic,

such as iconic

mostly visual only a little graphic

with text

completely

textual

1.2. Graphic used type Meaningful icons Less icons Very little No icons

1.3. Graphic use Thoroughness Applicable throughout

language

Less icons only a few

meanings

No icons

1.4. Utilizing space effectively Effective use Useful in several
aspects

a minimally
effective

insufficient

1.5. Effectiveness of color use Effective use Using color

effectively

minimal use of

color

No use of

color

2. Functionality The language's wide applicability as opposed to its confinement to a single
sector of use.

2.1. Functioning perfection General purpose lacking some

Functions

Applicable to

several areas

specific intent

2.2. Naturalness of
implementation

To all domains To many
domains

To very few
domains

To one
domain

3. Ease of comprehension The simplicity with which this language's programming may be

comprehended.

3.1. Ease for programmers Much easier Moderate Moderate Much less

3.2. simplicity for non-technical

programmers

Much easier Moderate Moderate Much less

3.3. Expert user Much easier Moderate Moderate Much less

4. Paradigm support How well the proposed language supports the programming paradigm it has

been designed for?

4.1. Support for a paradigm Strong Moderate Weak very limited

4.2. Support for a domain All domains Moderate Very few One domain

5. Scalability A metric for this language’s capacity to write complex programs.

5.1. support for modularity Strong Moderate Weak Nothing at all

5.2. support for abstraction Strong Moderate Weak Nothing at all

5.3. Support for information

concealing

Strong Moderate Weak Nothing at all

5.4. support for data encapsulation Strong Moderate Weak Nothing at all

6. Conclusion

A graphical DSML for the SC domain is proposed in this paper. For the SC domain,

this language offers high-level abstraction. DSMLs have changed the way software

is developed in several important ways. They are appropriate in particular areas as

they accelerate development, reduce structural complexity, and improve productivity.

Instead of creating a general language, a particular language is focused on a single

field, allowing it to perform many tasks in a flexible manner. When there are errors,

they are specific to the domain; thus, developing a specific language allows for easy

understanding and use. SCLang has been proposed for both beginner and expert users

working in the cipher domain. SCLang provides the essential components of SC

graphically. This allows the implementation of many SC schemas using models. In

addition to hiding, the implementation details, SCLang provides a highly expressive

graphical user interface with drag-and-drop capability. Users have a versatile,

straightforward, and user-friendly method for creating and implementing a wide

range of schemas in the SC domain. The main advantage of SCLang is that expert

 70

users can easily generate hybrid keystreams using provided keystream generation

methods. Users with no programming language expertise can learn this domain and

quickly configure cipher schemas. The fifteen NIST tests allow for analysis of the

results. The graphical editor of SCLang enables users to design and configure single-

level or multi-level cipher schema in the same workspace. This enables comparison

of different analysis results for the same plain text. A key feature of SCLang is the

ability to change and reconfigure the cipher schema during the run time. The ability

to use hybrid schemas based on the six keystream generation methods allows greater

productivity. In future research, SCLang can be extended to include components of

other cipher types and other types of randomness analysis tests.

R e f e r e n c e s

1. H a s a n, M. K., S. M u h a m m a d, S. I s l a m, B. P a n d e y, Y. A. B a k e r E l-E b i a r y,

N. S. N a f i, R. C. R o d r i g u e z, D. E. V a r g a s. Lightweight Cryptographic Algorithms for

Guessing Attack Protection in Complex Internet of Things Applications. – Complexity, 2021.

2. W u, L., H. C a i. Novel Stream Ciphering Algorithm for Big Data Images Using Zeckendorf

Representation. – Wireless Communications and Mobile Computing, 2021.

3. M e g a l a, G., P. S w a r n a l a t h a. Efficient High-End Video Data Privacy Preservation with

Integrity Verification in Cloud Storage. – Computers and Electrical Engineering, Vol. 102,

2022, 108226.

4. S u b r a m a n i a n, A. K., A. S a m a n t a, S. M a n i c k a m, A. K u m a r, S. S h i a e l e s,

A. M a h e n d r a n. Linear Regression Trust Management System for IoT Systems. –

Cybernetics and Information Technologies, Vol. 21, 2021, No 4, pp.15-27.

5. P o o n a m, J., B. S i n g h. RC4 Encryption-A Literature Survey. – Procedia Computer Science,

Vol. 46, 2015, pp. 697-705.

6. Z h a n g, S., S. W a n g, G. B a i, M. Z h a n g, P. C h e n, C. Z h a o, S. L i, J. Z h o u. Design of

Threat Response Modeling Language for Attacker Profile Based on Probability Distribution.

– Wireless Communications and Mobile Computing, 2022.

7. N a s t o v, B., F. P f i s t e r. Experimentation of a Graphical Concrete Syntax Generator for Domain

Specific Modeling Languages. – In: Proc. of Conference: INFORSID, 2014, France.

8. S u d e e p a, K. B., G. A i t h a l, V. R a j i n i k a n t h, S. C. S a t a p a t h y. Genetic Algorithm

Based Key Sequence Generation for Cipher System. – Pattern Recognition Letters, Vol. 133,

2020, pp. 341-348.

9. M e n g d i, Z., Z. X i a o j u a n, Z. Y a y u n, M. S i w e i. Overview of Randomness Test on

Cryptographic Algorithms. – In: Journal of Physics: Conference Series, Vol. 1861, No 1,

012009. IOP Publishing, 2021.

10. A b d, E.-L., A. A h m e d, A.-E.-A. B a s s e m, S. E. V e n e g a s-A n d r a c a. Controlled Alternate

Quantum Walk-Based Pseudo-Random Number Generator and Its Application to Quantum

Color Image Encryption. – Physica A: Statistical Mechanics and Its Applications, Vol. 547,

2020, 123869.

11. K a r a k a y a, B., A. G ü n, M. F r a s c a. A True Random Bit Generator Based on a Memristive

Chaotic Circuit: Analysis, Design and FPGA Implementation. – Chaos, Solitons & Fractals,

Vol. 119, 2019, pp. 143-149.

12. L o z a n o v s k i, B., D. D o w n i n g, P. T r a n, D. S h i d i d, M. Q i a n, P. C h o o n g,

M. B r a n d t, M. L e a r y. A Monte Carlo Simulation-Based Approach to Realistic Modelling

of Additively Manufactured Lattice Structures. – Additive Manufacturing, Vol. 32, 2020,

101092.

13. K o r d o v, K., G. D i m i t r o v. A New Symmetric Digital Video Encryption Model. – Cybernetics

and Information Technologies, Vol. 21, 2021, No 1, pp. 50-61.

14. Z h o n g, J., D. L i n. Decomposition of Nonlinear Feedback Shift Registers Based on Boolean

Networks. – Science China Information Sciences, Vol. 62, 2019, No 3, pp. 1-3.

 71

15. J i a o, L., Y. H a o, D. F e n g. Stream Cipher Designs: A Review. – Science China Information

Sciences, Vol. 63, 2020, No 3, pp. 1-25.

16. D e b, S., B. B h u y a n. Performance Analysis of Current Lightweight Stream Ciphers for

Constrained Environments. – ād ā, Vol. 45, 2020, No 1, pp. 1-12.

17. Q a s a i m e h, M., R. S. A l-Q a s s a s, S. T e d m o r i. Software Randomness Analysis and

Evaluation of Lightweight Ciphers: The Prospective for IoT Security. – Multimedia Tools and

Applications, Vol. 77, 2018, No 14, pp. 18415-18449.

18. L a z a r o v, A. D., P. P e t r o v a. Modelling Activity of a Malicious User in Computer Networks.

– Cybernetics and Information Technologies, Vol. 22, 2022, No 2, pp. 86-95.

19. S h e n, L., X. C h e n, R. L i u, H. W a n g, G. J i. Domain-Specific Language Techniques for Visual

Computing: A Comprehensive Study. – Archives of Computational Methods in Engineering,

Vol. 28, 2021, No 4, pp. 3113-3134.

20. H a n d z h i y s k i, N., E. S o m o v . P ’ L x . – Cybernetics and

Information Technologies, Vol. 22, 2022, No 2, pp. 125-144.

21. B o y t c h e v a, S. Overview of Inductive Logic Programming (ILP) Systems. – Cybernetics and

Information Technologies, Vol. 2, 2002, No 1, pp. 27-36.

22. C h a l l e n g e r, M., B. T. T e z e l, V. A m a r a l, M. G o u l a o, G. K a r d a s. Agent-Based Cyber-

Physical System Development with Sea_ml++. – In: Multi-Paradigm Modelling Approaches

for Cyber-Physical Systems. Elsevier, 2021, pp. 195-219.

23. M o s t e l l e r, D., M. H a u s t e r m a n n, D. M o l d t, D. S c h m i t z. Integrated Simulation of

Domain-Specific Modeling Languages with Petri Net-Based Transformational Semantics. –

In: Transactions on Petri Nets and Other Models of Concurrency XIV. Berlin, Heidelberg,

Springer, 2019, pp. 101-125.

24. S h e k h o v t s o v, V. A., S. R a n a s i n g h e, H. C. M a y r, J. M i c h a e l. Domain Specific

Models as System Links. – In: Proc. of International Conference on Conceptual Modeling,

Cham, Springer, 2018, pp. 330-340.

25. E l a h e h, A. M., A. M. E l h a m, C. M o h a r r a m. DSML4CP: A Domain-Specific Modeling

Language for Concurrent Programming. – Computer Languages, Systems & Structures,

Vol. 44, 2015, pp. 319-341.

26. J u a n, B.-P., O. G u a d a l u p e, M.-B. I n m a c u l a d a. ModeL4CEP: Graphical Domain-Specific

Modeling Languages for CEP Domains and Event Pattern. – Expert Systems with

Applications,Vol. 42, 30 November 2015, Issue 21, pp. 8095-8110.

27. C a m p o s, C., R. G r a n g e l. A Domain-Specific Modelling Language for Corporate Social

Responsibility (CSR). – Computers in Industry, Vol. 97, 2018, pp. 97-110.

28. C h u n l i n, G., Y. A o, D. D u, F. M a l l e t. XSHS: An Executable Domain-Specific Modeling

Language for Modeling Stochastic and Hybrid Behaviors of Cyber-Physical Systems. –

In: Proc. of 25th Asia-Pacific Software Engineering Conference (APSEC’18), IEEE, 2018,

pp. 683-687.

29. M a r z i n a, V., T. M a s s o n i, F. R a m a l h o. A Domain-Specific Language for Verifying

Software Requirement Constraints. – Science of Computer Programming, Vol. 197, 1 October

2020, 102509.

30. S a d i k, A., K. G e y l a n i. DSML4DT: A Domain-Specific Modeling Language for Device Tree

Software. – Computers in Industry, Vol. 115, 2020, 103179.

31. A n a, P. S., S. B a b a r o g i ć, O. P a n t e l i ć, . K r s t o v i ć. Towards a Domain-Specific

Modeling Language for Extracting Event Logs from ERP Systems. – Applied Sciences,

Vol. 11, 2021, No 12, 5476.

32. R u k h i n, A., J. S o t o, J. N e c h v a t a l, E. B a r k e r, S. L e i g h, M. L e v e n s o n, D. B a n k s

et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for

Cryptographic Applications. – NIST Special Publication, 800-22 (revised 15 May 2002).

33. K i p e r, J. D., E. H o w a r d, C. A m e s. Criteria for Evaluation of Visual Programming Languages.

– Journal of Visual Languages & Computing, Vol. 8, 1997, No 2, pp. 175-192.

Received: 27.10.2022; Second Version: 26.04.2023; Accepted: 05.05.2023

https://www.sciencedirect.com/journal/expert-systems-with-applications
https://www.sciencedirect.com/journal/expert-systems-with-applications
https://www.sciencedirect.com/journal/expert-systems-with-applications/vol/42/issue/21
https://www.sciencedirect.com/journal/science-of-computer-programming
https://www.sciencedirect.com/journal/science-of-computer-programming/vol/197/suppl/C

