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Abstract: In recent days, resource allocation is considered to be a complex task in 

cloud systems. The heuristics models will allocate the resources efficiently in different 

machines. Then, the fitness function estimation plays a vital role in cloud load 

balancing, which is mainly used to minimize power consumption. The optimization 

technique is one of the most suitable options for solving load-balancing problems. 

This work mainly focuses on analyzing the impacts of using the Genetic Algorithm 

and Ant Colony Optimization (GAACO) technique for obtaining the optimal solution 

to efficiently balance the loads across the cloud systems. In addition to that, the GA 

and ACO are the kinds of object heuristic algorithms being proposed in the work to 

increase the number of servers that are operated with better energy efficiency. In this 

work, the main contribution of the GAACO algorithm is to reduce energy 

consumption, makespan time, response time, and degree of imbalance.  

Keywords: Load balancing; energy consumption; Genetic Algorithm; Ant Colony 

Optimization Algorithm; cloud computing. 

1. Introduction  

Due to the recent development of computer networks, devices, and high-speed 

internet, cloud services are becoming more popular in many businesses and other 

applications. In this system, the process of resource sharing has been improved with 

the integration of different services, and scheduling techniques along with energy 

minimization[1-3], which are mainly used to improve the efficiency of a data center. 

Due to these facets, the growing popularity of cloud services has drastically 

increased, where the users are highly required to have advanced systems and fast 

networks for connecting with cloud data centers across the globe. In this domain, the 

utilization of energy is one of the most essential factors that need to be concentrated 

on for improving the overall efficiency and performance of the cloud system. This 

objective can be accomplished by using cloud server power management techniques. 

Recently, many research works [4] have been accomplished with some alternate 

algorithms for reducing cost consumption, energy consumption, and greenhouse gas 

emission. According to recent survey reports, it is analyzed various heuristic models 
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are developed for improving the process of resource allocation with minimized 

software/hardware requirements. Among the other technologies, the virtualization 

concept has been widely used in many cloud computing applications for obtaining 

minimal energy consumption [5, 6]. When compared to the other techniques, the 

metaheuristic models [7, 8] are considered one of the most suitable options for 

minimizing energy usage. Due to its simplicity and ease of implementation, it is 

considered one of the successful mechanisms for solving cloud load balancing 

problems. Beyond the advantages of service consumers, cloud service providers, and 

economic organizations also have an increased option to utilize the metaheuristic 

models, since it reduces or eliminates infrastructure maintenance expenses.  

Based on the requirements of customers [9, 10], cloud providers could deliver 

reliable services with the help of cloud-based applications for commercial operations, 

which may be sensitive to the users’ data. In many cases, the service level agreement 

provides an ensured quality of services to the customers according to their demands. 

Here, virtualization is mainly used to increase the performance of cloud systems and 

is more popular in the last few decades [11, 12]. It allows customers' applications to 

run more efficiently by moving virtual machines between different hosts without 

disrupting the services [13]. As the customers’ needs change, it provides various 

services to them based on their demands. Because, only the customers pay for what 

they use, and cloud computing allows users to access their data from anywhere 

globally [14] by transferring it to the cloud (the Internet) from their personal 

computers. Moreover, the consumers are not required to have high-capacity 

processing and storage systems, since all cloud computing activities are handled by 

the well-equipped and advanced servers in the cloud service provider sector [15]. 

Cloud accounting [16] is one of the extensively used terms in today's business 

world. Because most organizations and business sectors choose service plans 

according to their requirements and conditions. Also, the cloud offers unlimited 

resource capacity at a reasonable cost, which has the following unique factors [17, 

18]: CPUs, memory, input/output network, and disc. Then, the organizations can 

provide the opportunity to host their apps on the cloud, which allows for the eventual 

removal of structural resources, such as prior ultra-structural resources, that lasted for 

many months. As for cloud service providers, it is essential to assure whether the 

clients’ expectations are fulfilled or not [19-21].  

The main objective of this work is to store the bits in a cloud environment by 

constructing the virtual network infrastructure, which helps to even out network 

pressure precisely as in the phase map and radius produced in big data. For this 

purpose, the virtualization and load balancing methods have been utilized in this work 

that could significantly improve the performance of the entire cloud system with the 

efficient allocation of resources [22]. Although, resource scheduling and request 

management are utilized in conventional works for load balancing in the cloud, but 

are limited to the key problem of increased energy consumption. Typically, energy 

optimization is one of the important goals that need to be addressed in the cloud 

system, hence this paper intends to provide a new solution for solving the load 

balancing problem with the help of a hybrid GAACO-based heuristic model. Here, 

the energy-performance tradeoff [23, 24] can be evaluated for a physical machine 
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with computational capability at its peak. When compared to the other conventional 

techniques, the proposed hybrid GAACO technique can efficiently balance the loads 

across the machines in the cloud with reduced energy consumption, makespan time, 

response time, and degree of imbalance.  

2. Literature review 

This section examines the working principles and characteristics of the existing 

heuristic and meta-heuristic models used for virtualization and load balancing in 

cloud systems. In [25] a modified ACO method is utilized for improving the job 

scheduling process in the cloud and it is a kind of random method in which all ants 

appear on as processors. Then, the ants produce pheromones for determining whether 

or not they are allowed to migrate. In addition to that, the market-based resource 

management scheme is utilized in many fields for managing resources across various 

systems. In [26] the multi-tiered web application issue is intended to be solved by 

using virtualized heterogeneous systems. Generally, if the number of nodes is limited, 

it is quite difficult to find a suitable way for optimizing the controller, which renders 

it inappropriate for large-scale issues in the real world [27]. 

The researchers have explained that the resource allocation is based on priorities 

while virtualizing several applications on a cluster. Authors have suggested a simple 

method to find a solution for solving this problem. Also, the bin packing problems 

are resolved by using the heuristic models with variable costs and sizes. The energy-

efficient use of virtual machines in High-Density Cluster (HDC) settings has been 

described in [9]. Generally, the VM has implemented max, min, and shares 

parameters to indicate the maximum and minimum CPU allocation rate per resource. 

This technique is the most suitable option in the private cloud or corporate setting. A 

team [8], has analyzed the possibility of linking several VMs for enhancing the 

communication efficiency between them. However, they have found that the primary 

goal has not been to save energy. 

The genetic algorithm process that shapes all living things may be harnessed by 

algorithms, based on the natural world's genetic algorithm. In order to use a genetic 

algorithm, you will need a specific solution domain (chromosome) to be represented, 

along with a fitness function to judge that solution domain. Solutions with optimized 

genetic attributes may be discovered via selective breeding and evolutionary 

algorithms (called individuals). The scheduling issue in a workshop may be solved 

using genetic algorithms, which use variations of natural selection. They are used as 

extensions when used to describe heterogeneous systems, grid computing, and cloud 

computing. The estimates in this research often presume that each job will take a 

specific duration (homogeneous system).  

An experimental study has been done on the task scheduler in a distributed 

heterogeneous computing environment to see whether it could execute tasks across 

different sets of heterogeneous computing resources. Researchers have looked at 

heterogeneously distributed systems to see how efficient a high-performance 

computing system with load-balancing and a central server is. A central scheduler 

has been suggested to make load-balancing decisions using a genetic algorithm to 



 164 

distribute the load. Using genetic algorithms and task network representation has 

increased the dependability of distributed computing systems. 

Changing the frequency and voltage of a server’s CPU is not adequate because 

it only consumes around a third of the total energy. Physical Machines should utilize 

energy in proportion to the amount of work they accomplish, as shown in Table 1. 

Table 1. Energy consumption of various CPUs with resource utilization [31] 

Performance Power 
Performance to power ratio 

Target load Actual load ssj_ops Average power (W) 

100% 99.8% 190,234 119 1601 

90% 90.7% 172,967 116 1494 

80% 80.8% 154,130 112 1380 

70% 69.7% 132,811 106 1251 

60% 60.8% 115,866 99.8 1161 

50% 49.6% 94,582 90.9 1041 

40% 39.7% 75,792 82.5 919 

30% 29.8% 56,857 74.4 764 

20% 19.9% 37,980 68.2 557 

10% 10.2% 19,410 60.8 309 

Active Idle 0 56.7 0 

∑ssj_ops / ∑power  1064 
 

A prolonged 100% CPU or memory use may result in substantial degradation 

of the system performance. Most servers can handle 70-80% server load or memory 

without deteriorating performance, whereas host servers also handle 90% for the 

whole computer, host energy consumption changes with CPU usage. As a result, for 

improved energy efficiency, the CPU use rate should be raised. 

If we use the cloud computing infrastructure, it is often possible to use and 

deploy service-oriented applications. Server businesses or data centers make cloud 

computing services accessible to their customers by providing their servers. Setting 

up your cloud computing involves provisioning highly efficient computers and large 

quantities of storage since cloud computing services are in constant demand for 

computations and colossal data. Power in data centers is primarily derived from the 

resources, often paired with air conditioning and cooling systems. Data centers use 

more electricity than all of Europe. Green data center design requires efficient 

technology since substantial energy usage in data centers consumes a lot of energy. 

Cloud data centers may help reduce total energy use by helping to lower both idle 

and active server energy usage using virtualization, where resources may be 

consolidated and shared on a single server. Each physical machine adds up to the total 

processing power of a Cloud data center. Data centers that host cloud services utilize 

virtualization technologies to allocate resources as needed. SaaS, PaaS, and IaaS are 

the three degrees of cloud access available to consumers. From client to client, the 

job that the customer has set out might be vastly different [28-30].  

Cloud entities are independent and self-interested to attain individual and 

communal goals, yet they are prepared to share their resources. Due to the 

decentralized structure of the system, the scheduling choice is difficult in such an 

open setting. There are particular criteria and goals for each organization. By 

consolidating servers on a single physical server, data centers can reduce their energy 
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consumption. As a result of the virtual machine concept, you may operate many 

servers on one physical server [31]. Some people refer to the task consolidation issue 

as the server/workload consolidation issue. In order to save energy, all computer 

resources are fully used, and virtual machines are dispersed [32].  

Professorial and business debates on energy use in cloud data centers are raging 

right now. As a cloud service provider, it is also essential that you fulfill your clients’ 

Quality-of-Service criteria (QoS). When scheduling tasks, maintaining a high quality 

of service (QoS) remains a challenge [36]. 

It is studied in this review that the existing load balancing models in the cloud 

are highly concentrated on scheduling, the resources across various VMs in the server 

based on the factors of priority, execution time, the current status of machines, CPU 

usage, memory consumption, and response time. However, it fails to analyze the 

energy level of VMs that are executing the tasks in a cloud server, because the 

increased level of energy utilization creates the problems of high delay in the process, 

increased response time for the given tasks, slow process, and inefficient task 

completion. These factors could degrade the performance and efficiency of the entire 

cloud load-balancing system. In order to solve these issues, this research work objects 

to develop an efficient and intelligent hybrid heuristic optimization methodology for 

perfectly allocating the resources across the VMs on the cloud system by finding the 

best optimal solution. For this purpose, the most extensively used heuristic 

optimization techniques such as GA and ACO are incorporated together for 

improving the overall load-balancing process in the cloud. Moreover, the hybrid 

GAACO identifies the best fitness function for optimally allocating the resources 

among various VMs based on the following parameters: response time, degree of 

imbalance, makespan time, and minimizing energy level. These features are mainly 

considered in the proposed load-balancing system for improving the process of 

scheduling with ensured energy efficiency. 

3. Proposed method 

This section presents a detailed description of the proposed methodology with its 

appropriate mathematical illustrations and flow chart representations. The main 

contribution of this paper is to develop a hybrid heuristic methodology named, 

Genetic Algorithm integrated with Ant Colony Optimization (GAACO) for 

efficiently allocating the resources across various machines in cloud server in order 

to execute the given task. When compared to the other heuristic models, the GA and 

ACO are extensively used in many multi-objective optimization systems for 

providing a suitable solution to solve the problem, hence, this research work intends 

to incorporate these two technologies for attaining these benefits. Here, the novel 

contribution of using the GAACO technique is that it provides the optimal solution 

for balancing the loads across the cloud systems by estimating the best fitness 

function. Moreover, energy is one of the most essential parameters that need to be 

considered for developing an efficient load-balancing system. Hence, energy-

efficient scheduling and optimal load balancing are mainly concentrated in this work, 

which is accomplished by the use of the hybrid GAACO technique. 
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In this environment, both the VMs and PMs in the cloud server are partitioned 

according to the demands on the resources, where the factors such as CPU utilization 

rate, memory usage, and time have been considered before scheduling the tasks to 

the cloud machines. Then, the average response time of each machine that is 

executing the tasks is calculated for analyzing its energy level. In addition to that, this 

work considers the QoS parameters for ensuring increased energy efficiency and 

better scheduling of loads. After estimating these parameters, the hybrid GAACO 

model is deployed for scheduling the tasks to the appropriate resources based on the 

best fitness value, which improves the entire performance of cloud load balancing 

with the ensured energy efficiency of resources. Both GA and ACO find the better 

solution even working separately. In our proposed hybrid algorithm, GAACO they 

work simultaneously and get the best optimal solutions, while GA finds the fitness 

function values, tasks may get dropped sometimes due to overload, task failure, etc., 

the dropped tasks will run simultaneously on the ACO algorithm, and a better solution 

is found. So the proposed GAACO provides the following benefits: increased energy 

efficiency, optimal resource allocation, requires a minimum of iterations to identify 

the best fitness value for job scheduling, and better performance outcomes. 

3.1. System model 

Normally, the cloud data centers comprise many physical machines, which are 

partitioned into several VMs across the cloud. Then, this partitioning is done based 

on the measures of resource demand, memory, CPU, and time. This multi-objective 

function ensures that the essential resources are effectively used in cloud 

environments. This is done by moving the virtual machine of the overcrowded PM to 

another PM that is not overloaded while analyzing the QoS and energy consumption 

[33]. 

3.2. Energy model 

The main focus of this research work is to obtain an increased efficiency of resources. 

The goal of the energy model is to maintain a high level of energy efficiency to meet 

society’s needs. A more critical aspect of energy modeling is using the least energy 

while maximizing resource utilization [34]. Below is a power-based energy model 

for the system: 

(1)   𝑃 = 𝑎𝐶𝑣2𝑓. 

Voltage v, capacitance load C, clock frequency a, and activity factor f, which 

shows the number of switches each clock cycle, are the essential variables for power 

usage. Because of this, power reduction may be influenced by a decrease in supply 

voltage, as shown in the equation above. vf and f, which are directly linked to 

frequency (vf) mean that power is calculated as P = aCv3 and,  
(2)   𝐸 = 𝑃 × 𝑇,   
where E is the total Energy. The average response time taken by the tasks is indicated  

as T. The main thing of the proposed load balancing strategy is to assign the p number 

of processors to n jobs. As a result of the suggested schedule, it is hoped that both the 

makespan and energy consumption E would be decreased [35]: 

(3)   𝐸 = 𝑎𝐶𝑣3 ∑ 𝑊̅𝑛
𝑖=1  (𝑇𝑖) + ∑ 𝐶̅𝑛

𝑖=1  (𝑇𝑖), 
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where 𝑊̅ (𝑇𝑖) is the Waiting time of Tasks Ti, and 𝐶̅ (𝑇𝑖) is the Communication time 

of Ti. 

3.3. QoS model 

System components and symbols utilized in the QoS model are defined as follows: 

let consider N number of the Virtual Machines (VMs) existing in a cloud data center 

to calculate the QoS response time QoS_RTi and QoS throughput QoS_TPi of all 

tasks in N number of VMs.  

Then, the QoS Response Time RT is calculated as follows: 

(4)   QoSRT𝑖
=

RT𝑖

RespTime
,  

where RTi is the response time, and RespTime is the Average response time. The 

average response time could be calculated as 

(5)   RespTime = ∑
RT𝑖

𝑁
𝑁
𝑖=1 ,  

where N is the Number of Virtual Machines. QoS throughput may be denoted like 

the formula: 

(6)   QosTP𝑖
=

Throughput

TP𝑖
,  

where Throughput indicates the average Throughput and TPi defines the throughput. 

Average Throughput could be calculated as 

(7)   Throughput = ∑
TP𝑖

𝑁
𝑁
𝑖=1 .   

Then calculate the objective function of QoS model Qi using the formula as 

follows: 
(8)   Qi= 𝜆1 × QosRT𝑖

+ 𝜆2 × QosTP𝑖
+ 𝛽 × 𝐸,   

where λ1, λ2, 𝛽 are weight factors (w) of QoS model, w is from 0 to 1.  

Hence, it is stated that the QoS model will efficiently improve resource 

utilization by minimizing the response time and throughput while allocating the tasks 

to N number of VMs. 

3.4. Load balance model  

Let consider, the following example: the case where the resources have a dimension 

of d and the resources of each provider i may be represented using the following 

formula. In collecting applications arriving at a specific time slot, Pj is the value of 

VMj. The vector 𝑟𝑖𝑗⃗⃗  ⃗ representing the resources utilized by j while executing on 

provider i [37, 38]. In the real world, technology will almost always only be 

developed for one provider. Therefore, assume that every application cannot be 

further divided. The cloud model captures the value of an application as soon as a 

successful application is performed on a provider’s platform. While each service 

provider’s resource capacity limits the scheduling goal, the overall goal is to 

maximize the cloud model profits. Accordingly, the scheduling problem, 𝑃𝑗  can be 

formulated in the following manner. The Fitness Function Value (FFV) of GA is 

given below: 

(9)   Maximize ∑ (𝑃𝑗 ∑ 𝑥𝑖𝑗
𝑚
𝑖=1

𝑛
𝑗=1 + 𝑄i ),      

subject to 
∑ 𝑟𝑖𝑗⃗⃗  ⃗𝑥𝑖𝑗 + 𝑄i 𝑛

𝑗=1 ≤ 𝑐𝑖⃗⃗  , 𝑖 = 1, 2, … ,𝑚,  
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∑𝑥𝑖𝑗

𝑛

𝑗=1

+ 𝑄i ≤ 1, 𝑗 = 1, 2, … ,𝑚, 

𝑥𝑖𝑗 + 𝑄i ∈ {0, 1}, 𝑗 = 1, 2, . . . , 𝑛, 

where 𝑄𝑖 is the Quality of service, and ∑ 𝑥𝑖𝑗
𝑚
𝑖=1  is the capacity of each task i in VM. 

It means that Equation (9) is NP-hard, multidimensional knapsack problem, where 

the applications often utilize the VMs, 𝑟𝑖𝑗
𝑘 for gaining the successful QoS [39, 40]. It 

also guarantees that all VMs utilize the same energy, preventing instances when 

specific VM with large loads run out of power and leave the system. Load of the  

k-th dimensional resource of a given provider is defined as follows: 

(10)   𝐿𝑖𝑘 =
∑ (𝑟𝑖𝑗

𝑘(𝑥𝑖𝑗+𝑄i ))
𝑛
𝑗=1

𝑐𝑖
𝑘 , 

where 𝑐𝑖
𝑘 is the Average capacity of tasks. Load Li is defined as the mean value of all 

its d-dimensional task’s loads; that is, 

(11)   𝐿𝑖 =
∑ 𝐿𝑖𝑘

𝑑
𝑘=1

𝑑
. 

3.5. Genetic Algorithm for task scheduling  

A natural resource allocation technique assigns the work to available VMs across 

hosts. When working with the load balancing issue, we can use heuristic techniques, 

which rely on genetic algorithms to explore the exponential solution space [41]. It 

uses an objective function (genetic) to choose a single solution from the population 

[42]. 

A random beginning population of POP-SIZE (POPulation SIZE) people has 

been produced, and their fitness values have been calculated to create a new 

population from scratch to the destination [43, 44].  

It verifies whether the termination condition is satisfied in looping sections. 

Upon starting, the program generates a random solution and calculates its fitness 

score. The looping, cross-over, and mutation algorithm three techniques are assumed 

to be employed after the first method. 

3.6. Encoding and decoding 

Each chromosome should represent a different scheduling strategy. This paper 

examines the topic using an indirect encoding approach. Each resource-consuming 

task is encoded so that it may be tracked and identified. For the number of sub-tasks, 

multiply chromosome length by 1. The value of Gene-bit reflects the amount of 

utilized resource in Equation (9), and every bit location in Gene-bit shows how many 

gene sub-tasks are presently being executed. 

•  Fitness function. Using Equation (9), determines the time of a particular job 

in fitness function,  

Maximize ∑ (𝑃𝑗 ∑ 𝑥𝑖𝑗
𝑚
𝑖=1

𝑛
𝑗=1 + 𝑄i). 

•  Initial population. A random population of individuals is produced using 

the method. Each individual is said to be a chromosome. The chromosomes will give 

the best solution to the problems. 
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•  Crossover. In this model, the adaptive crossover techniques are also utilized 

to possibly prevent the early occurrence by increasing the crossover chance. The 

algorithm’s last phase reduces the crossover probability with increased speed-up 

convergence, and simple to implement excellent individuals and generate new good 

individuals. 

•  Mutation. From 1 to 0, and from 0 to 1 are examples of single point mutation 

used in this work to alter individual bits in groups with reduced likelihood. The fitness 

value of the function is smaller than the average after multiple recursive cycles. The 

chromosome randomly chooses a gene and inverts its value based on the mutation 

operation. As a result of its removal, ACOs are granted based on the group’s best 

solution. 

3.7. Combined GA and ACO or GAACO algorithm 

In this model, the chromosomal population is estimated according to the evolutionary 

rates of consecutive dates, and five generations. Here, the persons are elected 

according to the population-based fitness function values, then 10% of them are 

chosen as an optimization solution and then convert into beginning pheromones after 

the genetic algorithm is complete. Once the genetic algorithm is finished, it may be 

terminated 𝑇𝑖
𝐺(𝑡), and the ACO can be entered, 

(12)   𝑇𝑖
𝐺(𝑡) = 𝜌𝑆𝑛, 

where ρ means self-set constant and 𝑆𝑛 are the genetic algorithm’s optimization 

solutions. We can determine the distribution of pheromones by using a genetic 

algorithm.  

1.  Pheromone updating. The resource pheromone’s initial value is set in (13). 

Assume that the pheromone value on application 𝑖 at time 𝑡 is (𝑡); then at the next 

update time 𝑡′, the value is updated to 𝜏𝑖(t'): 

(13)   𝜏𝑖(𝑡
′) = 𝛿 (1 − 𝑝)𝜏𝑖(𝑡) + ∆𝜏𝑖(𝑡, 𝑡

′) + 𝑇𝑖
𝐺(𝑡)1,  

𝛿 is the termination condition of ACO. When the cycle counter N reaches the 

maximum number of iteration’s i, range(1 − 𝑝), the current value is the optimal 

scheduling scheme, and then the ACO terminates. Where 0 < 𝜌 ≤ 1 is a coefficient 

which represents pheromone evaporation and Δi(𝑡, 𝑡′) is the pheromone value 

increment. 

2.  Pheromone increment. The pheromone value increment, ∆𝜏𝑖
𝑗(𝑡, 𝑡′) obtained 

from all the ants’ partial solutions; that is, 

(14)   ∆𝜏𝑖
𝑗(𝑡, 𝑡′) = ∑ ∆𝜏𝑖

𝑗(𝑡, 𝑡′),
𝑞
𝑗=1   

where 𝑞 is the number of ants and ∆𝜏𝑖
𝑗(𝑡, 𝑡′) is the pheromone value laid on task 𝑖 

and VM𝑗 with ant’s partial solution at the time (𝑡, 𝑡′) and is defined as 

(15)   ∆𝜏𝑖
𝑗(𝑡, 𝑡′) = {

𝐺 (𝑓 (𝑆j̃(𝑡
′)))  if  j-th ant incorporates application 𝑖,

0                           otherwise,
       

where 𝑆j̃(𝑡
′) is the partial solution of ant 𝑗 at time 𝑡’ and 𝑓 (𝑆j̃(𝑡

′)) is the value  

of the evaluation function of this solution. To maximize the profit 𝑝𝑘, the  

total value of the VM should belong to(𝑆j̃(𝑡
′)). The function 𝐺 is defined 
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𝐺 (𝑓 (𝑆j̃(𝑡
′))) =  𝑄𝑖 (𝑓 (𝑆j̃(𝑡

′))), in which 𝑄i is a parameter of the method. The 

evaluation is defined as 

(16)   𝑓 (𝑆j̃(𝑡
′)) = ∑ 𝑝𝑘 .𝑘∈𝑆j̃(𝑡

′)        

3.  Routing rule. After obtaining the pheromone value, select the scheduled 

VMj according to the equation. The best optimal solution of ant h can be calculated 

by, 

(17)   𝑃ℎ
𝑗(𝑡) =  {

[𝜏ℎ(𝑡)𝛼][(𝑆𝑗(𝑡))]
𝛽

∑ [𝜏𝑘(𝑡)]𝛼[(𝑆𝑗(𝑡))]
𝛽

 
𝑘ϵallowed𝑗(𝑡)

  if  ℎ ∈ allowed𝑗(𝑡),

0     otherwise,

  

where allowed(𝑡) ⊆ 𝑆 −𝑆𝑗̃(𝑡
′) is the set of the remaining schedulable VMs. The above 

equation shows that the more pheromone value 𝜏ℎ(𝑡) as a VM, the higher probability 

of α, β will be scheduled. A VM can be selected, but more than one provider 𝜏𝑘(𝑡) 

has the resources to do it. Be aware that in most hybrid methods, the possibility of 

VM scheduling is only taken into account.  
 

 
Fig. 1. The GAACO algorithm of flow chart 
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Assume the dimension of the resources is 𝑑 and each provider’s capacity can be 

expressed 𝑐𝑖
𝑘 is the 𝑘-th dimensional resource that the provider 𝑖 has. The resources 

utilized by VMj when executed on provider 𝑖 is denoted as 𝑟𝑖𝑗
𝑘. For some particularly 

feasible provider 𝑖, the load of its 𝑘-th dimensional resource is 𝐿𝑖𝑘 as defined in the 

Equation (10). After adding VMj, the expected load of its 𝑘-th dimensional resource 

is 

(18)   𝐿𝑖𝑘
′ = 𝐿𝑖𝑘 + (

𝑟𝑖𝑗
𝑘

𝑐𝑖
𝑘).       

The expected load of provider 𝑖 is defined as 

(19)   𝐿𝑖
′ =

∑ 𝐿𝑖𝑘
′𝑑

𝑘=1

𝑑
.    

This means that if j is executed on provider 𝑖, 𝑖’s expected load will be 𝐿𝑖
′ . To 

balance the load of all the providers, the provider with the lowest expected load will 

be selected to execute VMj.  

This paper develops a hybrid GAACO algorithm for scheduling tasks by solving 

complex combinatorial optimization issues. The section above suggests a method, 

including the genetic algorithms Fitness Function Value (FFV) and Ant Colony 

Optimization algorithms fitness function value [25, 45].  

GAACO Algorithm 

Input: List of Tasks and List of VMs 

Output: The Best Solution for Tasks Allocation on VMs  

Step 1. Initialize QoS weight factor ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, 𝑞 = 𝑛, number of cycles 𝐶 

Step 2. Define QoS model objective function based on equation (8) 

Step 3. Define load balance model using equation (11) 

Step 4. Define GA fitness function values according to the equation (9) 

Step 5. for (𝑡 = 1: 𝑡 <= 𝐶; t++) 

Step 6.   for (𝑗 = 1; 𝑗 < 𝑞; j++) 

Step 7.    while task size < VM size 

Step 8.     Select randomly the first task  

Step 9.     Selection, crossover, and mutation 

Step 10.    End while 

Step 11.    GA Optimal solution group is generated  

Step 12.    Initialize ACO  
Step 13.     while allowed 𝑗 (𝑡) ≠ 0 

Step 14.         if random first == 0 

Step 15.          Select the first scheduled application randomly 

Step 16.           random first = 1 

Step 17.         else 

Step 18.       Select the scheduled task according to the pheromone value of ant 

Step 19.    End if 

Step 20.      Calculate the expected loads L of all feasible VMs 

Step 21.       Rank feasible VMs into increasing order based on expected load L   

Step 22.  The VM which has a low expected load L is selected for pheromone 

value   

Step 23.      Selected pheromone value added to the ant list 
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Step 24.    End while 

Step 25.       Calculate objective function load L, for the generated solution of 

ant  

Step 26.       if L > best solution 

Step 27.        best solution = L 

Step 28.          Save ant solution in VM 

Step 29.    End if 

Step 30.   End for 

Step 31.    Calculate the incremental pheromone on each task 

Step 32.    Clear the ant list for each ant 

Step 33. End for 

Fig. 1 shows that the GAACO algorithms minimizes the energy consumption 

and also maximizes the resource utilization in cloud load balancing. The best solution 

of GA is used as an initial pheromone value of the ACO algorithm. The best solution 

of ACO algorithm is the final best solution of GAACO algorithm.  

4. Results and discussion  

This section discusses the performance and results of both existing and proposed load 

balancing methods concerning the parameters of the degree of imbalance, makespan 

time, response time, and energy consumption. For execution and results evaluation, 

the NS3 simulator has been utilized to test each method. In order to prove the efficacy 

of the proposed GAACO model, it is compared with some other conventional load 

balancing techniques. In the proposed work, the process of energy-efficient resource 

scheduling is accomplished with the help of the GAACO model. In which, the GA 

technique first sorts the chromosomes based on their level of importance, because 

gene execution is prioritized during crossover and mutation processes, the order in 

which they are executed is never disturbed. Then, the best solution of GA will be 

considered as the initial value of ACO and, finally, the best optimal fitness value is 

calculated by using the ACO algorithm. The proposed GAACO algorithm could 

efficiently reduce the makespan time, response time and increase the energy 

efficiency with better utilization of resources by solving the degree of imbalance 

issues, where the Degree of Imbalance (DoI) is calculated as follows: 

(20)   DoI = 
max 𝑡(𝑖) – min 𝑡(𝑖)

avg 𝑡(𝑖)
,  

where max 𝑡(i) means maximum tasks (𝑡(i)) of all VMs, and min 𝑡(i) means minimum 

tasks (𝑡(i)) of all VMs, and avg 𝑡(i) is the average of task 𝑡(i). 

Fig. 2 shows the DoI analysis of the existing EFOA and proposed GAACO 

techniques concerning a varying number of tasks ranging from 100 up to 1000, which 

are allocated to 100 VMs [32]. Based on this analysis, it is evident that the proposed 

GAACO technique outperforms the other technique, reducing the DoI measure. 

Similar to that, the makespan time of existing EFOA and proposed GAACO 

models are calculated, concerning the varying number of tasks ranging from 100 up 

to 1000, which are allocated to 100 VMs as shown in Fig. 3. This result also proves 

that the proposed GAACO technique outperforms the other technique with reduced 

makespan time. As in the proposed time, the CPU usage, response time, and 
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execution time have been estimated before allocating the jobs to the resources, this 

helps to reduce the makespan time. 

 
Fig. 2. Degree of Imbalance for 1000 tasks with 100 VMs 

 
Fig. 3. Makespan time required to allocate 1000 tasks with 100 VMs 

 
Fig. 4. Response time for allocating 1000 tasks with 100 VMs 

Consequently, Fig. 4 estimates the response time of existing EFOA and 

proposed GAACO techniques under the varying number of tasks ranging from 100 

up to 1000, which are allocated to 100 VMs. Normally, the response time is one of 

the essential measures that need to be considered while scheduling the jobs to the 

resources for execution. Moreover, the entire performance of the load balancing 

model highly depends on the energy level and response time of machines in the cloud 
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system. When compared to the EFOA model, the hybrid GAACO-based task 

allocation scheme requires a reduced response time for executing the given tasks.  

 
Fig. 5. Energy consumption for allocating 1000 tasks with 100 VMs 

 
Fig. 6. Energy consumption for allocating 1000 tasks with 1000 VMs 

Fig. 5 shows that the energy consumption is minimized while allocating the 100 

up to 1000 tasks to 100 VMs as compared to EFOA method. And in Fig. 6, the energy 

consumption of conventional EFOA and GAACO techniques is estimated under a 

varying number of VMs ranging from 100 up to 1000. For validating the energy 

efficiency of the proposed GAACO model, the increased number of tasks (i.e., 1000 

tasks) and VMs (i.e., 100 up to 1000 VMs) has been taken for this analysis. From 

these evaluations, it is identified that the proposed GAACO technique outperforms 

the other technique with ensured efficiency and results. 

Based on this analysis, Figs 5 and 6 is evident that the load has been efficiently 

balanced and the energy consumption is minimized in the proposed model, and we 

have shown the optimal energy efficiency by comparing the results of less loaded 

VMs and more loaded VMs.  

5. Conclusion 

An ACO and GA hybridization with a multi-objective function was explored to 

enhance the global optimization solution. The energy problem has received minimal 

attention in most cloud system scheduling approaches, and in some systems that have 
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been tuned for energy use, the makespan has increased. In our proposed GAACO 

algorithm, the energy efficiency is improved while maintaining a high level of 

services by combining GA and ACO algorithm-based QoS load scheduling 

approaches. The proposed GAACO algorithm shows that energy consumption is 

minimized even user schedules a large number of tasks to less number of VMs 

without any task failure occurring. In this research study, we have minimized energy 

consumption, makespan time, and response time and also reduced the imbalance of 

load balancing.  

6. Future works 

In order to fulfill customer demand, Cloud computing platforms offer more 

applications and services via the Internet. It is becoming more and more common to 

host applications on the cloud. To serve these applications via virtualization, a host’s 

scalability is becoming more critical. There are always new challenges to overcome 

in terms of resource allocation and scalability. The hosts’ scalability and fault 

tolerance must be evaluated. There may be scope for utilizing evolutionary 

algorithms in cloud computing, such as Particle Swarm Algorithm abbreviated as 

PSO and Simulated Annealing. In the cloud computing context, effective and reliable 

services become a problem. The goal of autonomous computer systems is for them 

to monitor, repair, and optimize themselves. To fulfill the SLA for user needs, an 

autonomic resource allocation method may be designed. 
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