
 34

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 23, No 2

Sofia • 2023 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2023-0012

Tunnel Parsing with Ambiguous Grammars

Nikolay Handzhiyski1,2, Elena Somova1
1University of Plovdiv “Paisii Hilendarski”, 24 Tzar Assen st., 4000 Plovdiv, Bulgaria
2ExperaSoft UG (haftungsbeschraenkt), 10 Goldasse St., Offenburg, 77652, Germany

E-mails: nikolay.handzhiyski@experasoft.com eledel@uni-plovdiv.bg

Abstract: The article proposes an addition to the tunnel parsing algorithm that

enables it to parse grammars having countable repetitions and configurations of

grammar elements generating empty words without refactoring the grammar. The

equivalency of trees built by the use of ambiguous grammar is discussed. The class

of the ε-ambiguous grammars is defined as a subclass of the ambiguous grammars

relative to these trees. The ε-deterministic grammars are then defined as a subclass

of the ε-ambiguous grammars. A technique for linearly parsing on the basis of non-

left recursive ε-deterministic grammars with the tunnel parsing algorithm is shown.

Keywords: Parsing algorithm; tunnel parsing; ambiguous grammars; ambiguity;

determinism.

1. Introduction

The development of grammars is a slow and difficult process, especially for large

grammars. Tools [1] can be used, by the developer, to simplify this task that

automatically calculate different grammar parameters (for example to detect if a

grammar is deterministic) and visualize different grammar-related information

(recursion types, rules connectivity graphs, possible conflicts between terminal

symbols and so on). The more expressive the power of the meta syntax describing

the grammar, the easier it is for the developer to describe the target language. Of

practical interest are the context-free grammars and especially the deterministic

context-free grammars (a grammar from which a deterministic pushdown automaton

can be made using one token of look-ahead), because many domain-specific

languages and structured data are described with them.

After the grammar is created, its use follows, which is often the creation of a

parser. Again, tools [1, 2, 3] can be used to reduce the parser development time.

Whether the parser will be developed manually or generated automatically, a parsing

algorithm must be used. Different parsing algorithms have different properties,

mostly depending on the grammars they can use.

The parsing result consists of a status (the input data belongs or does not belong

to the language) and, if necessary, a syntax tree – a data structure that contains syntax

information about the successfully parsed input. In a syntax tree, the information from

 35

the recognized tokens (created from the input data) is placed in the tree leaves. The

information about the grammar rules that are used during the parsing is placed in the

other tree nodes.

If two different grammars describe the same language, they are equivalent
grammars [4]. This kind of equivalence is defined as a weak equivalence in [5]. A

strong equivalence requires in addition to the weak equivalence that the two

grammars assign for each input two syntax trees that may be considered structurally

similar [5]. The structural similarity should be formulated by the intended

application, as a possible formulation is that two trees are structurally similar if their

corresponding representations as condensed skeleton trees are equal [5]. A condensed

skeleton tree is one in which the rule names (taken from the parser grammar) in each

tree node are dropped and the nodes that are the only child of their parents and have

only one child are removed. However, this formulation of strong equivalency is

relevant only for unambiguous grammars [5].

As the weak equivalence between arbitrary grammars (that two grammars

generate the same sentences) is undecidable, the structural equivalence is decidable

for any context-free grammar where two such grammars are structurally equivalent

if they generate the same sentences and assign similar parse trees to each of them [6].

These trees differ only in the labeling of the nodes. Additionally, a grammar is said

to be structurally ambiguous if it generates the same sentence twice with the same

tree (except for a relabeling of nodes) [6]. The “relabeling” has a similar meaning as

the formal definition in [4] for one-to-one tree correspondence, where two trees

correspond to each other when there is a length preserving homomorphism (single

value mapping) between the sets made of rules names.

Similarly to the condensed skeleton trees, Tomita [7] uses the term “packet

node” to cope with the local ambiguities that occur in the syntax forest (all possible

parse trees). A packet node is made of several nodes in the tree that represent local

ambiguities and is threaded as a single node by the subsequent algorithms. The

technique of the merging of the nodes into a packet node is called local ambiguity

packing.

For a definition of ambiguity, we will reuse the one in [8] where grammar is

said to be ambiguous when it admits more than one distinct derivation tree for the

same input. In relation to the ambiguity, from the perspective of the syntax tree

derivation (the sequence of steps performed by the parser to accept the input [9]), in

[10] is noted that the different valid derivations for a sentence in a given language are

not equivalent to each other. In terms of the generation of strings (from left to right)

in a language, a grammar is ambiguous when it can generate the same string in more

than one way. The presence of ambiguity in an arbitrary context-free grammar is

undecidable [11].

We will hereby extend the equivalency of trees that cover specifically the trees

built on the basis of ambiguous grammar.

We will denote the empty word (a word with zero characters) with ε. There can

be different structures in a syntax tree [12], but we will refer to all of them as nodes.

Any node that has no content (called “label” in [4]) made of/from tokens in itself

or in its sub-nodes, we will call an ε-node. The contemporary grammar forms (like

 36

the Augmented Backus-Naur Form (ABNF) [13], which is used in this article)

contain different components (like rules, elements, etc.).

Each component that can be a base for the creation of an ε-node (In an original

tree – all of the input characters are placed in the tree, and only those [12]) will be

called an ε-component. Each ε-component generates ε, and if this is a rule then it will

be called an ε-rule. In some grammar forms, the ε-rules are the only ε-components

that generate ε. When using grammars with ε-components there might be more than

one ε-node possible to be built in a given tree location for some valid input data (when

some ε-component generates ε in more than one way). An optimal ε-node can be built

when specific criteria for optimality are chosen. There can be different criteria for

optimality, for example, each node requires as little as possible runtime memory.

In an ε-condensed syntax tree, all ε-nodes satisfy the following optimality

criteria:

1. Each ε-node in the tree has as few sub-nodes as allowed, by the grammar

elements it reflects.

2. If more than one grammar concatenation in a given alternation can be the

base for the creation of the same amount of sub-nodes then the nodes created on the

basis of the earliest defined concatenation are created.

3. The non-ε-nodes are ordered before the ε-nodes when all of the nodes are

created one after another in the same level on the basis of the same grammar element

(as a consequence of this ordering a combinatorial explosion is prevented).

If two different syntax trees built by the use of the same grammar and the same

input become exactly the same after they are made ε-condensed then they are

ε-equivalent.

A grammar that is ambiguous only because the possibilities to build syntax trees

are ε-equivalent to each other per any valid input data, we call an ε-ambiguous

grammar. Conversely, when parsing some valid input data based on an ε-ambiguous

grammar then all possible resulting syntax trees are ε-equivalent. If a grammar is non-

deterministic (with one token of look-ahead) only because it is ε-ambiguous then we

call it an ε-deterministic grammar.

The article places the ε-ambiguous grammars as a subclass of the ambiguous

grammars. This means that every ε-ambiguous grammar is ambiguous, but not the

other way around. In a similar way, every ε-deterministic grammar is ε-ambiguous,

but not the other way around.

If a parsing algorithm cannot use grammars having ε-rules it is possible to

change the grammar by refactoring it. A better solution is to use a parsing algorithm

that can parse a grammar having ε-rules without refactoring it. While it is possible to

convert a grammar having ε-rules into one without them, that is unacceptable due to

the loss of clarity [14].

This article proposes an addition of the Tunnel Parsing Algorithm (TP

Algorithm) [15]; (operational in the parsing machines [16] generated by Tunnel

Grammar Studio [1]) that enables it to parse on the basis of ε-deterministic grammars

having countable repetitions [15] without refactoring the grammars and to output one

of all ε-equivalent trees (concrete or abstract with a different level of abstraction

[12]).

 37

An LL(k) grammar can be a base for deterministically parsing an input by using

at most k tokens of look ahead. This implies that a unique production (concatenation)

can be chosen deterministically at any time. When a grammar is ambiguous, there is

at least one place of non-determinism during parsing where there are at least two

ways to complete the parsing successfully for at least one valid input. As a

consequence, the ambiguous grammars (and the left recursive ones) are not LL(k) for

any k. The left-recursive grammars are always non-deterministic, but not always

ambiguous. The addition to the TP Algorithm in this article enables it to linearly parse

on the base of non-left recursive ε-deterministic grammars that are not LL(k) for any

k, because they are ε-ambiguous and in turn ambiguous. The TP Algorithm parses

linearly LL(1) grammars as well [15]. For other non-left recursive grammars, it might

exhibit an exponential time in the worst case depending on the particular grammar

and input. The TP Algorithm can also parse some LL(k > 1) grammars by using only

k – 1 tokens with a simple optimization [15].

Section 2 discusses the state of the art of parsing algorithms for context-free

grammars, mostly about the handling of ambiguous grammars. The problem being

addressed in the article about the support of grammars having ε-rules (and other

ε-components), is stated in Section 3. Section 4 shows the addition of the

TP Algorithm that enables it to parse on the base of non-left recursive ε-deterministic

grammars linearly. The required steps to create a parser that works with the

TP Algorithm are listed. A demonstration of the TP Algorithm, based on an

ε-deterministic grammar, with the various changes in the internal state of the parser,

is shown. Section 5 lists the contributions of the article and its possible future

development.

2. Related work

In linguistics, the context-free grammars are used to describe words and sentences in

languages and in computer science to recursively describe data structures. A

convenient way to describe context-free grammars is through a widely known meta

syntax such as ABNF [13, 17].

The most popular parsing algorithms are the LL (Left to right, Left most

derivation) and the LR (Left to Right, Right most derivation). Detailed examples for

LL and LR parsing are shown in [18]. An algorithm to prove that a grammar is LL(k)

for a fixed integer k≥0 in O(nk+1) worst case time complexity, where n is the grammar

size, is shown in [19].

It is decidable whether a context-free grammar is an LR(k) grammar for a given

k, but it is undecidable whether there is such k for a given context-free grammar [20].

A large class of grammars that properly contains the LR(k) grammars is the class of

the LR-regular grammars that can be parsed with two-phase parsing, linearly on the

input’s length [21]. If the grammar does not have hidden left recursion and it is not

right recursive then the LR recognition can be improved [22]. However, article [22]

gives little information about how this improvement can be applied by a parser as an

extension to the recognizer.

 38

Some ambiguous grammars (particularly the ones that contain dangling-else

kind of ambiguity) can be used for parsing without backtracking if a predictive parser

can be built from the grammar, as shown in [9], by specifying certain disambiguation

rules. An LALR(1) parser can be constructed to solve a dangling ambiguity by

preferring to attach the “else” to the nearest “unelsed” “then” [8].

One way to parse on the basis of a formal grammar is to do “all-paths” parsing

with the help of the graph-structured stack of T o m i t a [23]. A similar strategy is

discussed by Woods in [24], where the different Augmented Transition Networks

(ATN), as part of the cascaded ATN, have their own configurations. These

configurations form a tree that merges the common initial parts of the configurations.

When some of the configurations become different from each other and later become

the same configuration again then they should be merged (in order to reduce the

number of combinations) [24].

If one is using regular expressions (regular grammar) instead of context-free

grammar then all possible parse trees can be implicitly represented by a context-free

grammar [25]. This grammar is created after the parsing with the use of the input.

The different parse trees (represented as lists) can be generated by this grammar. The

implicit representation (with a grammar) is needed, because the resulting parse trees

can be an infinite number and cannot be written explicitly [25]. A practical

implementation in Scheme for the algorithm in [25] is discussed in [26], where (in

the context of the automatically generated lexical analyzers) it is noted that in case of

an ambiguity, it is sufficient to build only one of the trees. This can be done by

choosing a single case when more than one is possible [26].

Tomita’s parsing algorithm is initially described to handle all context-free

grammars including the ambiguous ones [7], but it is later discovered that it does not

handle all non-cyclic context-free grammars having ε-rules properly. A modification

of the handling of such grammars is shown in [27]. While the grammar having ε-rules

can be used for recognition of an input by the modification in [27], the parsing (not

only recognition but also outputting of trees [28]) by this algorithm is also needed

[14]. Another modification of Tomita’s algorithm that enables it to parse on the basis

of grammars having ε-rules by introducing cyclic subgraphs in the original graph-

structured stack is shown in [29].

Tomita’s algorithm has a time complexity of O(np+1), where n is the input length

and p is the length of the longest right-hand side, but the algorithm can be modified

to recognize the input with time complexity of O(n3) for productions (rules) of

arbitrary length, as shown in [30]. The algorithm has a space complexity of O(n2) in

the worst cases [30]. A modification of the K i p p s [30] ancestor’s table can be made

in such a way that the parse tree can be extracted from the graph-structured stack in

linear time (relative to the number of symbols) but by increasing the graph-structured

stack space complexity to O(n3) [31].

The graph-structured stack can be used to store the different ambiguous cases

during an LR parsing but is also usable for other than the LR parsing algorithms [32].

The ambiguities in the parse forest (all possible syntax trees) as a result of a table-

driven Tomita’s generalized LR-like parser can be resolved according to the defined

order of the productions [33]. The parse forest can be seen as a generalization of a

 39

parse tree [34]. To disambiguate a parse forest, one might wait for it to be built and

then prune the forest with disambiguation filters designed as combinators [35].

The (generalized) LR algorithms cannot handle (do non-terminate) when built

from grammars having hidden left recursion. This can be corrected with a change of

the algorithm by doing a parse stack inspection upon reduction that can take a linear

time to the length of the right-hand side [36]. However, this requires the (generalized)

LR items to be changed, which can lead to fewer or more items, depending on the

grammar. Instead of a graph-structured stack, it is possible to use dynamic

programming to construct generalized LR parsers based on Earley’s parsing

algorithm [37].

The recognition algorithm of E a r l e y [28] has an upper time bound of n3 for

an arbitrary context-free grammar (that does not need to be in a normal form), where

n is the number of input symbols. The same algorithm has an upper time bound of n2

for unambiguous grammars as well as for ambiguous grammars with bounded (not

infinite) ambiguity (because the degree of ambiguity of the bounded ambiguity will

be a constant multiplied by n2). The number of distinct derivation trees one sentence

has is its degree of ambiguity [28]. The standard Earley parser might not be able to

recognize some inputs when the grammar has ε-rules, but it can be modified to gain

this ability [38]. The usage of the shared packed parse forest of Tomita [39] instead

of Earley’s parse forest, is shown in [40]. By using memoization, a simple top-down

backtracking parser can have the same time complexity as the Earley parsing

algorithm [41].

To cope with the limits of the LL(k) parsers (when the used grammar is not

LL(k) for any k, because it is ambiguous), predicates can be used to create a pred-

LL(k) parser [42]. The predicates are used to perform some custom routine to

determine how the parser has to continue the parsing. COCO/R in a similar way uses

conflict-resolvers to deal with non-LL(1) grammars [43]. These resolvers are

Boolean expressions that are part of the grammar and can access the next tokens or

do some other kind of semantic checking in order to determine whether a particular

production shall be accepted for the continuation of the parsing or rejected (in this

case the parser will try the next production) [43].

Instead of pre-computing the possible look-ahead symbols needed at any

position in the grammar rules, the ALL(*) algorithm does this dynamically during

runtime, only for the finite collection of input sequences actually seen. To do this the

parser launches sub-parsers that explore each production. The sub-parsers die off

after their paths fail to match the remaining input. If one sub-parser survives then it

has identified the unique production that has to be used. If more than one sub-parser

reaches the same state, they coalesce, as this indicates that an ambiguity has been

discovered. In this case, the production with the lowest production number is

considered useful. The ALL(*) parsers memoize [44] the analysis results so they can

be reused for subsequent production searches. This is done to avoid redundant

computations and the exponential nature of non-deterministic sub-parsers at the cost

of memory. The algorithm uses a graph-structured stack similar to the GLR

algorithm. The ALL(*) parsing strategy has O(n4) worst-case time complexity and

accepts context-free grammars that do not have direct, indirect, or hidden left

 40

recursion [45]. The building of the deterministic finite automata, used for predicting

the production, is incremental during runtime. This is done without a relation to the

current call stack. Parsers that ignore the parser call stack for prediction are called

Strong LL (SLL) parsers, and this is the first of two stages of the ALL(*) parsing

algorithm. The second is an LL stage (that uses the call stack) and is used if the SLL

prediction finds a conflict [45].

Even if it were possible to generate all possible syntax trees for a given

ambiguous sentence, these trees would not give much information to the user [46].

The algorithm in [46] parses with O(n3) time according to the number of symbols

tested. However, this recognition algorithm and its modification, which shows the

ambiguity of the parsed sentence are defined to work with grammars in Chomsky

Normal Form (CNF; grammars without ε-rules) [46]. For a grammar translated to

CNF in [30], it is noted that it would take too much time, if it is at all possible, to

receive some useful information from the derivation trees based on it.

Chart parsing (also called tabular parsing) is a form of dynamic programming

that can be used for parsing on the basis of ambiguous grammars. It is related to

memoization and its relation to Earley’s, Cocke-Younger-Kasami (CYK), and the LR

parsing are explored in [47]. There are chart-parsing examples in [48].

Another algorithm that has explicit call stack management is the Generalized

LL (GLL) algorithm [49]. The GLL parsing algorithm is with worst-case O(n3) time

and space complexities [50]. A more efficient graph-structured stack can be used than

the original GLL algorithm, to improve its runtime, but it still remains with O(n3)

time and space worst-case bounds [51]. Earley’s algorithm, which also runs in O(n3)

time in the worst case, has O(n2) upper bounded space requirements, whereas the

CYK algorithm always has O(n2) space requirements [28].

The standard GLL algorithm can be upgraded to support EBNF-like parsing of

a supplied BNF grammar by a grammar factorization prior to the parser generation

[52]. The goal is to shorten the grammar size, so the algorithm can run faster and

requires less memory than when a BNF grammar is used.

3. Problem

The parsing algorithms often have problems with the grammars having ε-rules.

Additional complications might arise when there are ε-components other than ε-rules.

If a given parsing algorithm cannot use grammars having ε-rules (or other

ε-components), it is possible to change the grammar by refactoring it. However, a

side effect of the refactoring process is that the grammar will not look as designed

and that the syntax trees will have a structure that is not initially intended by the

developer. Subsequent refinement of the grammar, even minor changes to it, might

necessitate additional refactoring that might significantly change the resulting syntax

trees, and increase the development time of all tools based on the grammar. A better

solution is to use a parsing algorithm that can parse on the basis of a grammar having

ε-rules (and other ε-components) without refactoring it.

We will describe an addition to the tunnel parsing algorithm that enables it to

parse linearly non-left recursive ε-deterministic grammars having countable

 41

repetitions without refactoring the grammars. We will show clear criteria of how to

choose one of all possible syntax trees built by the use of ε-ambiguous context-free

grammars.

The TP algorithm works with advanced context-free grammars [1], but for

simplicity, we will use the well-known context-free grammar definition. A context-

free grammar is the tuple (N, Σ, R, S), where set N contains all non-terminal symbols

(rule names), set Σ contains all terminal symbols (alphabet), N ⋂ Σ = ∅ (empty set),

set R contains all rules; S is the start symbol of the grammar and S ∈ N. The ABNF

grammar notations have the following meanings (only those used in the article are

listed):

• t defines a terminal value in ABNF, but for the purpose of this article defines

a terminal symbol (an element of Σ). To simplify the algorithm description, each

terminal symbol will consist of a single character;

• r defines a rule (r ∈ N) when it is on the left side of the sign “=” or a reference

to a rule when it is on the right side;

• x y is a concatenation of grammar elements (for short, “elements”);

• (z w) defines a grammar group (for short, a “group”) of elements;

• a / b defines an alternation (logical “or” for the concatenations);

• n*m A defines the repetitions of A, where n ∈ ℕ is the minimum repetitions

(if omitted, it is considered to be a zero), and m ∈ ℕ is the maximum repetitions (if

omitted, it is considered to be an infinity), n ≤ m. When n > 1 ∨ m > 1 ∧ m ≠ ∞ the

TP Algorithm uses an additional stack called a repetition stack that contains the

number of repetitions of A during runtime. Details about the usage of the repetition

stack are shown in [15].

The groups in an ABNF grammar can be seen as rules with a single implicit

reference to them at the point of the definition. Therefore, everything written about

the rules below will apply to the groups as well. Under a “reference”, it will be

understood as a reference to a rule in the ABNF syntax as well as the implicit

reference to a group when it is seen as a rule.

All of the terminal symbols that can be recognized from the beginning of a rule

directly or by recursively entering into the referenced rules (and possibly exiting

from, when the rule generates ε) will be called reachable [53]. Reachable terminal

symbols after an element are those that can be recognized after it without using the

possible depth stacks (defined later) to the rule where the element is located.

4. Solution

This section describes how the TP Algorithm parses non-left recursive
ε-deterministic grammars linearly, and outputs the commands for the building of a

concrete or an abstract syntax tree (deterministically selected to be the smallest of all

possible trees). The linearity of the TP Algorithm for LL(1) grammars extends to the

ε-deterministic grammars, because the later defined objects and their relations do not

add computations based on the length of the input, but properly guide the algorithm

through the automata having multiple ε-paths (defined later).

 42

The TP Algorithm should not be implemented as a depth-recursive LL parser

but as an iterative process to avoid the possible overflowing of the thread dedicated

stack. A good property of the iterative parsing is that it might pause after each

iterative step. This is useful when not all of the input data is available at the start of

the parsing. Once more data becomes available, the parser can continue. Another

property of the iterative parsing is that the data (that the algorithm operates with) is

available in instances of data structures (not stored in the thread-dedicated stack) and

can be serialized and deserialized on demand. If a TP implementation cannot

guarantee (during the entire parsing) that the use of the thread-dedicated stack (by the

algorithm itself) is upper bounded by a constant (not dependent on the input data)

then it does not conform to the algorithm.

A segment will be called an object that exists for each rule reference. The depth

stack in the TP Algorithm consists of segments. There are more details about the

segments in [15].

To create a parser working with the TP Algorithm [15] that parses linearly non-

left recursive ε-deterministic grammars, the following steps must be performed:

a) design of automata; b) finding the shortest ε-paths inside the automata;

c) extraction of tunnels; d) construction of routers; and e) creation of a control layer.

Fig. 1 contains an ABNF grammar with two rules, where rule “main” has two

references to rule “sub”. The grammar is ε-deterministic and can be parsed linearly

by the TP Algorithm, as a deterministic grammar.

main = 0*1(5 sub) / %s"a" *sub
sub = 0*1 %s"b" / %s"c"

Fig. 1. Linked grammar rules

4.1. Design of automata

For each grammar rule, an automaton is constructed (as the one in Fig. 2), where the

transitions are of two types:

a) recognizing a terminal symbol (a character enclosed in double quotes) at the

end of which stands a terminal state;

b) not recognizing a terminal symbol, called an ε-transition. An ε-path is a

sequence of at least one ε-transition.

A PM using the TP Algorithm can output an ε-condensed syntax tree from an

ε-deterministic parser grammar when each ε-path has the minimum number of

ε-transitions (satisfying ε-condensed optimality criterion No 1), and in case of an

equal number of ε-transitions, the ε-transitions created from the earliest defined

grammar concatenations are used (satisfying ε-condensed optimality criterion No 2).

The ε-condensed optimality criterion No 3 is satisfied by the design of the TP

Algorithm.

In Fig. 2, the labels of the ε-transitions indicate certain operations on the internal

state of the parser and the dotted transitions indicate operations related to the

repetition stack [15], where cpush pushes one element into the stack with a value of

one, cinc increases with one the top of the stack. ctop is the value on the top of the

stack, and cpop removes one value from the stack. This stack contains the number of

 43

repetitions already found (or in a process of finding) in the input for a particular

grammar element.

Fig. 2. Automata generated from the grammar in Fig. 1

The labels in Fig. 2 have the following meanings: a, q – entering in main and

sub, respectively; b, r – entering in the first concatenation of main and sub,

respectively; c – skipping the grammar group, called “later G”; d – entering in G;

e – entering in the single concatenation of G; f, g – exiting from the single

concatenation of G and G itself, respectively; h, v – successfully exiting from the first

concatenation of main and sub, respectively; i, w – entering in the second

concatenation of main and sub, respectively; j – next element; o, x – successfully

exiting from the second concatenation of main and sub, respectively; p, y – exiting

from main and sub, respectively with a success; s, k – skipping an element;

m – repeating an element; and l, n, t, u – pure ε-transitions.

In the automata, there are two ε-paths from the beginning to the end of the main

rule: 1) abchp; and 2) abde followed by five times qrsvy with an end of fghp. The

first ε-path is the shorter one. After the recognition of “a”, there are an infinite

number of ε-paths (due to the presence of a cycle with ε-transitions mqrsvy), as the

shortest is jkop.

4.2. Finding the shortest ε-paths

The shortest ε-path from the start of each automaton to its final state is found. The

shortest ε-path originating from a key state (defined later, other than a start state) is a

concatenation of the shortest ε-paths (found for the transitions made on the basis of

the respective grammar elements) till the end of the automaton. Later we say that the

found ε-path is chosen. For the purpose of this article, these chosen shortest ε-paths

have the lowest number of ε-transitions. These ε-paths can be chosen by another,

more complex, criteria as the amount of time needed by the parser to use them and/or

the amount of memory needed by the subsequently built syntax trees from them.

Choosing the ε-paths will be the subject of another article. For the grammar in

Fig. 1, the shortest ε-paths are as follows: a) abchp for rule main; b) qrsvy for rule

sub.

 44

4.3. Extraction of tunnels

A tunnel is a group of operations for changing the internal state of a parser and the

related operations for the syntax tree building. To enable a context-free grammar-

based recognition, for each forward tunnel (A tunnel that advances the parser to a

successful termination), there must be a backward tunnel (A tunnel that will restore

the parser as it was before the use of the forward tunnel).

For each rule start state, each state after a reference, and each terminal state of

each automaton (all together called key states), all transitions to the next reachable

terminal states (or the final state of the automaton from which the search began) are

collected into tunnels in a depth-first like search manner. The darker states in Fig. 2

are key states. There is one collection per reachable terminal symbol, including all

other terminal symbols in conflict with it, if any. Due to the possible presence of

ε-components in the grammar, the collection might be able to reach the final state of

some referenced automaton. In this case, the search explores the chosen ε-path

transitions for the referenced automaton after all others and exits the automaton from

there and only from there. This kind of collection ensures that when no token is

recognized by the referenced automaton an optimal ε-node will be built. As a

consequence of this for some nondeterministic grammars, the attempted parsing paths

might not resemble an exact in-order traversal of the automaton states.

The following denotations will be used later on: E – the set of all transitions in

the automata; O – the set of operations that change the depth stack of the parser,

where o = {o1, o2,...}, ok ∈ O, k ∈ ℕ; T – the set that contains all of the tunnels τ ∈ T;

τ = [e | o] – d + a – denotes a tunnel, where d is the number of counters that will first

be removed from the repetition stack, a is the number of counters (each with a value

of one) that will be added to the repetition stack, the transitions that the tunnel uses

are e = {e1, e2,...}, ei ∈ E, and i ∈ ℕ; ¬x – the reverse of x; ↓r – entering into r (when

the recognition of r begins, by pushing into the depth stack the respective segment

linking to r); and ↑r – exiting from r (after the successful recognition of r, by popping

a segment linking to r), where r ∈ N, ↓r ∈ O and ↑r ∈ O. When d or a are zeroes they

will be omitted.

For the grammar in Fig. 1 with automata in Fig. 2 the tunnels are:

τ0 = [q, r, t | ↓sub], τ1 = [a, i | ↓main],

τ2 = [q, w | ↓sub], τ3 = [¬t, s, v, y | ↑sub],

τ4 = [¬y, ¬v, ¬u | ¬↑sub], τ5 = [¬y, ¬x | ¬↑sub],

τ6 = [a, b, c, h, p | ↓main, ↑main], τ7 = [q, r, s, v, y | ↓sub, ↑sub],

τ8 = [¬p, ¬h, ¬c, ¬b, ¬a | ¬↑main, ¬↓main],

τ9 = [¬y, ¬v, ¬s, ¬r, ¬q | ¬↑sub, ¬↓sub],

τ10 = [¬p, ¬o, ¬k, ¬j | ¬↑main], τ11 = [¬i, b, c, h, p | ↑main],

τ12 = [¬w, r, s, v, y | ↑sub], τ13 = [j, l, q, r, t | ↓sub],

τ14 = [j, l, q, w | ↓sub], τ15 = [j, k, o, p | ↑main],

τ16 = [¬t, ¬r, ¬q, ¬l, k, o, p | ¬↓sub, ↑main],

τ17 = [¬w, ¬q, ¬l, k, o, p | ¬↓sub, ↑main],

τ18 = [a, b, d, e, q, r, t | ↓main, ↓G, ↓sub] + 1,

τ19 = [a, b, d, e, q, w | ↓main, ↓G, ↓sub] + 1,

τ20 = [¬t, ¬r, ¬q, ¬e, ¬d, c, h, p | ¬↓sub, ¬↓G, ↑main] – 1,

 45

τ21 = [¬w¬q, ¬e, ¬d, c, h, p | ¬↓sub, ¬↓G, ↑main] - 1,

τ22 = [f, g | ↑G], τ23 = [¬g, ¬f | ¬↑G],

τ24 = [h, p | ↑main], τ25 = [¬p, ¬h | ¬↑main],

τ26 = [n, o, p | ↑main], τ27 = [¬p, ¬o, ¬n | ¬↑main],

τ28 = [u, v, y | ↑sub], τ29 = [¬y, ¬v, ¬u | ¬↑sub],

τ30 = [x, y | ↑sub], and τ31 = [¬y, ¬x | ¬↑sub].

Note that the first pushed segment by the use of the tunnels starting from the

start states of each automaton depends on how the rule is being used for parsing – the

parsing starts from the rule or a subsequence repetition of a reference to that rule

begins. The first case can be handled by pushing a null segment into the depth stack

that signifies the start rule. However, this is an implementation choice. The second

case is trivial, because it happens only when there is a subsequent repetition of a

reference, and at that time, the last popped segment (from the end of the previous

repetition) is the one that has to be pushed back.

Certainly, there are different optimizations that can be made. The pushing and

then popping of the same segment by the use of t6 could be optimized by an actual

implementation, but in the article, it adds a presentation detail. Another possible

optimization is the operations for popping from the depth stack to be replaced with a

single number – how many elements to pop. The current denotations are chosen

because we consider them easy to visually follow, even though they are abstract in

nature.

4.4. Construction of routers

In order to speed up the search for the next state of the parser at runtime, before the

start of the parsing, the information about the reachable terminal states is stored in

static read-only memory, in objects called routers. Each segment has a link to a

router with the next reachable terminal states after the segment’s reference, and in

case of a repetition, a link to one or two more routers (defined later) having the

reachable terminal states from the start of the referenced rule is also used. The routers-

related denotations are as follows: Μ is the set of all routers; σ ∈ Σ is the terminal

symbol; C is the set of all control states (described later); a control state c ∈ C; P is

the set of all paths in a router; p is a path into a router as a pair of a terminal symbol

and a control state: σ→c; μ = P|cε is a router, where μ ∈ M, cε ∈ C, as cε (called the

escape c-state for the router) will be used when the terminal symbol is not found

in P.

For the grammar in Fig. 1 with automata in Fig. 2 the routers are:

μ0 = 〈“а”→c2, “b”→c3, “c”→c4 | c0 〉, μ1 = 〈“b”→c5, “c”→c6 | c1 〉,

μ2 = 〈“b”→c11, “c”→c12 | c24 〉, μ3 = 〈 | c28 〉,

μ4 = 〈 | c29 〉, μ5 = 〈“b”→c7, “c”→c8 | c39 〉,

μ6 = 〈 | c25 〉, μ7 = 〈 | c26 〉,

μ8 = 〈“b”→c9, “c”→c10 | 〉, and μ9 = 〈 | c27 〉.

There are three segments created from the grammar in Fig. 1, one per reference:

a) the segment for the first reference to sub in main, links router μ5 for a

repetition attempt (called later the segment’s minimum router, because it is used

 46

before the minimum number of repetitions are made), and μ6 for a continuation after

the reference (called later the segment’s next router);

b) the segment for the second reference to sub in main, links router μ8 for a

repetition (called later the segment’s middle router, because it is used after the

minimum, but before the maximum, number of repetitions are made), and μ9 for a

continuation; and

c) the segment for group G links router μ7 for a continuation.

4.5. Creation of control layer

On the base of the tunnels and the routers, a set of control objects is created. They

are used during the execution of the parser. The control objects can be in one of

several control states (c-states) that are different for each control object and prescribe

the operations that have to be performed on the parser’s internal state. The control

objects signify “where” in the automata, the PM has reached, and the control states –

“which” operations must be performed. The TP Algorithm uses an execution stack

that contains the information about the progress of the parser. Each execution stack

element links to one c-state. The top of the execution stack shows what is the next

task that the parser must perform. “The parser in this c-state” later means that the top

of the execution stack links to the particular c-state. The following objects are

relevant for the presentation of the addition of the TP Algorithm that enables it to use

grammars having ε-rules (and other ε-components) (to avoid duplication of content,

some of the described objects in [15] are briefly summarized here).

• c-origin – an object created for each rule (but not for groups when seen as

rules). It has a link to a router with all reachable terminal symbols from the beginning

of the rule. The object has one control state – use. The parser in this c-state will

perform a search in a linked router for the first input token and the result will replace
the top of the execution stack. If it is known in advance which rules will be used as

starting rules then it is possible to skip the creation of these c-origin objects for the

non-starting rules.

• c-terminal – created for each terminal state with one c-state – use. The parser

in this c-state will perform a search for the current input token in a linked router and

the result will replace the top of the execution stack.

• c-token – created for each terminal symbol (when the counting of repetitions

is not necessary – the maximum number of repetitions is one) that can be found by a

router search. The c-object has two control states: a) use – the parser in this state

moves with one input symbol forward; b) used – after a subsequently unsuccessful

recognition attempt, the parser in this c-state performs operations to restore its

internal state to the one before the use c-state. This includes the use of the backward

tunnel of the escape c-state of the adjacent c-terminal’s router, if any.

• c-list – similar to c-token (when the counting of repetitions is necessary – the

maximum number of repetitions is more than one) [15]. If there are conflicts between

terminal symbols, then the different c-token and c-list objects form a list. After all of

the c-token and c-list objects in each list one c-back or c-passage object follows, both

defined later. When a c-token or c-list used state is executed the next object will

replace the top of the execution stack.

 47

• c-epsilon-origin – created for each start rule that has an ε-path. It is used by

the router of the c-origin object, created for the same rule when the first input symbol

is not reachable from the beginning of the rule. It has two c-states: a) use – the parser

will perform the steps to go through the ε-path and will signal that the end of the start

rule has been reached; and b) used – the parser will return to its initial state and will

signal that all possible recognition steps are explored.

• c-epsilon-next – created when there is an ε-path after a key state (other than

a rule start) to the end of the automaton. It will be used when there are no reachable

terminal symbols for the current input token from the key state. The c-object has one

c-state – use. The parser will perform the steps to exit the rule and the top of the

execution stack will be replaced by the c-unwind c-object (described below).

• c-epsilon-fill – an object that only links the tunnels used for the ε-fill

operations (described below).

• c-passage-origin – after a terminal symbol is recognized from the beginning

of a rule (which has an ε-path), the parser will use the found c-object to continue the

parsing. If the parsing is subsequently unsuccessful then the parser will start to

progress backward. In this case, after the previously used c-object(s), one c-passage-

origin will stand at the top of the execution stack. The object has two c-states:

a) use – the parser will use a tunnel that will lead to the end of the ε-path of the

current rule. This c-state will place the parser in the internal state it would be in if the

c-epsilon-origin (created for the same rule) has been initially used. The parser then

signals that the end of the start rule is reached. Reaching the end of the start rule does

not imply that the entire input has been recognized;

b) used – the parser will use a tunnel to the beginning of the start rule, and will

signal that the parsing has ended after all possible recognition steps are explored.

• c-passage-minimum – created at the end of a list of c-tokens/c-lists in a

router, when the router has an escape c-state, a given reference’s segment links the

router as a minimum router, and the reference repeats at least two times. The object

has one c-state: use. To get to the use of this c-state: a) the parser has to currently

parse the referenced rule through that reference; b) the minimum number of

repetitions must not yet be parsed; c) the parser progresses backward. In the situation

thus created, the parser executes such a tunnel that the parser will become in the same

internal state as if the entire ε-path of the referenced rule has been initially used

(instead of the c-tokens/c-lists located before the c-passage-minimum). This will

effectively end the current repetition of the reference. Then, the ε-path of the

referenced rule is used for the remaining number of minimum repetitions for the

reference, as this operation we call ε-fill. After the ε-fill, the segment’s next router is

used for a continuation of the parsing.

• c-passage-next – created at the end of each list made of c-token/c-list objects

inside a router that in turn is linked by a c-terminal and has an escape c-state. The

object has one c-state – use, when the parsing is not successful, after the last used

c-token/c-list in the router of the c-terminal, a tunnel will be used that will place the

parser in its internal state that it would be in if the list of c-tokens/c-lists has never

been used, but instead of them, the ε-path after the c-terminal to the end of the rule

 48

has been used. After the execution of this tunnel, the c-unwind (described later) will

stand on the top of the execution stack.

• c-back – there are different c-states for progressing backward in [15].

• c-unwind – in its single c-state, the parser removes one segment from the

depth stack. If the removed segment’s minimum repetitions are not yet recognized, a

repetition attempt is made by using the segment’s minimum router. If the current

token is not found in the router and the router has an escape c-state, its forward tunnel

is used for an ε-fill. If the minimum number of repetitions is already made, but not

the maximum number of them yet, a repetition is attempted with the segment’s

middle router. If this fails, no ε-fill is performed. If no repetition takes place then the

segment’s next router is used for a continuation. If the segment’s next router does not

have a path for the current token then its escape c-state’s forward tunnel is used, if

any, and a subsequent unwinding will be attempted. The removed segments are

archived (not deleted) in case the parser progresses backward when they will be

restored [15].

• c-restore – the parser restores one or more depth stack segments and adapts

the other relevant data structures [15].

4.6. Parsing

The addition to the TP Algorithm, described in the previous sections, is operational

in the parsing machines generated by Tunnel Grammar Studio (TGS) [1]. The tool

can perform direct real-time parsing by a dynamically created interpreter and a

supplied input, or a parsing machine can be generated to a source code for a target

programming language that can be embedded in other software tools. The integrated

interpreter in the tool is part of a parsing machine debugger, which also visually

builds different syntax trees in forward and backward steps for a given grammar and

an input. The generated source code parsing machine, when compiled and executed,

can build a statically typed concrete syntax tree as instances of object-oriented classes

because there is enough concrete information for the building from the used tunnels

during the parsing. If some of this information from the tunnels is removed then an

abstract dynamically typed syntax tree with a different level of abstraction can be

built. Note that as a consequence of the definitions in this article, in an ε-deterministic

grammar, the terminal symbols reachable from the start of an ε-rule referenced by a

reference that repeats at least two times are not in conflict with themselves, during

the parsing of the reference. When the parsing begins from rule main, the first

c-object is c32, and for rule sub is c33.

Demonstration of the TP Algorithm based on the grammar in Fig. 1 with

automata in Fig. 2 is shown in Table 2. The input data is of two characters: “bc”. The

used tunnels and routers are described in the previous sections. The control objects

are described in Table 1.

In Table 2, column “Input” contains the parsed input (the dot is placed before

the current input character), “Execution” – the c-objects and their c-states in the

execution stack, “Depth” – the rules linked by the segments in the depth stack,

“Repeat” – the repetition stack, and “Task” – the operation(s) performed by the parser

to move from the current row to the next.

 49

Table 1. Control objects of the parser for the automata in Fig. 2

Type c-origin

No Router

32 μ0

33 μ1

Type c-terminal

No Router

34 μ2

35 μ3

36 μ4

Global c-objects

No Type

37 c-unwind

38 c-restore

Type c-token

No Next c-terminal Tunnel

2 c13 c34 τ1

3 c14 c35 τ18

4 c15 c36 τ19

5 c16 c35 τ0

6 c17 c36 τ2

7 c18 c35 τ0

8 c19 c36 τ2

9 c30 c35 τ0

10 c31 c36 τ2

11 c20 c35 τ13

12 c21 c36 τ14

Type c-epsilon-*

No * Forward Backward

0 origin τ6 τ8

1 origin τ7 τ9

24 next τ15 τ10

25 next τ22 τ23

26 next τ24 τ25

27 next τ26 τ27

28 next τ28 τ29

29 next τ30 τ31

39 fill τ7 τ9

Type c-passage-origin

No Forward Backward

13 τ11 τ8

14 τ20 τ8

15 τ21 τ8

16 τ3 τ9

17 τ12 τ9

Type c-passage-*

No * Tunnel

18 minimum τ3

19 minimum τ12

20 next τ16

21 next τ17

Type c-back

No Tunnel

30 τ4

31 τ5

The overall description of the parsing events is as follows: the parsing starts

with a search for a tunnel to use, from the start of rule main; tunnel c3 is found and

used; the next token is loaded and it is used to search for the next tunnel in router μ3

that has all reachable terminal states after “b” in rule sub; no such state is found, so

the parser will use the tunnel τ28 till the end of the rule; the parser will unwind one

element from the stack with the use of the global control object c37; the attempt to

repeat reference sub one more time succeeds, because in the minimum repetition

router μ5 there is a control state for the next input symbol “c”, with tunnel τ2; after the

second token is used, the parser will search for the reachable terminal states after “c”,

that are in router μ4; tunnel τ30 is used till the end of the rule, because no reachable

state is found; there are no more input tokens, and instead of repeating the sub

reference, an ε-fill is performed, that will use the shortest ε-path (τ7) for rule sub three

more times, to complete a total of five reference repetitions; there are no more

elements to recognize in the concatenation of the current group G, so the group is

exited by the use of tunnel τ22; there are no more elements after group G to be

 50

recognized, all input tokens are used, and the parsing completes successfully after the

use of tunnel τ24.

Table 2. TP algorithm execution for the grammar in Fig. 1 with automata in Fig. 2

No Input Execution Depth Repeat Task

1 .bc c32|use ∅ ∅ search in μ0 and found c3

2 .bc c3|use ∅ ∅ use of τ18

3 .bc c3|use ∅ 1 rule enter

4 .bc c3|use main 1 group enter

5 .bc c3|use main, G 1 rule enter

6 .bc c3|use main, G, sub 1 next token

7 b.c c3|use main, G, sub 1 control state change

8 b.c c3|used main, G, sub 1 control state addition

9 b.c c3|used, c35|use main, G, sub 1 search in μ3, not found

10 b.c c3|used, c35|use main, G, sub 1 control state change

11 b.c c3|used, c28|use main, G, sub 1 escape with τ28

12 b.c c3|used, c28|use main, G, sub 1 rule success

13 b.c c3|used, c28|use main, G 1 control state change

14 b.c c3|used, c37|use main, G 1 search in μ5, found c8

15 b.c c3|used, c37|use main, G 1 counter increment

16 b.c c3|used, c37|use main, G 2 use of τ2, rule enter

17 b.c c3|used, c37|use main, G, sub 2 control state change

18 b.c c3|used, c8|use main, G, sub 2 next token

19 bc. c3|used, c8|use main, G, sub 2 control state change

20 bc. c3|used, c8|used main, G, sub 2 control state addition

21 bc. ..., c8|used, c36|use main, G, sub 2 search in μ4, found c29

22 bc. ..., c8|used, c29|use main, G, sub 2 control state change

23 bc. ..., c8|used, c29|use main, G, sub 2 use of τ30

24 bc. ..., c8|used, c29|use main, G, sub 2 rule success

25 bc. ..., c8|used, c29|use main, G 2 control state change

26 bc. ..., c8|used, c37|use main, G 2 search in μ3, not found

27 bc. ..., c8|used, c37|use main, G 2 ε-fill forward, counter remove

28 bc. ..., c8|used, c37|use main, G ∅ search in μ6, found c25

29 bc. ..., c8|used, c37|use main, G ∅ control state change

30 bc. ..., c8|used, c25|use main, G ∅ use of τ22, group success

31 bc. ..., c8|used, c25|use main ∅ control state change

32 bc. ..., c8|used, c37|use main ∅ search in μ7, found c26

33 bc. ..., c8|used, c37|use main ∅ control state change

34 bc. ..., c8|used, c26|use main ∅ use of τ24

35 bc. ..., c8|used, c26|use main ∅ rule success

36 bc. ..., c8|used, c26|use ∅ ∅ control state change

37 bc. ..., c8|used, c37|use ∅ ∅ success

 51

5. Conclusions

The article describes and demonstrates an addition to the TP Algorithm [15] that

enables it to parse on the basis of a grammar having ε-rules (and other ε-components).

This addition complements the addition to the TP Algorithm shown in [54], where

the accent is that the parser can parse not only using the tokens’ names but also their

lexemes, in a case-sensitive or case-insensitive manner. The TP Algorithm is mostly

applicable for the parsing of domain-specific languages such as programming

languages and structured data. The result of the parsing is a syntax tree that is built

from top to bottom and accurately reflects the grammar because the algorithm does

not change it prior to the parsing. When the parsing grammar is ε-ambiguous, the

resultant syntax tree is one of all ε-equivalent trees. If the parsing grammar is

ε-deterministic, the resultant syntax tree is ε-condensed when the described in the

article ε-nodes optimality criteria are satisfied.

The main contributions of the article are:

• The ε-ambiguous grammars are defined as a subclass of the ambiguous

grammars;

• The ε-deterministic grammars are defined as a subclass of the ε-ambiguous

grammars;

• Enabling the TP Algorithm to parse linearly non-left recursive
ε-deterministic grammars.

In a future work, we shall describe an addition to the TP Algorithm that enables

it to parse on the basis of a grammar having left recursion. An algorithm can be

derived, on the basis of this article, that verifies whether a given ABNF grammar is

ε-deterministic. We shall show that in a future article as well.

Contribution: Nikolay Handzhiyski has developed the concept (based on his previously existing

software implementation in Tunnel Grammar Studio) and the initial draft under the thorough

supervision, encouragement, and critical feedback of Elena Somova. Both authors have performed

substantial revisions, verified the definitions, and contributed to the final draft.

R e f e r e n c e s

1. Tunnel Grammar Studio (Visited on 03.11.2022).

https://www.experasoft.com/products/tgs/

2. JavaCC (Visited on 03.11.2022).

https://javacc.github.io/javacc

3. ANTLR (Visited on 03.11.2022).

https://www.antlr.org/

4. A h o, A. V., J. D. U l l m a n. Translations on a Context Free Grammar. – Information and Control,

Vol. 19, 1971, No 5, pp. 439-475,

5. R e g h i z z i, S. C., L. B r e v e g l i e r i, A. M o r z e n t i. Formal Languages and Compilation.

Cham, Switzerland, Springer Nature Switzerland AG, 2019.

6. P a u l l, M. C., S. H. U n g e r. Structural Equivalence of Context-Free Grammars. – Computer and

System Sciences, Vol. 2, 1968, No 4, pp. 427-463.

7. T o m i t a, M. An Efficient Augmented-Context-Free Parsing Algorithm. – Computational

Linguistics, Vol. 13, 1987, No 1-2, pp. 31-46.

https://www.experasoft.com/products/tgs/
https://www.bookdepository.com/publishers/Springer-Nature-Switzerland-AG

 52

8. A h o, A. V., S. C. J o h n s o n. LR Parsing. – ACM Computing Surveys, Vol. 6, 1974, No 2,

pp. 99-124.

9. A h o, A. V., S. C. J o h n s o n, J. D. U l l m a n. Deterministic Parsing of Ambiguous Grammars. –

In: Proc. of 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages (POPL’73), 1973, pp. 1-21.

10. K a s a m i, T. An Efficient Recognition and Syntax Analysis Algorithm for

Context-Free Languages. – Technical Report, Air Force Cambridge Research Laboratory,

Bedford, MA$, 1965.

11. C h o m s k y, N., M. P. S c h ü t z e n b e r g e r. The Algebraic Theory of Context-Free Languages.

– In: P. Braffort, D. Hirschberg, Eds. Studies in Logic and the Foundations of Mathematics.

Vol. 35. Elsevier, 1963, pp. 118-161.

12. H a n d z h i y s k i, N., E. S o m o v a. Тhe Expressive Power of the Statically Typed Concrete

Syntax Trees. – In: CEUR Workshop Proceedings. Vol. 3061. 2021, pp. 136-150.

13. C r o c k e r, D., P. O v e r e l l. Augmented BNF for Syntax Specifications: ABNF. Brandenburg

Internet Working, 2008.

14. S h a b a n, M. A Hybrid GLR Algorithm for Parsing with Epsilon Grammars. OpenBU, USA, 1994.

15. H a n d z h i y s k i, N., E. S o m o v a. Tunnel Parsing with Counted Repetitions. – Computer

Science, Vol. 21, 2020, No 4, pp. 441-462.

16. H a n d z h i y s k i, N., E. S o m o v a. A Parsing Machine Architecture Encapsulating Different

Parsing Approaches. – International Journal on Information Technologies and Security

(IJITS), Vol. 13, 2021, No 3, pp. 27-38.

17. K y z i v a t, P. Case-Sensitive String Support in ABNF. Internet Engineering Task Force (IETF),

2014.

18. H o l u b, A. Compiler Design in C. Prentice Hall, USA, 1990.

19. S i p p u, S., E. S o i s a l o n-S o i n i n e n. On the Complexity of LL(k) Testing. – Computer and

System Sciences, Vol. 26, 1983, No 2, pp. 244-268.

20. K n u t h, D. E. On the Translation of Languages from Left to Right. – Information and Control,

Vol. 8, 1965, No 6, pp. 607-639.

21. C o h e n, R., K. Č u l i k. LR-Regular Grammars – an Extension of LR(k) Grammar. – Computer

and System Sciences, Vol. 7, 1973, No 1, pp. 66-96.

22. A y c o c k, J., N. H o r s p o o l, J. J a n o u š e k, B. M e l i c h a r. Even Faster Generalized LR

Parsing. – Acta Informatica, Vol. 37, 2001, pp. 633-651.

23. T o m i t a, M. An Efficient Context-Free Parsing Algorithm for Natural Languages. – In: Proc. of

9th International Joint Conference on Artificial Intelligence, Vol. 2, 1985, pp. 756-764.

24. W o o d s, W. A. Cascaded ATN Grammars. – Computer Linguistics, Vol. 6, 1980, No 1, pp. 1-12.

25. D u b ́e, D., M. F e e l e y. Efficiently Building a Parse Tree from a Regular Expression. – Acta

Informatica, Vol. 37, 2000, No 2, pp. 121-144.

26. D u b ́e, D., A. K a d i r i. Automatic Construction of Parse Trees for Lexemes. – In: Proc. of Scheme

and Functional Programming Workshop, 2006, pp. 51-62.

27. N o z o h o o r-F a r s h i, R. Handling of Ill-Designed Grammars in Tomita’s Parsing Algorithm. –

In: Proc. of 1st International Workshop on Parsing Technologies, 1989, pp. 182-192.

28. E a r l e y, J. An Efficient Context Free Parsing Algorithm. – Communication ACM, Vol. 13, 1970,

No 2, pp. 94-102.

29. N o z o h o o r-F a r s h i, R. GLR Parsing for ε-Grammers. – In: M. Tomita, Ed. Generalized LR

Parsing. Boston, USA, Springer US, 1991, pp. 61-75.

30. K i p p s, J. R. Analysis of Tomita’s Algorithm for General Context-Free Parsing. – In: Proc. of 1st

International Workshop on Parsing Technologies, 1989, pp. 193-202.

31. T a n a k a, H., K. G. S u r e s h, K. Y a m a d a. A Family of Generalized LR Parsing Algorithms

Using Ancestors Table. – IEICE Transactions on Information and Systems, Vol. E77-D, 1994,

No 2, pp. 218-226.

32. T o m i t a, M. Graph-Structured Stack and Natural Language Parsing. – In: Proc. of 26th Annual

Meeting on Association for Computational Linguistics, 1988, pp. 249-257.

33. K i p p s, J. R. Table Driven Approach to Fast Context-Free Parsing. Rand, USA, 1988.

34. N e d e r h o f, M.-J. Generalized Left-Corner Parsing. – In: Proc. of 6th Conference on European

Chapter of the Association for Computational Linguistics, 1993, pp. 305-314.

https://dl.acm.org/toc/csur/1974/6/2
https://dl.acm.org/toc/csur/1974/6/2
https://doi.org/10.1145/356628.356629
https://dl.acm.org/doi/proceedings/10.1145/512927
https://dl.acm.org/doi/proceedings/10.1145/512927
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics
https://www.sciencedirect.com/journal/journal-of-computer-and-system-sciences/vol/7/issue/1
https://search.ieice.org/bin/archive.php?category=A&lang=E&a_listcnt=3&abst=
https://search.ieice.org/bin/index.php?category=A&lang=E&vol=E77-D&num=2&abst=

 53

35. M a c e d o, J. N., J. S a r a i v a. Expressing Disambiguation Filters as Combinators. – In: Proc. of

35th Annual ACM Symposium on Applied Computing, 2020, pp. 1348-1351.

36. N e d e r h o f, M.-J., J. J. S a r b o. Increasing the Applicability of LR Parsing. – In: Proc. of 3rd

International Workshop on Parsing Technologies, 1993, pp. 187-202.

37. A l o n s o, M. A., D. C a b r e r o, M. V i l a r e s. Construction of Efficient Generalized LR Parsers.

– In: D. Wood, S. Yu, Eds. Automata Implementation. Berlin, Heidelberg, Germany, Springer,

1998, pp. 7-24.

38. A y c o c k, J., R. N. H o r s p o o l. Practical Earley Parsing. – Computer Journal, Vol. 45, 2002,

No 6, pp. 620-630.

39. T o m i t a, M. Efficient Parsing for Natural Language. New York, USA, Springer, 1986.

40. S c o t t, E. SPPF-Style Parsing from Earley Recognisers. – Electronic Notes in Theoretical

Computer Science, Vol. 203, 2008, No 2, pp. 53-67.

41. N o r v i g, P. Techniques for Automatic Memoisation with Applications to Context-Free Parsing. –

Computational Linguistics, Vol. 17, 1991, No 1, pp. 91-98.

42. P a r r, T. J., R. W. Q u o n g. Adding Semantic and Syntactic Predicates to LL(k): Pred-LL(k). – In:

P. A. Fritzson, Ed. Compiler Construction. Berlin, Heidelberg, Germany, Springer, 1994,

pp. 263-277.

43. W ö ß, A., M. L ö b e r b a u e r, H. M ö s s e n b ö c k. LL(1) Conflict Resolution in a Recursive

Descent Compiler Generator. – In: L. Böszörményi, P. Schojer, Eds. Modular Programming

Languages. Berlin, Heidelberg, Germany, Springer, 2003, pp. 192-201.

44. M i c h i e, D. “Memo” Functions and Machine Learning. – Nature, Vol. 218, 1968, pp. 19-22.

45. P a r r, T., S. H a r w e l l, K. F i s h e r. Adaptive LL(*) Parsing: The Power of Dynamic Analysis. –

ACM SIGPLAN Notices, Vol. 49, 2014, No 10, pp. 579-598.

46. Y o u n g e r D. H. Recognition and Parsing of Context-Free Languages in Time n3. – Information

and Control, Vol. 10, 1967, No 2, pp. 189-208.

47. N e d e r h o f, M.-J., G. S a t t a. Tabular Parsing. – In: C. Martín-Vide, V. Mitrana, G. Păun, Eds.

Formal Languages and Applications. Berlin, Heidelberg, Germany, Springer, 2004,

pp. 529-549.

48. D o u g, A. Chart Parsing. CiteSeer, 2000, pp. 1-9.

49. S c o t t, E., A. J o h n s t o n e. GLL Parsing. Electronic Notes in Theoretical. – Computer Science,

Vol. 253, 2010, No 7, pp. 177-189.

50. S c o t t, E., A. J o h n s t o n e. GLL Parse-Tree Generation. – Science of Computer Programming,

Vol. 78, 2013, No 10, pp. 1828-1844.

51. A f r o o z e h, A., A. I z m a y l o v a. Faster, Practical GLL Parsing. – In: B. Franke, Ed. Compiler

Construction. Berlin, Heidelberg, Germany, Springer, 2015, pp. 89-108.

52. S c o t t, E., A. J o h n s t o n e. Structuring the GLL Parsing Algorithm for Performance. – Science

of Computer Programming, Vol. 125, 2016, pp. 1-22.

53. G r u n e, D., C. J a c o b s. Parsing Techniques – A Practical Guide. New York, USA, Springer,

2008.

54. H a n d z h i y s k i, N., E. S o m o v a. Tunnel Parsing with the Token’s Lexeme. – Cybernetics and

Information Technologies, Vol. 22, 2022, No 2, pp. 125-144.

Received: 16.11.2022; Second Version: 08.04.2023; Accepted: 18.04.2023

https://link.springer.com/chapter/10.1007/978-3-540-45213-3_25#auth-Albrecht-W__
https://link.springer.com/chapter/10.1007/978-3-540-45213-3_25#auth-Markus-L_berbauer
https://link.springer.com/chapter/10.1007/978-3-540-45213-3_25#auth-Hanspeter-M_ssenb_ck
https://link.springer.com/book/10.1007/b12023#author-1-0
https://link.springer.com/book/10.1007/b12023#author-1-1
https://dl.acm.org/toc/sigplan/2014/49/10
https://dl.acm.org/toc/sigplan/2014/49/10
https://link.springer.com/book/10.1007/978-3-540-39886-8#author-1-0
https://link.springer.com/book/10.1007/978-3-540-39886-8#author-1-1
https://link.springer.com/book/10.1007/978-3-540-39886-8#author-1-2
https://www.researchgate.net/deref/http%3A%2F%2Fciteseer.ist.psu.edu%2F434917.html
https://link.springer.com/chapter/10.1007/978-3-662-46663-6_5#auth-Ali-Afroozeh
https://link.springer.com/chapter/10.1007/978-3-662-46663-6_5#auth-Anastasia-Izmaylova

