
 161

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 23, No 1

Sofia • 2023 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2023-0009

An Energy-Aware QoS Load Balance Scheduling Using Hybrid

GAACO Algorithm for Cloud

Arivumathi Ilankumaran, Swathi Jamjala Narayanan

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu,

India

E-mails: arivumathi1202@gmail.com jnswathi@vit.ac.in

Abstract: In recent days, resource allocation is considered to be a complex task in

cloud systems. The heuristics models will allocate the resources efficiently in different

machines. Then, the fitness function estimation plays a vital role in cloud load

balancing, which is mainly used to minimize power consumption. The optimization

technique is one of the most suitable options for solving load-balancing problems.

This work mainly focuses on analyzing the impacts of using the Genetic Algorithm

and Ant Colony Optimization (GAACO) technique for obtaining the optimal solution

to efficiently balance the loads across the cloud systems. In addition to that, the GA

and ACO are the kinds of object heuristic algorithms being proposed in the work to

increase the number of servers that are operated with better energy efficiency. In this

work, the main contribution of the GAACO algorithm is to reduce energy

consumption, makespan time, response time, and degree of imbalance.

Keywords: Load balancing; energy consumption; Genetic Algorithm; Ant Colony

Optimization Algorithm; cloud computing.

1. Introduction

Due to the recent development of computer networks, devices, and high-speed

internet, cloud services are becoming more popular in many businesses and other

applications. In this system, the process of resource sharing has been improved with

the integration of different services, and scheduling techniques along with energy

minimization[1-3], which are mainly used to improve the efficiency of a data center.

Due to these facets, the growing popularity of cloud services has drastically

increased, where the users are highly required to have advanced systems and fast

networks for connecting with cloud data centers across the globe. In this domain, the

utilization of energy is one of the most essential factors that need to be concentrated

on for improving the overall efficiency and performance of the cloud system. This

objective can be accomplished by using cloud server power management techniques.

Recently, many research works [4] have been accomplished with some alternate

algorithms for reducing cost consumption, energy consumption, and greenhouse gas

emission. According to recent survey reports, it is analyzed various heuristic models

mailto:arivumathi1202@gmail.com
mailto:jnswathi@vit.ac.in

 162

are developed for improving the process of resource allocation with minimized

software/hardware requirements. Among the other technologies, the virtualization

concept has been widely used in many cloud computing applications for obtaining

minimal energy consumption [5, 6]. When compared to the other techniques, the

metaheuristic models [7, 8] are considered one of the most suitable options for

minimizing energy usage. Due to its simplicity and ease of implementation, it is

considered one of the successful mechanisms for solving cloud load balancing

problems. Beyond the advantages of service consumers, cloud service providers, and

economic organizations also have an increased option to utilize the metaheuristic

models, since it reduces or eliminates infrastructure maintenance expenses.

Based on the requirements of customers [9, 10], cloud providers could deliver

reliable services with the help of cloud-based applications for commercial operations,

which may be sensitive to the users’ data. In many cases, the service level agreement

provides an ensured quality of services to the customers according to their demands.

Here, virtualization is mainly used to increase the performance of cloud systems and

is more popular in the last few decades [11, 12]. It allows customers' applications to

run more efficiently by moving virtual machines between different hosts without

disrupting the services [13]. As the customers’ needs change, it provides various

services to them based on their demands. Because, only the customers pay for what

they use, and cloud computing allows users to access their data from anywhere

globally [14] by transferring it to the cloud (the Internet) from their personal

computers. Moreover, the consumers are not required to have high-capacity

processing and storage systems, since all cloud computing activities are handled by

the well-equipped and advanced servers in the cloud service provider sector [15].

Cloud accounting [16] is one of the extensively used terms in today's business

world. Because most organizations and business sectors choose service plans

according to their requirements and conditions. Also, the cloud offers unlimited

resource capacity at a reasonable cost, which has the following unique factors [17,

18]: CPUs, memory, input/output network, and disc. Then, the organizations can

provide the opportunity to host their apps on the cloud, which allows for the eventual

removal of structural resources, such as prior ultra-structural resources, that lasted for

many months. As for cloud service providers, it is essential to assure whether the

clients’ expectations are fulfilled or not [19-21].

The main objective of this work is to store the bits in a cloud environment by

constructing the virtual network infrastructure, which helps to even out network

pressure precisely as in the phase map and radius produced in big data. For this

purpose, the virtualization and load balancing methods have been utilized in this work

that could significantly improve the performance of the entire cloud system with the

efficient allocation of resources [22]. Although, resource scheduling and request

management are utilized in conventional works for load balancing in the cloud, but

are limited to the key problem of increased energy consumption. Typically, energy

optimization is one of the important goals that need to be addressed in the cloud

system, hence this paper intends to provide a new solution for solving the load

balancing problem with the help of a hybrid GAACO-based heuristic model. Here,

the energy-performance tradeoff [23, 24] can be evaluated for a physical machine

 163

with computational capability at its peak. When compared to the other conventional

techniques, the proposed hybrid GAACO technique can efficiently balance the loads

across the machines in the cloud with reduced energy consumption, makespan time,

response time, and degree of imbalance.

2. Literature review

This section examines the working principles and characteristics of the existing

heuristic and meta-heuristic models used for virtualization and load balancing in

cloud systems. In [25] a modified ACO method is utilized for improving the job

scheduling process in the cloud and it is a kind of random method in which all ants

appear on as processors. Then, the ants produce pheromones for determining whether

or not they are allowed to migrate. In addition to that, the market-based resource

management scheme is utilized in many fields for managing resources across various

systems. In [26] the multi-tiered web application issue is intended to be solved by

using virtualized heterogeneous systems. Generally, if the number of nodes is limited,

it is quite difficult to find a suitable way for optimizing the controller, which renders

it inappropriate for large-scale issues in the real world [27].

The researchers have explained that the resource allocation is based on priorities

while virtualizing several applications on a cluster. Authors have suggested a simple

method to find a solution for solving this problem. Also, the bin packing problems

are resolved by using the heuristic models with variable costs and sizes. The energy-

efficient use of virtual machines in High-Density Cluster (HDC) settings has been

described in [9]. Generally, the VM has implemented max, min, and shares

parameters to indicate the maximum and minimum CPU allocation rate per resource.

This technique is the most suitable option in the private cloud or corporate setting. A

team [8], has analyzed the possibility of linking several VMs for enhancing the

communication efficiency between them. However, they have found that the primary

goal has not been to save energy.

The genetic algorithm process that shapes all living things may be harnessed by

algorithms, based on the natural world's genetic algorithm. In order to use a genetic

algorithm, you will need a specific solution domain (chromosome) to be represented,

along with a fitness function to judge that solution domain. Solutions with optimized

genetic attributes may be discovered via selective breeding and evolutionary

algorithms (called individuals). The scheduling issue in a workshop may be solved

using genetic algorithms, which use variations of natural selection. They are used as

extensions when used to describe heterogeneous systems, grid computing, and cloud

computing. The estimates in this research often presume that each job will take a

specific duration (homogeneous system).

An experimental study has been done on the task scheduler in a distributed

heterogeneous computing environment to see whether it could execute tasks across

different sets of heterogeneous computing resources. Researchers have looked at

heterogeneously distributed systems to see how efficient a high-performance

computing system with load-balancing and a central server is. A central scheduler

has been suggested to make load-balancing decisions using a genetic algorithm to

 164

distribute the load. Using genetic algorithms and task network representation has

increased the dependability of distributed computing systems.

Changing the frequency and voltage of a server’s CPU is not adequate because

it only consumes around a third of the total energy. Physical Machines should utilize

energy in proportion to the amount of work they accomplish, as shown in Table 1.

Table 1. Energy consumption of various CPUs with resource utilization [31]

Performance Power
Performance to power ratio

Target load Actual load ssj_ops Average power (W)

100% 99.8% 190,234 119 1601

90% 90.7% 172,967 116 1494

80% 80.8% 154,130 112 1380

70% 69.7% 132,811 106 1251

60% 60.8% 115,866 99.8 1161

50% 49.6% 94,582 90.9 1041

40% 39.7% 75,792 82.5 919

30% 29.8% 56,857 74.4 764

20% 19.9% 37,980 68.2 557

10% 10.2% 19,410 60.8 309

Active Idle 0 56.7 0

∑ssj_ops / ∑power 1064

A prolonged 100% CPU or memory use may result in substantial degradation

of the system performance. Most servers can handle 70-80% server load or memory

without deteriorating performance, whereas host servers also handle 90% for the

whole computer, host energy consumption changes with CPU usage. As a result, for

improved energy efficiency, the CPU use rate should be raised.

If we use the cloud computing infrastructure, it is often possible to use and

deploy service-oriented applications. Server businesses or data centers make cloud

computing services accessible to their customers by providing their servers. Setting

up your cloud computing involves provisioning highly efficient computers and large

quantities of storage since cloud computing services are in constant demand for

computations and colossal data. Power in data centers is primarily derived from the

resources, often paired with air conditioning and cooling systems. Data centers use

more electricity than all of Europe. Green data center design requires efficient

technology since substantial energy usage in data centers consumes a lot of energy.

Cloud data centers may help reduce total energy use by helping to lower both idle

and active server energy usage using virtualization, where resources may be

consolidated and shared on a single server. Each physical machine adds up to the total

processing power of a Cloud data center. Data centers that host cloud services utilize

virtualization technologies to allocate resources as needed. SaaS, PaaS, and IaaS are

the three degrees of cloud access available to consumers. From client to client, the

job that the customer has set out might be vastly different [28-30].

Cloud entities are independent and self-interested to attain individual and

communal goals, yet they are prepared to share their resources. Due to the

decentralized structure of the system, the scheduling choice is difficult in such an

open setting. There are particular criteria and goals for each organization. By

consolidating servers on a single physical server, data centers can reduce their energy

 165

consumption. As a result of the virtual machine concept, you may operate many

servers on one physical server [31]. Some people refer to the task consolidation issue

as the server/workload consolidation issue. In order to save energy, all computer

resources are fully used, and virtual machines are dispersed [32].

Professorial and business debates on energy use in cloud data centers are raging

right now. As a cloud service provider, it is also essential that you fulfill your clients’

Quality-of-Service criteria (QoS). When scheduling tasks, maintaining a high quality

of service (QoS) remains a challenge [36].

It is studied in this review that the existing load balancing models in the cloud

are highly concentrated on scheduling, the resources across various VMs in the server

based on the factors of priority, execution time, the current status of machines, CPU

usage, memory consumption, and response time. However, it fails to analyze the

energy level of VMs that are executing the tasks in a cloud server, because the

increased level of energy utilization creates the problems of high delay in the process,

increased response time for the given tasks, slow process, and inefficient task

completion. These factors could degrade the performance and efficiency of the entire

cloud load-balancing system. In order to solve these issues, this research work objects

to develop an efficient and intelligent hybrid heuristic optimization methodology for

perfectly allocating the resources across the VMs on the cloud system by finding the

best optimal solution. For this purpose, the most extensively used heuristic

optimization techniques such as GA and ACO are incorporated together for

improving the overall load-balancing process in the cloud. Moreover, the hybrid

GAACO identifies the best fitness function for optimally allocating the resources

among various VMs based on the following parameters: response time, degree of

imbalance, makespan time, and minimizing energy level. These features are mainly

considered in the proposed load-balancing system for improving the process of

scheduling with ensured energy efficiency.

3. Proposed method

This section presents a detailed description of the proposed methodology with its

appropriate mathematical illustrations and flow chart representations. The main

contribution of this paper is to develop a hybrid heuristic methodology named,

Genetic Algorithm integrated with Ant Colony Optimization (GAACO) for

efficiently allocating the resources across various machines in cloud server in order

to execute the given task. When compared to the other heuristic models, the GA and

ACO are extensively used in many multi-objective optimization systems for

providing a suitable solution to solve the problem, hence, this research work intends

to incorporate these two technologies for attaining these benefits. Here, the novel

contribution of using the GAACO technique is that it provides the optimal solution

for balancing the loads across the cloud systems by estimating the best fitness

function. Moreover, energy is one of the most essential parameters that need to be

considered for developing an efficient load-balancing system. Hence, energy-

efficient scheduling and optimal load balancing are mainly concentrated in this work,

which is accomplished by the use of the hybrid GAACO technique.

 166

In this environment, both the VMs and PMs in the cloud server are partitioned

according to the demands on the resources, where the factors such as CPU utilization

rate, memory usage, and time have been considered before scheduling the tasks to

the cloud machines. Then, the average response time of each machine that is

executing the tasks is calculated for analyzing its energy level. In addition to that, this

work considers the QoS parameters for ensuring increased energy efficiency and

better scheduling of loads. After estimating these parameters, the hybrid GAACO

model is deployed for scheduling the tasks to the appropriate resources based on the

best fitness value, which improves the entire performance of cloud load balancing

with the ensured energy efficiency of resources. Both GA and ACO find the better

solution even working separately. In our proposed hybrid algorithm, GAACO they

work simultaneously and get the best optimal solutions, while GA finds the fitness

function values, tasks may get dropped sometimes due to overload, task failure, etc.,

the dropped tasks will run simultaneously on the ACO algorithm, and a better solution

is found. So the proposed GAACO provides the following benefits: increased energy

efficiency, optimal resource allocation, requires a minimum of iterations to identify

the best fitness value for job scheduling, and better performance outcomes.

3.1. System model

Normally, the cloud data centers comprise many physical machines, which are

partitioned into several VMs across the cloud. Then, this partitioning is done based

on the measures of resource demand, memory, CPU, and time. This multi-objective

function ensures that the essential resources are effectively used in cloud

environments. This is done by moving the virtual machine of the overcrowded PM to

another PM that is not overloaded while analyzing the QoS and energy consumption

[33].

3.2. Energy model

The main focus of this research work is to obtain an increased efficiency of resources.

The goal of the energy model is to maintain a high level of energy efficiency to meet

society’s needs. A more critical aspect of energy modeling is using the least energy

while maximizing resource utilization [34]. Below is a power-based energy model

for the system:

(1) 𝑃 = 𝑎𝐶𝑣2𝑓.

Voltage v, capacitance load C, clock frequency a, and activity factor f, which

shows the number of switches each clock cycle, are the essential variables for power

usage. Because of this, power reduction may be influenced by a decrease in supply

voltage, as shown in the equation above. vf and f, which are directly linked to

frequency (vf) mean that power is calculated as P = aCv3 and,
(2) 𝐸 = 𝑃 × 𝑇,
where E is the total Energy. The average response time taken by the tasks is indicated

as T. The main thing of the proposed load balancing strategy is to assign the p number

of processors to n jobs. As a result of the suggested schedule, it is hoped that both the

makespan and energy consumption E would be decreased [35]:

(3) 𝐸 = 𝑎𝐶𝑣3 ∑ 𝑊̅𝑛
𝑖=1 (𝑇𝑖) + ∑ 𝐶̅𝑛

𝑖=1 (𝑇𝑖),

 167

where 𝑊̅ (𝑇𝑖) is the Waiting time of Tasks Ti, and 𝐶̅ (𝑇𝑖) is the Communication time

of Ti.

3.3. QoS model

System components and symbols utilized in the QoS model are defined as follows:

let consider N number of the Virtual Machines (VMs) existing in a cloud data center

to calculate the QoS response time QoS_RTi and QoS throughput QoS_TPi of all

tasks in N number of VMs.

Then, the QoS Response Time RT is calculated as follows:

(4) QoSRT𝑖
=

RT𝑖

RespTime
,

where RTi is the response time, and RespTime is the Average response time. The

average response time could be calculated as

(5) RespTime = ∑
RT𝑖

𝑁
𝑁
𝑖=1 ,

where N is the Number of Virtual Machines. QoS throughput may be denoted like

the formula:

(6) QosTP𝑖
=

Throughput

TP𝑖
,

where Throughput indicates the average Throughput and TPi defines the throughput.

Average Throughput could be calculated as

(7) Throughput = ∑
TP𝑖

𝑁
𝑁
𝑖=1 .

Then calculate the objective function of QoS model Qi using the formula as

follows:
(8) Qi= 𝜆1 × QosRT𝑖

+ 𝜆2 × QosTP𝑖
+ 𝛽 × 𝐸,

where λ1, λ2, 𝛽 are weight factors (w) of QoS model, w is from 0 to 1.

Hence, it is stated that the QoS model will efficiently improve resource

utilization by minimizing the response time and throughput while allocating the tasks

to N number of VMs.

3.4. Load balance model

Let consider, the following example: the case where the resources have a dimension

of d and the resources of each provider i may be represented using the following

formula. In collecting applications arriving at a specific time slot, Pj is the value of

VMj. The vector 𝑟𝑖𝑗⃗⃗ ⃗ representing the resources utilized by j while executing on

provider i [37, 38]. In the real world, technology will almost always only be

developed for one provider. Therefore, assume that every application cannot be

further divided. The cloud model captures the value of an application as soon as a

successful application is performed on a provider’s platform. While each service

provider’s resource capacity limits the scheduling goal, the overall goal is to

maximize the cloud model profits. Accordingly, the scheduling problem, 𝑃𝑗 can be

formulated in the following manner. The Fitness Function Value (FFV) of GA is

given below:

(9) Maximize ∑ (𝑃𝑗 ∑ 𝑥𝑖𝑗
𝑚
𝑖=1

𝑛
𝑗=1 + 𝑄i),

subject to
∑ 𝑟𝑖𝑗⃗⃗ ⃗𝑥𝑖𝑗 + 𝑄i 𝑛

𝑗=1 ≤ 𝑐𝑖⃗⃗ , 𝑖 = 1, 2, … ,𝑚,

 168

∑𝑥𝑖𝑗

𝑛

𝑗=1

+ 𝑄i ≤ 1, 𝑗 = 1, 2, … ,𝑚,

𝑥𝑖𝑗 + 𝑄i ∈ {0, 1}, 𝑗 = 1, 2, . . . , 𝑛,

where 𝑄𝑖 is the Quality of service, and ∑ 𝑥𝑖𝑗
𝑚
𝑖=1 is the capacity of each task i in VM.

It means that Equation (9) is NP-hard, multidimensional knapsack problem, where

the applications often utilize the VMs, 𝑟𝑖𝑗
𝑘 for gaining the successful QoS [39, 40]. It

also guarantees that all VMs utilize the same energy, preventing instances when

specific VM with large loads run out of power and leave the system. Load of the

k-th dimensional resource of a given provider is defined as follows:

(10) 𝐿𝑖𝑘 =
∑ (𝑟𝑖𝑗

𝑘(𝑥𝑖𝑗+𝑄i))
𝑛
𝑗=1

𝑐𝑖
𝑘 ,

where 𝑐𝑖
𝑘 is the Average capacity of tasks. Load Li is defined as the mean value of all

its d-dimensional task’s loads; that is,

(11) 𝐿𝑖 =
∑ 𝐿𝑖𝑘

𝑑
𝑘=1

𝑑
.

3.5. Genetic Algorithm for task scheduling

A natural resource allocation technique assigns the work to available VMs across

hosts. When working with the load balancing issue, we can use heuristic techniques,

which rely on genetic algorithms to explore the exponential solution space [41]. It

uses an objective function (genetic) to choose a single solution from the population

[42].

A random beginning population of POP-SIZE (POPulation SIZE) people has

been produced, and their fitness values have been calculated to create a new

population from scratch to the destination [43, 44].

It verifies whether the termination condition is satisfied in looping sections.

Upon starting, the program generates a random solution and calculates its fitness

score. The looping, cross-over, and mutation algorithm three techniques are assumed

to be employed after the first method.

3.6. Encoding and decoding

Each chromosome should represent a different scheduling strategy. This paper

examines the topic using an indirect encoding approach. Each resource-consuming

task is encoded so that it may be tracked and identified. For the number of sub-tasks,

multiply chromosome length by 1. The value of Gene-bit reflects the amount of

utilized resource in Equation (9), and every bit location in Gene-bit shows how many

gene sub-tasks are presently being executed.

• Fitness function. Using Equation (9), determines the time of a particular job

in fitness function,

Maximize ∑ (𝑃𝑗 ∑ 𝑥𝑖𝑗
𝑚
𝑖=1

𝑛
𝑗=1 + 𝑄i).

• Initial population. A random population of individuals is produced using

the method. Each individual is said to be a chromosome. The chromosomes will give

the best solution to the problems.

 169

• Crossover. In this model, the adaptive crossover techniques are also utilized

to possibly prevent the early occurrence by increasing the crossover chance. The

algorithm’s last phase reduces the crossover probability with increased speed-up

convergence, and simple to implement excellent individuals and generate new good

individuals.

• Mutation. From 1 to 0, and from 0 to 1 are examples of single point mutation

used in this work to alter individual bits in groups with reduced likelihood. The fitness

value of the function is smaller than the average after multiple recursive cycles. The

chromosome randomly chooses a gene and inverts its value based on the mutation

operation. As a result of its removal, ACOs are granted based on the group’s best

solution.

3.7. Combined GA and ACO or GAACO algorithm

In this model, the chromosomal population is estimated according to the evolutionary

rates of consecutive dates, and five generations. Here, the persons are elected

according to the population-based fitness function values, then 10% of them are

chosen as an optimization solution and then convert into beginning pheromones after

the genetic algorithm is complete. Once the genetic algorithm is finished, it may be

terminated 𝑇𝑖
𝐺(𝑡), and the ACO can be entered,

(12) 𝑇𝑖
𝐺(𝑡) = 𝜌𝑆𝑛,

where ρ means self-set constant and 𝑆𝑛 are the genetic algorithm’s optimization

solutions. We can determine the distribution of pheromones by using a genetic

algorithm.

1. Pheromone updating. The resource pheromone’s initial value is set in (13).

Assume that the pheromone value on application 𝑖 at time 𝑡 is (𝑡); then at the next

update time 𝑡′, the value is updated to 𝜏𝑖(t'):

(13) 𝜏𝑖(𝑡
′) = 𝛿 (1 − 𝑝)𝜏𝑖(𝑡) + ∆𝜏𝑖(𝑡, 𝑡

′) + 𝑇𝑖
𝐺(𝑡)1,

𝛿 is the termination condition of ACO. When the cycle counter N reaches the

maximum number of iteration’s i, range(1 − 𝑝), the current value is the optimal

scheduling scheme, and then the ACO terminates. Where 0 < 𝜌 ≤ 1 is a coefficient

which represents pheromone evaporation and Δi(𝑡, 𝑡′) is the pheromone value

increment.

2. Pheromone increment. The pheromone value increment, ∆𝜏𝑖
𝑗(𝑡, 𝑡′) obtained

from all the ants’ partial solutions; that is,

(14) ∆𝜏𝑖
𝑗(𝑡, 𝑡′) = ∑ ∆𝜏𝑖

𝑗(𝑡, 𝑡′),
𝑞
𝑗=1

where 𝑞 is the number of ants and ∆𝜏𝑖
𝑗(𝑡, 𝑡′) is the pheromone value laid on task 𝑖

and VM𝑗 with ant’s partial solution at the time (𝑡, 𝑡′) and is defined as

(15) ∆𝜏𝑖
𝑗(𝑡, 𝑡′) = {

𝐺 (𝑓 (𝑆j̃(𝑡
′))) if j-th ant incorporates application 𝑖,

0 otherwise,

where 𝑆j̃(𝑡
′) is the partial solution of ant 𝑗 at time 𝑡’ and 𝑓 (𝑆j̃(𝑡

′)) is the value

of the evaluation function of this solution. To maximize the profit 𝑝𝑘, the

total value of the VM should belong to(𝑆j̃(𝑡
′)). The function 𝐺 is defined

 170

𝐺 (𝑓 (𝑆j̃(𝑡
′))) = 𝑄𝑖 (𝑓 (𝑆j̃(𝑡

′))), in which 𝑄i is a parameter of the method. The

evaluation is defined as

(16) 𝑓 (𝑆j̃(𝑡
′)) = ∑ 𝑝𝑘 .𝑘∈𝑆j̃(𝑡

′)

3. Routing rule. After obtaining the pheromone value, select the scheduled

VMj according to the equation. The best optimal solution of ant h can be calculated

by,

(17) 𝑃ℎ
𝑗(𝑡) = {

[𝜏ℎ(𝑡)𝛼][(𝑆𝑗(𝑡))]
𝛽

∑ [𝜏𝑘(𝑡)]𝛼[(𝑆𝑗(𝑡))]
𝛽

𝑘ϵallowed𝑗(𝑡)

 if ℎ ∈ allowed𝑗(𝑡),

0 otherwise,

where allowed(𝑡) ⊆ 𝑆 −𝑆𝑗̃(𝑡
′) is the set of the remaining schedulable VMs. The above

equation shows that the more pheromone value 𝜏ℎ(𝑡) as a VM, the higher probability

of α, β will be scheduled. A VM can be selected, but more than one provider 𝜏𝑘(𝑡)

has the resources to do it. Be aware that in most hybrid methods, the possibility of

VM scheduling is only taken into account.

Fig. 1. The GAACO algorithm of flow chart

 171

Assume the dimension of the resources is 𝑑 and each provider’s capacity can be

expressed 𝑐𝑖
𝑘 is the 𝑘-th dimensional resource that the provider 𝑖 has. The resources

utilized by VMj when executed on provider 𝑖 is denoted as 𝑟𝑖𝑗
𝑘. For some particularly

feasible provider 𝑖, the load of its 𝑘-th dimensional resource is 𝐿𝑖𝑘 as defined in the

Equation (10). After adding VMj, the expected load of its 𝑘-th dimensional resource

is

(18) 𝐿𝑖𝑘
′ = 𝐿𝑖𝑘 + (

𝑟𝑖𝑗
𝑘

𝑐𝑖
𝑘).

The expected load of provider 𝑖 is defined as

(19) 𝐿𝑖
′ =

∑ 𝐿𝑖𝑘
′𝑑

𝑘=1

𝑑
.

This means that if j is executed on provider 𝑖, 𝑖’s expected load will be 𝐿𝑖
′ . To

balance the load of all the providers, the provider with the lowest expected load will

be selected to execute VMj.

This paper develops a hybrid GAACO algorithm for scheduling tasks by solving

complex combinatorial optimization issues. The section above suggests a method,

including the genetic algorithms Fitness Function Value (FFV) and Ant Colony

Optimization algorithms fitness function value [25, 45].

GAACO Algorithm

Input: List of Tasks and List of VMs

Output: The Best Solution for Tasks Allocation on VMs

Step 1. Initialize QoS weight factor ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, 𝑞 = 𝑛, number of cycles 𝐶

Step 2. Define QoS model objective function based on equation (8)

Step 3. Define load balance model using equation (11)

Step 4. Define GA fitness function values according to the equation (9)

Step 5. for (𝑡 = 1: 𝑡 <= 𝐶; t++)

Step 6. for (𝑗 = 1; 𝑗 < 𝑞; j++)

Step 7. while task size < VM size

Step 8. Select randomly the first task

Step 9. Selection, crossover, and mutation

Step 10. End while

Step 11. GA Optimal solution group is generated

Step 12. Initialize ACO
Step 13. while allowed 𝑗 (𝑡) ≠ 0

Step 14. if random first == 0

Step 15. Select the first scheduled application randomly

Step 16. random first = 1

Step 17. else

Step 18. Select the scheduled task according to the pheromone value of ant

Step 19. End if

Step 20. Calculate the expected loads L of all feasible VMs

Step 21. Rank feasible VMs into increasing order based on expected load L

Step 22. The VM which has a low expected load L is selected for pheromone

value

Step 23. Selected pheromone value added to the ant list

 172

Step 24. End while

Step 25. Calculate objective function load L, for the generated solution of

ant

Step 26. if L > best solution

Step 27. best solution = L

Step 28. Save ant solution in VM

Step 29. End if

Step 30. End for

Step 31. Calculate the incremental pheromone on each task

Step 32. Clear the ant list for each ant

Step 33. End for

Fig. 1 shows that the GAACO algorithms minimizes the energy consumption

and also maximizes the resource utilization in cloud load balancing. The best solution

of GA is used as an initial pheromone value of the ACO algorithm. The best solution

of ACO algorithm is the final best solution of GAACO algorithm.

4. Results and discussion

This section discusses the performance and results of both existing and proposed load

balancing methods concerning the parameters of the degree of imbalance, makespan

time, response time, and energy consumption. For execution and results evaluation,

the NS3 simulator has been utilized to test each method. In order to prove the efficacy

of the proposed GAACO model, it is compared with some other conventional load

balancing techniques. In the proposed work, the process of energy-efficient resource

scheduling is accomplished with the help of the GAACO model. In which, the GA

technique first sorts the chromosomes based on their level of importance, because

gene execution is prioritized during crossover and mutation processes, the order in

which they are executed is never disturbed. Then, the best solution of GA will be

considered as the initial value of ACO and, finally, the best optimal fitness value is

calculated by using the ACO algorithm. The proposed GAACO algorithm could

efficiently reduce the makespan time, response time and increase the energy

efficiency with better utilization of resources by solving the degree of imbalance

issues, where the Degree of Imbalance (DoI) is calculated as follows:

(20) DoI =
max 𝑡(𝑖) – min 𝑡(𝑖)

avg 𝑡(𝑖)
,

where max 𝑡(i) means maximum tasks (𝑡(i)) of all VMs, and min 𝑡(i) means minimum

tasks (𝑡(i)) of all VMs, and avg 𝑡(i) is the average of task 𝑡(i).

Fig. 2 shows the DoI analysis of the existing EFOA and proposed GAACO

techniques concerning a varying number of tasks ranging from 100 up to 1000, which

are allocated to 100 VMs [32]. Based on this analysis, it is evident that the proposed

GAACO technique outperforms the other technique, reducing the DoI measure.

Similar to that, the makespan time of existing EFOA and proposed GAACO

models are calculated, concerning the varying number of tasks ranging from 100 up

to 1000, which are allocated to 100 VMs as shown in Fig. 3. This result also proves

that the proposed GAACO technique outperforms the other technique with reduced

makespan time. As in the proposed time, the CPU usage, response time, and

 173

execution time have been estimated before allocating the jobs to the resources, this

helps to reduce the makespan time.

Fig. 2. Degree of Imbalance for 1000 tasks with 100 VMs

Fig. 3. Makespan time required to allocate 1000 tasks with 100 VMs

Fig. 4. Response time for allocating 1000 tasks with 100 VMs

Consequently, Fig. 4 estimates the response time of existing EFOA and

proposed GAACO techniques under the varying number of tasks ranging from 100

up to 1000, which are allocated to 100 VMs. Normally, the response time is one of

the essential measures that need to be considered while scheduling the jobs to the

resources for execution. Moreover, the entire performance of the load balancing

model highly depends on the energy level and response time of machines in the cloud

 174

system. When compared to the EFOA model, the hybrid GAACO-based task

allocation scheme requires a reduced response time for executing the given tasks.

Fig. 5. Energy consumption for allocating 1000 tasks with 100 VMs

Fig. 6. Energy consumption for allocating 1000 tasks with 1000 VMs

Fig. 5 shows that the energy consumption is minimized while allocating the 100

up to 1000 tasks to 100 VMs as compared to EFOA method. And in Fig. 6, the energy

consumption of conventional EFOA and GAACO techniques is estimated under a

varying number of VMs ranging from 100 up to 1000. For validating the energy

efficiency of the proposed GAACO model, the increased number of tasks (i.e., 1000

tasks) and VMs (i.e., 100 up to 1000 VMs) has been taken for this analysis. From

these evaluations, it is identified that the proposed GAACO technique outperforms

the other technique with ensured efficiency and results.

Based on this analysis, Figs 5 and 6 is evident that the load has been efficiently

balanced and the energy consumption is minimized in the proposed model, and we

have shown the optimal energy efficiency by comparing the results of less loaded

VMs and more loaded VMs.

5. Conclusion

An ACO and GA hybridization with a multi-objective function was explored to

enhance the global optimization solution. The energy problem has received minimal

attention in most cloud system scheduling approaches, and in some systems that have

 175

been tuned for energy use, the makespan has increased. In our proposed GAACO

algorithm, the energy efficiency is improved while maintaining a high level of

services by combining GA and ACO algorithm-based QoS load scheduling

approaches. The proposed GAACO algorithm shows that energy consumption is

minimized even user schedules a large number of tasks to less number of VMs

without any task failure occurring. In this research study, we have minimized energy

consumption, makespan time, and response time and also reduced the imbalance of

load balancing.

6. Future works

In order to fulfill customer demand, Cloud computing platforms offer more

applications and services via the Internet. It is becoming more and more common to

host applications on the cloud. To serve these applications via virtualization, a host’s

scalability is becoming more critical. There are always new challenges to overcome

in terms of resource allocation and scalability. The hosts’ scalability and fault

tolerance must be evaluated. There may be scope for utilizing evolutionary

algorithms in cloud computing, such as Particle Swarm Algorithm abbreviated as

PSO and Simulated Annealing. In the cloud computing context, effective and reliable

services become a problem. The goal of autonomous computer systems is for them

to monitor, repair, and optimize themselves. To fulfill the SLA for user needs, an

autonomic resource allocation method may be designed.

R e f e r e n c e s

1. B e l o g l a z o v, A., J. A b a w a j y, R. B u y y a. Energy-Aware Resource Allocation Heuristics

for Efficient Management of Data Centers for Cloud Computing. – Future Generation

Computer Systems, Vol. 28, 2012, No 3, pp. 755-768.

2. P r i y a, V., C. S. K u m a r, R. K a n n a n. Resource Scheduling Algorithm with Load Balancing

for Cloud Service Provisioning. – Applied Soft Computing, Vol. 76, 2019, pp. 416-424.

3. K u n w a r, V., N. A g a r w a l, A. R a n a, J. P a n d e y. Load Balancing in Cloud – A Systematic

Review. – Big Data Analytics, 2018, pp. 583-593.

4. R e k h a, P., M. D a k s h a y i n i. Dynamic Cost-Load Aware Service Broker Load Balancing in

Virtualization Environment. – Procedia Computer Science, Vol. 132, 2018, pp. 744-751.

5. B r a u n, T. D., H. J. S i e g e l, N. B e c k, L. L. B ö l ö n i, M. M a h e s w a r a n, A. I. R e u t h e r,

J. P. R o b e r t s o n, M. D. T h e y s, B. Y a o, D. H e n s g e n. A Comparison of Eleven Static

Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed

Computing Systems. – Journal of Parallel and Distributed Computing, Vol. 61, 2001, No 6,

pp. 810-837.

6. D u a n, J., Y. Y a n g. A Load Balancing and Multi-Tenancy Oriented Data Center Virtualization

Framework. – IEEE Transactions on Parallel and Distributed Systems, Vol. 28, 2017, No 8,

pp. 2131-2144.

7. B u y y a, R., A. B e l o g l a z o v, J. A b a w a j y. Energy-Efficient Management of Data Center

Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges.

ArXiv preprint arXiv: 1006.0308, 2010.

8. C a l h e i r o s, R. N., R. B u y y a, C. A. D e R o s e. A Heuristic for Mapping Virtual Machines

and Links in Emulation Testbeds. – In: Proc. of IEEE International Conference on Parallel

Processing, 2019, pp. 518-525.

 176

9. C a r d o s a, M., M. R. K o r u p o l u, A. S i n g h. Shares and Utilities Based Power Consolidation

in Virtualized Server Environments. – In: Proc. of IEEE International Symposium on

Integrated Network Management, 2009, pp. 327-334.

10. C h e d i d, W., C. Y u, B. L e e. Power Analysis and Optimization Techniques for Energy Efficient

Computer Systems. – Advances in Computers, Vol. 63, 2005, pp. 129-164.

11. K e p h a r t, J. O., D. M. C h e s s. The Vision of Autonomic Computing. – Computer, Vol. 36,

2003, No 1, pp. 41-50.

12. K u m a r, D. Energy Efficient Resource Allocation for Cloud Computing. 2014.

13. A h m a d, M. O., R. Z. K h a n. Load Balancing Tools and Techniques in Cloud Computing: A

Systematic Review. – Advances in Computer and Computational Sciences, 2018, pp. 181-195.

14. J i n g, S. Y., S. A l i, K. S h e, Y. Z h o n g. State-of-the-Art Research Study for Green Cloud

Computing. – The Journal of Supercomputing, Vol. 65, 2013, No 1, pp. 445-468.

15. K a n g, Q. M., H. H e, H. M. S o n g, R. D e n g. Task Allocation for Maximizing Reliability of

Distributed Computing Systems Using Honeybee Mating Optimization. – Journal of Systems

and Software, Vol. 83, 2010, No 11, pp. 2165-2174.

16. C h e n, S. L., Y. Y. C h e n, S. H. K u o. CLB: A Novel Load Balancing Architecture and Algorithm

for Cloud Services. – Computers & Electrical Engineering, Vol. 58, 2017, pp. 154-160.

17. S h a h, J. M., K. K o t e c h a, S. P a n d y a, D. C h o k s i, N. J o s h i. Load Balancing in Cloud

Computing: Methodological Survey on Different Types of Algorithm. – In: Proc. of

International Conference on Trends in Electronics and Informatics, 2017, pp. 100-107.

18. M i s h r a, S. K., M. A. K h a n, B. S a h o o, D. P u t h a l, M. S. O b a i d a t, K. F. H s i a o. Time

Efficient Dynamic Threshold-Based Load Balancing Technique for Cloud Computing. – In:

Proc. of International Conference on Computer, Information and Telecommunication Systems,

2017, pp. 161-165.

19. L e e, Y. C., A. Y. Z o m a y a. Energy Efficient Utilization of Resources in Cloud Computing

Systems. – Journal of Supercomputing, Vol. 60, 2012, No 2, pp. 268-280.

20. L i u, L., H. W a n g, X. L i u, X. J i n, W. B. H e, Q. B. W a n g, Y. C h e n. GreenCloud: A New

Architecture for Green Data Center. – In: Proc. of 6th International Conference Industry

Session on Autonomic Computing and Communications Industry Session, 2017, pp. 29-38.

21. L o r p u n m a n e e, S., M. N. S a p, A. H. A b d u l l a h, C. C h o m p o o i n w a i. An Ant Colony

Optimization for Dynamic Job Scheduling in Grid Environment. – International Journal of

Computer and Information Science and Engineering, Vol. 1, 2007, No 4, pp. 207-214.

22. K u s i c, D., J. O. K e p h a r t, J. E. H a n s o n, N. K a n d a s a m y, G. J i a n g. Power and

Performance Management of Virtualized Computing Environments via Lookahead Control. –

Cluster Computing, Vol. 12, 2009, No 11, pp. 1-15.

23. P r a d h a n, A., S. K. B i s o y, P. K. M a l l i c k. Load Balancing in Cloud Computing: Survey. –

In: Innovation in Electrical Power Engineering, Communication, and Computing Technology,

2020, pp. 99-111.

24. A l-J o b o u r y, I. M., E. H. A l-H e m i a r y. Virtualized Fog Network with Load Balancing for

IoT Based Fog-to-Cloud. – JOIV: International Journal on Informatics Visualization, Vol. 4,

2020, No 3, pp. 123-126.

25. M a d n i, S. H. H., M. S. A b d L a t i f f, S. I. M. A b d u l h a m i d, J. A l i. Hybrid Gradient

Descent Cuckoo Search (HGDCS) Algorithm for Resource Scheduling in IaaS Cloud

Computing Environment. – Cluster Computing, Vol. 22, 2019, No 1, pp. 301-334.

26. S r i k a n t a i a h, S., A. K a n s a l, F. Z h a o. Energy Aware Consolidation for Cloud Computing.

– In: Proc. of Workshop on Power Aware Computing and Systems at OSDI, USENIX

HotPower’08, 2008.

27. L i u, F., J. T o n g, J. M a o, R. B o h n, J. M e s s i n a, L. B a d g e r, D. L e a f. NIST Cloud

Computing Reference Architecture. – NIST Special Publication, Vol. 500, 2011, No 2011,

pp. 1-28.

28. G a m a l, M., R. R i z k, H. M a h d i, B. E l h a d y. Bio-Inspired Based Task Scheduling in Cloud

Computing. – In: Machine Learning Paradigms: Theory and Application, Springer, 2019,

pp. 289-308.

 177

29. G e o r g e A m a l a r e t h i n a m, D., S. K a v i t h a. Rescheduling Enhanced Min-Min (REMM)

Algorithm for Meta-Task Scheduling in Cloud Computing. – In: Proc. of International

Conference on Intelligent Data Communication Technologies and Internet of Things, 2018,

pp. 895-902.

30. A l w o r a f i, M. A., S. M a l l a p p a. A Collaboration of Deadline and Budget Constraints for

Task Scheduling in Cloud Computing. – Cluster Computing, Vol. 23, 2020, No 2,

pp. 1073-1083.

31. G r a y, L., A. K u m a r, H. L i. SPECpower Committee. Power and Performance Benchmark

Methodology V2. – In: Standard Performance Evaluation Corporation (SPEC), 2014.

32. L a w a n y a S h r i, M., S. S u b h a, B. B a l u s a m y. Energy-Aware Fruitfly Optimisation

Algorithm for Load Balancing in Cloud Computing Environments. – International Journal of

Intelligent Engineering and Systems, Vol. 10, 2017, No 1, pp. 75-85.

33. S h o j a f a r, M., M. K a r d g a r, A. A. R. H o s s e i n a b a d i, S. S h a m s h i r b a n d,

A. A b r a h a m. TETS: A Genetic-Based Scheduler in Cloud Computing to Decrease Energy

and Makespan. – In: Proc. of International Conference on Hybrid Intelligent Systems, 2016,

pp. 103-115.

34. P o l e p a l l y, V., K. S h a h u C h a t r a p a t i. Dragonfly Optimization and Constraint Measure-

Based Load Balancing in Cloud Computing. – Cluster Computing, Vol. 22, 2019, No 1,

pp. 1099-1111.

35. S a n g a i a h, A. K., A. A. R. H o s s e i n a b a d i, M. B. S h a r e h, S. Y. B o z o r g i R a d,

A. Z o l f a g h a r i a n, N. C h i l a m k u r t i. IoT Resource Allocation and Optimization

Based on Heuristic Algorithm. – Sensors, Vol. 20, 2020, No 2, p. 539.

36. X u e, S., Y. Z h a n g, X. X u, G. X i n g, H. X i a n g, S. J i. $$\varvec {Q} ET $$ QET: A QoS-

Based Energy-Aware Task Scheduling Method in Cloud Environment. – Cluster Computing,

Vol. 20, 2017, No 4, pp. 3199-3212.

37. F a r a h a b a d i, A. B., A. H o s s e i n a b a d i. Present a New Hybrid Algorithm Scheduling

Flexible Manufacturing System Consideration Cost Maintenance. – International Journal of

Scientific & Engineering Research, Vol. 4, 2013, No 9, pp. 1870-1875.

38. H o m e P r a s a n n a R a j u, Y., N. D e v a r a k o n d a. Makespan Efficient Task Scheduling in

Cloud Computing. – In: Emerging Technologies in Data Mining and Information Security,

Springer, 2019, pp. 283-298.

39. W e i, X., J. F a n, Z. L u, K. D i n g, R. L i, G. Z h a n g. Bio-Inspired Application Scheduling

Algorithm for Mobile Cloud Computing. – In: Proc. of 4th International Conference on

Emerging Intelligent Data and Web Technologies, 2013, pp. 690-695.

40. T o p c u o g l u, H., S. H a r i r i, M. Y. W u. Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing. – IEEE Transactions on Parallel and Distributed

Systems, Vol. 13, 2002, No 3, pp. 260-274.

41. Z h u, X., M. H u s s a i n, X. L i. Energy-Efficient Independent Task Scheduling in Cloud

Computing. – In: Proc. of International Conference on Human Centered Computing, 2018,

pp. 428-439.

42. P r a s a n n a K u m a r, K., K. K o u s a l y a. Amelioration of Task Scheduling in Cloud Computing

Using Crow Search Algorithm. – Neural Computing and Applications, Vol. 32, 2020, No 10,

pp. 5901-5907.

43. S r i c h a n d a n, S., T. A. K u m a r, S. B i b h u d a t t a. Task Scheduling for Cloud Computing

Using Multi-Objective Hybrid Bacteria Foraging Algorithm. – Future Computing and

Informatics Journal, Vol. 3, 2018, No 2, pp. 210-230.

44. B a s u, S., M. K a r u p p i a h, K. S e l v a k u m a r, K. C. L i, S. H. I s l a m, M. M. H a s s a n,

M. Z. A. B h u i y a n. An Intelligent/Cognitive Model of Task Scheduling for IoT Applications

in Cloud Computing Environment. – Future Generation Computer Systems, Vol. 88, 2018,

pp. 254-261.

45. K a s h i k o l a e i, S. M. G., A. A. R. H o s s e i n a b a d i, B. S a e m i, M. B. S h a r e h,

A. K. S a n g a i a h, G. B. B i a n. An Enhancement of Task Scheduling in Cloud Computing

Based on Imperialist Competitive Algorithm and Firefly Algorithm. – Journal of

Supercomputing, Vol. 76, 2020, No 8, pp. 6302-6329.

Received: 17.10.2022; Accepted: 11.03.2023

