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Abstract: Every country must have an accurate and efficient forecasting model to 

avoid and manage the epidemic. This paper suggests an upgrade to one of the 

evolutionary algorithms inspired by nature, the Barnacle Mating Optimizer (BMO). 

First, the exploration phase of the original BMO is enhanced by enforcing and 

replacing the sperm cast equation through Levy flight. Then, the Least Square 

Support Vector Machine (LSSVM) is partnered with the improved BMO (IBMO). This 

hybrid approach, IBMO-LSSVM, has been deployed effectively for time-series 

forecasting to enhance the RBF kernel-based LSSVM model since vaccination started 

against COVID-19 in Malaysia. In comparison to other well-known algorithms, our 

outcomes are superior. In addition, the IBMO is assessed on 19 conventional 

benchmarks and the IEEE Congress of Evolutionary Computation Benchmark Test 

Functions (CECC06, 2019 Competition). In most cases, IBMO outputs are better 

than comparison algorithms. However, in other circumstances, the outcomes are 

comparable. 

Keywords: COVID-19 confirmed case, Total vaccinations, Barnacles mating 

optimizer, Levy flight, Meta-heuristic, Least Square Support Vector Machine 

(LSSVM). 

1. Introduction 

Wuhan, China, was the site of the first official discovery of COVID-19, a novel 

coronavirus. The virus has now claimed millions of lives throughout the  

globe. Interstitial pneumonia and Acute Respiratory Distress Syndrome (ARDS) are 

the most common symptoms of COVID-19, an infectious illness caused by  

SARS-CoV-2. COVID-19’s acute phase is generally handled by infectious disease 

doctors, neurologists, and critical care physicians [1]. COVID-19 cases have reached 



 126 

more than five million worldwide, yet the proportion of patients who have survived 

is increasing. SARS-CoV-2 is causing much harm, and doctors and pathologists are 

attempting to figure out where what and how much of it is due to the virus [2]. 

According to the Centers for Disease Control and Prevention, close social contact, 

contacting surfaces, or things containing viral particles are among the ways the virus 

may be transferred. COVID-19 has an incubation period of up to 14 days, according 

to [3], and it may spread to other people during this time. In addition, a Chinese team 

reports in [4] that the median incubation duration is 3 days, ranging from 0 to 24 days 

and that the average life expectancy is 47.0 years. There has been a steady rise in 

confirmed cases, particularly in China. Many Chinese cities, particularly in Hubei 

province, have already developed stricter laws and procedures in response to the 

threat posed by the spread of this virus. As a result, it is essential to know how many 

confirmed cases there will be in the next several days to prepare accordingly. 

Analysis of weekly COVID-19 epidemic trends will be examined in this research. 
 

Table1. Published hybrid time-series forecasting methods with their performance metrics 

 

To this day, different methodologies and approaches, ranging from the more 

traditional ones to the more cutting-edge metaheuristic ones, have been presented in 

SL# 
Time series forecasting methods  

(Confirmed cases COVID-19) 
Performance matric 

Refe-

rence 

1 

Gradient-based optimizer Variational Mode  

Decomposition (GVMD), Extreme Learning Machine  

(ELM), and AutoRegressive Integrated Moving  

Average (ARIMA), named GVMD-ELM-ARIMA 

MAPE = 9.55×10–5 

RMS = 1.51×103 

MAE= 9.92×102 

[17] 

2 

BMO-LSSVM, 

CS-LSSVM, 

GWO-LSSVM, 

MFO-LSSVM 

MAPE (%) = 0.282, 

0.349, 

0.416, 

0.353 

[15] 

3 
Two-piece scale mixture normal distributions,  

called TP-SMN-AR models 
Accuracy 98% [18] 

4 MLP 

RMSE = 180.2759, 

MAE = 142.8951, 

MAPE = 5.72562 

[19] 

5 Long Short-Term Memory (LSTM) network 

RMSE error is about 

45.70 with an accuracy 

of 92.67% 

[20] 

6 
Different Deep Learning approaches,  

outperforms: Variational AutoEncoder (VAE) 

RMSE = 4,079,244, 

MAE = 3,976,682, 

MAPE = 2,04 

[21] 

7 Convolution-LSTM 
Accuracy =97.82 

(India), and 98 (USA)  
[22] 

8 ARIMA and Prophet time series forecasting 

India confirmed cases:  

MAPE = 16.72 and 

21.43, 

MAE = 7007.09 and 

10245.17, 

RMSE = 7330.03 and 

12085.37 

[23] 

9 
LSTM, RNN (Dataset of Malaysia, Morocco  

and Saudi Arabia) 

Accuracy: 98.58%, 

93.45% 
[24] 
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various pieces of published research. Conventional approaches include Successive 

Quadratic Programming (SQP) [5-7], Linear Programming (LP), and Mixed-Integer 

Linear Programming (MILP) [8-11] are some of the ways that have been suggested. 

Since traditional approaches perform poorly in terms of robustness and accuracy, it 

is impossible to avoid including metaheuristic methods when calculating the weekly 

average number of Covid-19 confirmed cases. Additionally, the regression time 

series model is a versatile technique that may be used to model dependent data. It has 

been used to estimate and predict real-world practical issues; for more information, 

see the references listed below [12-14]. Even if metaheuristic approaches can solve 

many difficult optimization issues, there is no assurance that the solutions will be 

optimum overall [15, 16]. 

Academics have used several hybrid models; Table 1 summarizes the models 

that have been published and includes metrics for assessing their success when used 

for time-series forecasting. 
 

(a)  

(b)  

Fig. 1. Total confirmed cases (a) and deaths (b) from the beginning to the present date [29] 

 

Numerous metaheuristic algorithms have been implemented in solving different 

kinds of optimization problems, such as Particle Swarm Optimization (PSO) [25], 

Gravitational Search Algorithm (GSA) [26], Ant-Lion Optimizer (ALO), Grey Wolf 

Optimizer (GWO) [27], Whale Optimization Algorithm (WOA), Moth-Flame 

Optimization Algorithm (MFO Algorithm) [28] and many more. 
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Fig. 1 depicts the number of confirmed cases (a) of COVID-19 that have been 

reported around the globe from the beginning of the outbreak to the present day. Also 

included is the total number of fatalities (b) that have resulted from these cases. It is 

not appropriate for a single model to accurately predict the number of cases in a 

pandemic. In order to effectively manage any form of risk, it is a must to apply newly 

developed and hybridized approaches that are more accurate.  

The contributions of this research work can be outlined as follows: 

1. A novel hybrid model, IBMO-LSSVM presented here, can predict  

COVID-19 confirmed cases more accurately when combined with the total number 

of vaccination cases, leading to better overall performance. 

2. The original Barnacle Mating Optimizer (BMO), improved by Levy Flight 

and combined with the Least Square Support Vector Machine, improves time-series 

forecasting for infectious disease scenario analysis. 

3. Classical benchmark and CEC2019 functions have been used to compare the 

performance of BMO versions and other hybrid state-of-the-art models.  

This paper is structured as follows: Section 2 briefly discusses the development 

of the proposed improved BMO. Section 3 represents the LSSVM model in short, 

and Section 4 explains the dataset modelling, input-output modelling, and 

hybridization of IBMO-LSSVM. Finally, results are dedicated to Sections 5, and the 

conclusion of this paper is drawn in Section 6. 

2. Improved barnacle mating optimizer 

The Barnacles Mating Optimizer (BMO) is a bio-inspired algorithm based on the 

barnacle's mating behavior that has been proposed in [30-32]. In nature, barnacles’ 

mating happens by the normal technique of copulation and a sperm-casting technique. 

In BMO, the Hardy-Weinberg principle’s Punnet square concept is used in normal 

copulation and is treated as an exploitation process, whereas the sperm cast is treated 

as an exploration process. The improvement of the original BMO is in the 

exploration process, which will be presented in the following sub-topic. 

2.1. Initialization 

For initialization, the candidate of solution X is the population of barnacles, which 

can be represented as follows [30]: 

(1)  𝑋 = [
𝑥1

1 ⋯ 𝑥1
𝑁

⋮ ⋱ ⋮
𝑥𝑛

1 ⋯ 𝑥𝑛
𝑁

], 

where n and N are the total populations and the number of control variables to be 

optimized, each population is evaluated, and the best solution is sorted to the top of 

the population. 

2.2. The process of selection for parents to be mated 

The process of selecting two parents of barnacles is based on the pre-determined 

parameter, which is reflected in the length of the barnacle’s penis, namely pl. This 

paper will use all the assumptions discussed in [30]. 
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2.3. Barnacles’ off-spring reproduction process 

The process of reproduction of BMO can be found in the following expressions:  

(2)  𝑥𝑖
𝑁_new = 𝑝𝑥barnacle_𝑑

𝑁 + 𝑞𝑥barnacle_m
𝑁 , 

(3)  𝑥𝑖
𝑁_new = rand( ) × 𝑥barnacle_m

𝑁 , 

xN
barnacle_d and xN

barnacle_m are the control variables of barnacles’ parents, p is the 

normally distributed random number, and q = 1 – p. In this algorithm, rand() is the 

simple random number [0-1]. 

2.4. Implementation of Levy flights 

In BMO, the value of pl is crucial in defining the exploration and exploitation 

processes. From Equation (3), it can be noted that the simple random numbers to 

generate new offspring are treated as an exploration process. In this paper, the 

improvement to the exploration process is made where Equation (3) is changed to the 

following expression: 

(4)  𝑥𝑖
𝑁_new = 𝑥barnacle_m

𝑛 + Levy(𝑁), 

where Levy flight is determined as follows: 

(5)  Levy(𝑁) = 0.01 ×
𝑟1×𝜎

|𝑟2|
1
𝛽

, 

β is a constant set to 1.5, r1 and r2 are random numbers [0-1], and the equation is as 

follows: 

(6)  𝜎 = (
𝜏(1+𝛽)×sin(

𝜋𝛽

2
)

𝜏(
1+𝛽

2
)×𝛽×2

(
𝛽−1

2
)
)

1

𝛽

, 

where 𝜏(𝑦) = (𝑦 − 1)! 

3. Least Squares Support Vector Machines (LSSVM) 

In high-dimensional feature space, SVM linear regression is performed through 

nonlinear mapping. It necessitates the solution of a large-scale quadratic 

programming problem, which is one of the SVM’s major flaws. Consequently, the 

Least-Squares Support Vector Machine (LSSVM) has been created to handle 

optimization problems using linear equations rather than quadratic programming  

[21-23]. The LSSVM regression model can be expressed as follows: 

(7)  𝑦(𝑥) = ∑ 𝛼𝑖𝑘(𝑥𝑖, 𝑥𝑗) + 𝑏,𝑛
𝑖=1  

where, 𝑘(𝑥𝑖 , 𝑥𝑗) denoted as kernel function such as linear, polynomial and multilayer 

perceptron, Radial Basis Function (RBF). 𝛼𝑖, 𝑥𝑖, 𝑏 represents the Lagrange 

multipliers, i-th support vector and bias parameter, respectively.  

Compared to other kernel RBF has proven its superiority in providing outstanding 

performance. RBF kernel in this study has been defined as follows: 

(8)  𝑘(𝑥𝑖 , 𝑥𝑗) = exp (
|𝑥𝑖−𝑥𝑗|

2

2𝜎2 ). 
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4. Proposed methodology 

This section explains how the research has been done. This project has four main 

components: data collection, experiment setup, BMO-Levy-LSSVM architecture, 

and performance assessment. 

4.1. BMO-Levy-LSSVM 

The LSSVM hyper-parameters, ℽ and σ2, are tuned in this research using the 

Improved BMO through Levy Flights. To forecast future instances of COVID-19, 

LSSVM uses the IBMO’s predicted optimal values. It is important to keep in mind 

that LSSVM’s prediction performance is very sensitive to the settings of its 

hyperparameters. Because of this, IBMO has to be capable of generating best-case 

scenarios. The objective function of this research is based on the Mean Absolute 

Percentage Error (MAPE), Theils’U and accuracy. The hybridization procedure aims 

to identify the hyper-parameter values that provide the most precise forecasts. Pseudo 

code for the hybrid IBMO-LSSVM is shown in Fig. 3. In line 11, the algorithm has 

been refined using Levy Flights, and in lines 3 and 14, the LSSVM method has been 

incorporated to assess the fitness function via training and validation. The process 

flow of IBMO implementation is exhibited in Fig. 2. 

 
Fig. 2. Flow diagram of IBMO-LSSVM 
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The process flow of IBMO is started by creating an X population, as described 

in Equations (1)-(3) generate new offspring. It is followed by the evaluation process 

for each new offspring, which will then be combined with the parents. The sorting 

process is executed to place the current best solution at the top of the population. 

Only half of the top population (which consists of a mix of parents and offspring) is 

chosen for the evaluation of the next iteration, where the bottom half of the population 

is assumed to be eliminated.   

The application of the IBMO Algorithm in forecasting COVID-19 situations is 

to determine the best combination of control variables that produces the minimum 

objective function evaluation. This paper's objective is to minimize prediction errors 

without violating any constraints. Initially, the value of pl, total population, and 

maximum iteration are set. It is followed by the determination of all function details, 

such as the data of the test system and the boundary of the searching areas. Then, 

each control variable for each population is stored temporarily in the data of the 

selected test system. After running the model using Matlab, the total predicted 

outcomes for each population could be obtained. 

 
Fig. 3. Pseudo code of IBMO-LSSVM. Improved from [15] 

4.2. Properties Setting 

Formerly executing the experimental procedure, the characteristics of IBMO-

LSSVM, BMO-LSSVM, BMO-GAUSS-LSSVM, SOGWO-LSSVM, PSO-LSSVM, 

SSA-LSSVM, and MVO-LSSVM are all configured with the same property setting 

as shown in Table 2. The relevant attributes include population size, maximum 

iterations, upper and lower bounds for LSSVM hyper parameters. All property values 

are determined by trial and error. The maximum number of iterations is 50. Similarly, 

the population size is sufficient to get the desired outcomes.  

Table 2. Property setting of different algorithms 

Property Same for all algorithms 

Population size 50 

Maximum Iteration 50 

Lower bound 1 

Upper bound 1000 
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4.3. Performance evaluation 

Since time series forecasting models have been evaluated through metrics such as, 

Mean Absolute Percentage Error (MAPE), Theils’U and accuracy, these performance 

matrices for regression are defined as follows: 

(9)  MAPE =
1

𝑛
 ∑ |(𝑦predicted − 𝑦actual)/𝑦actual| × 100%,𝑛

𝑖=1  

(10)  Theils’𝑈 =
√

1

𝑁
 ∑ (yactual−ypredicted)2𝑁

𝑖=1

√ 1

𝑁
 ∑ (yactual)2+√

1

𝑁
 ∑ (ypredicted)2𝑁

𝑖=1
𝑁
𝑖=1

, 

(11)  Accuracy = 1 − MAPE, 
where: n is the number of test instances; 𝑦predicted is the predicted values at i-th time; 

𝑦actual is the actual values at i-th time. 

The above equations (9)-(11) are the common evaluation indicators that define 

the error rate of the prediction model for regression. Their values should be as small 

as possible. 

4.4. Dataset preparation and input-output 

The data is obtained from January 1, 2020, to July 27, 2022, and collected daily. It 

will be grouped into different sets, such as training, validation, and testing. On the 

website https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-casess, 

you can find the entire COVID-19 validated data set. Later, the dataset is merged and 

updated using the link provided below for the total vaccination cases since the total 

vaccination count started officially on 24 February 2021, in Malaysia. 

The daily collection begins on 24 February 2021, and continues until 27 July  

2022. The data will then be organized into sets for training, validation, and testing. 

The full cumulative confirmed verified data set for COVID-19 at 

https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-casess. 

Fig. 4 shows the schematic diagram of the dataset. The fully vaccinated 

cumulative data, on the other hand, has been compiled from the website for the same 

period: https://ourworldindata.org/covid-vaccinations  

 
Fig. 4. Schematic diagram of data modelling 

The dataset is divided into three parts: training, validation, and testing, with a 

70-15-15 split. All three sets-training, validation, and testing-were used to train and 

adjust the LSSVM hyper-parameters and models, and the final results were evaluated 

on all three sets.  

https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-casess
https://ourworldindata.org/covid-vaccinations
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5. Results 

The experiment design that is compatible with the study has been already explained 

in Section 4. Moreover, the data has been divided into three phases: training, 

validation, and testing. Finally, there are performance evaluation criteria for the 

IBMO-LSSVM model. 

Various common benchmark test functions are used in the literature to evaluate 

the performance of this method. Additionally, our results are compared to those of 

other well-known algorithms in the literature: PSO, GA, DA, WOA, and SSA. It is 

worth mentioning that the results of 19 classical benchmark test functions PSO, GA, 

and DA are taken from this work [33]. However, we conducted the CEC-C06 tests. 

Moreover, four measurement metrics have been used for further observation. Finally, 

the IBMO has been used for optimizing real-world applications. 

5.1. Classical benchmark functions 

The performance of the IBMO Algorithm is tested using three sets of test functions: 

unimodal, multimodal, and composite [33]. Each collection of these test functions is 

intended to assess certain algorithmic views. As their name would indicate, they have 

a single optimum; unimodal benchmark functions, for instance, are used to assess the 

exploitation level and convergence of the algorithm. However, since they have 

several optimal solutions, multimodal benchmark functions are used to assess the 

local optimum avoidance and exploration levels. Similar to multimodal algorithms, 

there are many optimum solutions; among them are the most global and local 

solutions. The objective of the algorithm is to avoid local optimum solutions and to 

converge to a globally optimal solution. In addition, most of the composite 

benchmark functions are merged, rotated, shifted, and biased versions of other test 

functions. Composite benchmark functions contain a very large number of local 

optima and provide a variety of forms for various search landscape areas. This kind 

of benchmark function shows difficulties in practical search spaces. The results of 

the traditional benchmark function are given in Table 3, which compares IBMO to 

other optimization strategies such as Fitness Dependent Optimizer (FDO), Dragonfly 

Algorithm (DA), Particle Swarm Optimizer (PSO), and Genetic Algorithm (GA).  

Each algorithm presented in Table 3 has been put through its paces 30 times, 

with each test utilising 30 search agents, each of which possessed 10 dimensions, 

primarily; later, the dimension has been set up to 100 to improve the performances 

and only the best value for TF9, TF10, TF12, TF13 has been updated. During each 

test, the algorithm has been allowed to search for the most optimal solution 

throughout 500 iterations, after which the average and standard deviation have been 

determined. Concerning the several types of parameters sets, this work [33] describes 

the FDO, GA, PSO, and DA parameter sets. Every test function has been minimised 

towards the value of 0.0, except TF8, which has been minimised towards the value 

of –418. For example, several test functions have been moved away from the starting 

position to demonstrate that the algorithms does not have a preference for the starting 

point. Unimodal benchmark functions [35], Multimodal benchmark functions [35], 

and Composite benchmark functions [35] demonstrate the details of the explanation 

and parameter setting of the applied classical benchmark functions.  
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Table 3. Classical benchmark results of selected algorithms with IBMO [33] 
Test  

function 

IBMO FDO DA PSO GA 

Average STD Average STD Average STD Average STD Average STD 

TF1 2.21×10-35 5.05×10-35 7.47×10-21 7.26×10-19 2.85×10-18 7.16×10-18 4.2×10-18 1.31×10-17 7.49×102 3.25×102 

TF2 2.35×10-8 2.17×10-8 9.39×10-6 6.91×10-6 1.49×10-5 3.76×10-5 0.003154 9.81×10-3 5.97×100 1.533102 

TF3 1.24×10-1 3.97×10-1 8.55×10-7 4.40×10-6 1.29×10-6 2.10×10-6 1.89×10-3 3.31×10-3 1.95×103 9.94×102 

TF4 4.20×100 5.92×100 6.69×10-4 2.49×10-3 9.88×10-4 2.78×10-3 1.75×10-3 0.002515 2.12×101 2.61×100 

TF5 7.55×101 1.20×102 2.35×101 5.98×101 7.60×100 6.79×100 6.35×101 80.12726 1.33×105 8.50×104 

TF6 1.84×10-12 2.36×10-12 1.42×10-18 4.75×10-18 4.17×10-16 1.32×10-15 4.36×10-17 1.38×10-16 5.64×102 2.30×102 

TF7 8.76×10-3 3.29×10-3 5.44×10-1 3.15×10-1 1.03×10-2 4.69×10-3 5.97×10-3 3.58×10-3 1.67×10-1 0.072571 

TF8 –2.87×103 3.90×102 -2.29×106 2.07×105 –2.86×103 3.84×102 –7.1×1011 1.20×1012 –3.41×103 1.64×102 

TF9 3.04×101 1.54×101 1.46×101 5.20×100 1.60×101 9.48×100 1.04×101 7.88×100 25.51886 6.67×100 

TF10 3.50×100 6.41×100 4.00×10-15 6.38×10-16 2.31×10-1 4.87×10-1 2.80×10-1 6.02×10-1 9.50×100 1.27×100 

TF11 1.82×10-1 1.01×10-1 5.69×10-1 1.04×10-1 1.93×10-1 7.35×10-2 8.35×10-2 3.51×10-2 7.72×100 3.63×100 

TF12 6.43×10-1 1.24×100 1.98×101 2.64×101 3.11×10-2 9.83×10-2 8.57×10-11 2.71×10-10 1.86×103 5.82×103 

TF13 3.66×10-3 5.27×10-3 1.03×101 7.42×100 2.20×10-3 4.63×10-3 2.20×10-3 4.63×10-3 6.80×104 8.77×104 

TF14 4.57×100 2.99×100 3.79×10-7 6.32×10-7 1.04×102 9.12×101 1.50×102 1.35×102 130.0991 2.13×101 

TF15 2.18×10-3 4.95×10-3 1.50×10-3 1.24×10-3 1.93×102 8.06×101 1.88×102 1.57×102 1.16×102 1.92×101 

TF16 –1.03×100 0.00×100 6.38×10-3 1.06×10-2 4.58×102 1.65×102 2.63×102 1.87×102 3.84×102 3.66×101 

TF17 3.98×10-1 1.13×10-16 2.38×101 2.15×10-1 5.97×102 1.71×102 4.67×102 1.81×102 5.03×102 3.58×101 

TF18 3.00×100 4.81×10-15 2.23×102 9.96×10-6 2.30×102 1.85×102 1.36×102 1.60×102 1.18×102 51.00.183 

TF19 –3.86×100 2.71×10-15 2.28×101 1.04×10-2 6.80×102 1.99×102 741.6341 2.07×102 5.44×102 13.30161 

 

The outcomes of IBMO, FDO, DA, PSO, and GA, are detailed in Table 3. In 

general, the findings reveal that IBMO produces superior results to TF1, TF2, TF7, 

TF8, TF15, TF17, TF18, and TF19 algorithms, although the results for other test 

functions show that the other algorithms wereare superior. Despite having better 

outcomes than GA, IBMO has poor performances in TF5 and TF6 compared to 

others. In the cases of TF5, TF9, TF10, TF12, TF13, and TF14, IBMO, on the other 

hand, delivered results are substantially comparable to those produced by the other 

algorithms. However, the findings of TF1, TF2, TF7, TF8, TF15, TF17, TF18, and 

TF19 demonstrate that the IBMO algorithm performes better than FDA, DA, PSO, 

and GA in every scenario. 

5.2. CEC-C06 2019 benchmark test functions 

A collection of 10 current CEC benchmark test functions is utilized to evaluate 

IBMO. These test functions have been enhanced by Professor Suganthan and his team 

[34]. The 100-Digit Challenge tests are utilized in an annual optimization 

competition. The CEC benchmark developer specified CEC04 to CEC10 as a  

10-dimensional minimization issue in the [–100, 100] border range. However, 

CEC01 to CEC03 has different dimensions, as stated in [33]. The test functions 

CEC04 to CEC10 are shifted and rotated; CEC01 to CEC03 are not. All tests may be 

scaled. CEC-C06 2019 Benchmarks “The 100-Digit Challenge”: [33] describes the 

published function details designed by the CEC functions competition developer. 

However, 1000 dimension has been applied to few functions to check the results and 

only CEC01 results has been updated accordingly.  

In this paper, IBMO competes with the following algorithms: FDO, DA, WOA, 

and SSA in terms of the defined CEC functions. These algorithms are highly-cited in 

the literature and perform well on benchmark tests and real-world applications. 

Authors publish their algorithm implementations. Regarding algorithm parameter 

settings, their defaults have not been changed throughout the testing; all competitors 

have used the values from their original publications [35, 38]. 
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Each algorithm has 500 iterations and 30 agents. IBMO beats other algorithms 

in CEC03, CEC05, CEC06, and CEC08. FDO and SSA have superior outcomes for 

CEC01, CEC04, and CEC07, while only FDO is similar for CEC02, CEC09, and 

CEC10. CEC09 has similar results for IBMO and FDO. Table 4 displays the results 

of 10 CEC functions and their comparison to the chosen algorithms and IBMO, where 

Levy-Flights enhance BMO. 
 

Table 4. IEEE ECE 2019 benchmark results 

Test function 
IBMO FDO DA WOA SSA 

Average STD Average STD Average STD Average STD Average STD 

CEC01 1.48×1010 1.3×1010 4585.27 20707.63 543×108 669×108 411×108 542×108 605×107 475×107 

CEC02 17.34286 0 4 3.22×10-9 78.0368 87.7888 17.3495 0.0045 18.3434 0.0005 

CEC03 12.7024 1.25×10-8 13.7024 1.65×10-11 13.7026 0.0007 13.7024 0 13.7025 0.0003 

CEC04 95.99308 106.1765 34.0837 16.52887 344.3561 414.0982 394.6754 248.5627 41.6936 22.2191 

CEC05 1.285901 0.194502 2.13924 0.085751 2.5572 0.3245 2.7342 0.2917 2.2084 0.1064 

CEC06 4.417496 2.155916 12.1332 0.600237 9.8955 1.6404 10.7085 1.0325 6.0798 1.4873 

CEC07 447.1324 270.25 120.4858 13.59369 578.9531 329.3983 490.6843 1948318 410396 290.556 

CEC08 5.791751 0.413281 6.1021 0.756997 6.8734 0.5015 6.909 0.4269 6.37 0.5862 

CEC09 2.743075 0.329955 2 1.59×10-10 6.0467 2.871 5.9371 1.6566 3.6704 0.2362 

CEC010 20.10046 0.141054 2.7182 8.88×10-16 21.2604 0.1715 21.2761 0.1111 21.04 0.078 

 

We have summarized the performance comparison of the CEC function from 

Table 4 to comprehend its position in Fig. 5 for clear understanding. In the first row, 

IBMO surpasses other mentioned algorithms; however, in the second and third row, 

IBMO’s performance is comparable to other algorithms. 
 

 
 

Fig. 5. CEC functions results comparison 

5.3. IBMO real world application 

IBMO may be used to address application-specific challenges in real-world settings, 

much like any other metaheuristic algorithm. IBMO is used to forecast the time series 

of confirmed COVID-19 cases in this part in conjunction with LSSVM. This paper 

summarizes the acquired findings when performing the series of analyses. Table 5 

shows the measured and estimated outcomes using all the hybrid algorithms 

implemented in these studies compared with the target values of confirmed cases 

considering the total vaccination. 
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Table 5. Target vs IBMO-LSSVM, BMO-LSSVM, SSA-LSSVM, MVO-LSSVM, PSO-LSVM,  

SOGWO-LSSVM and ANN 

Week Target 
IBMO- 

LSSVM 

BMO- 

LSSVM 

BMO-Gauss- 

LSSVM 
ANN 

SOGVO- 

LSSVM 

PSO- 

LSSVM 

MVO- 

LSSVM 

SSA- 

LSSVM 

67 4502155 4495851.983 4448579.356 4486397.458 400691795 4486397.458 4480994.872 4386449.617 4401306.728 

68 4513277.286 4506958.698 4459569.286 4497480.815 4016816.785 4497480.815 4492064.883 4397286.06 4412179.875 

69 4524651.714 4518317.202 4470808.359 4508815.433 4026940.025 4508815.433 4503385.851 4408368.165 4423299.516 

70 4538708.143 4532353.952 4484697.516 4522822.664 4039450.247 4522822.664 4517376.215 4422063.344 4437041.081 

71 4554246.143 4547870.198 4500050.614 4538306.281 4053279.067 4538306.281 4532841.186 4437202.017 4452231.029 

72 4571123.857 4564724.284 4516727.483 4555124.924 4068300.233 4555124.924 4549639.575 4453645.974 4468730.683 

73 4592335.143 4585905.874 4537686.355 4576261.97 4087178.277 4578261.97 4570751.168 4474312.13 4489466.836 

74 4617926.571 4611461.474 4562973.245 4601763.828 4109954.648 4601763.828 4596222.316 4499245.858 4514485.016 

75 4647891.571 4641384.523 4592581.661 4631623.951 4136623.498 4631623.951 4626046.481 4528440.758 4543778.8 

 

The prediction accuracy is 99.86%. Table 6 indicates that IBMO-LSSVM 

surpasses the competition by delivering the lowest MAPE value, 0.0013754. The 

performance of the other metrics, Theils’U and accuracy, obtained by IBMO-LSSVM 

is also superior to that of the other hybrid models, including the original and one 

variant of BMO. The table highlights that IBMO-LSSVM outperforms by producing 

the lowest value for all performance matrices. 
 

Table 6. Performance evaluation of different algorithms 
Performance comparison 

Comparison among BMO variants 

Algorithm MAPE Accuracy Theils’U 

IBMO-LSSVM 0.0013754 0.9986246 0.0014 

BMO-LSSVM 0.011887 0.988113 0.011899999 

BMO-Gauss-LSSVM 0.00354 0.99646 0.006987749 

Comparison with  

other algorithms 
MAPE Accuracy Theils’U 

 
SSA-LSSVM 0.0224 0.9776 0.022399998  

SOGWO-LSSVM 0.0035 0.9965 0.0035  

MVO-LSSVM 0.02574 0.97426 0.025699997  

PSO-LSSVM 0.004655 0.995345 0.004699999  

ANN 0.11 0.89 0.109999989  

 

Fig. 6 depicts the above statistical summarized outcomes graphically. It is clear 

from here, that the proposed model produces more accurate prediction results daily 

through considering the cumulative confirmed cases and total vaccination in testing 

phase, compared to other hybrid algorithms. 
 

 
Fig. 6. MAPE comparison among algorithms 

0.0013754

0.011887
0.00354

0.0224

0.0035

0.02574

0.004655

0.11

0

0.02

0.04

0.06

0.08

0.1

0.12

Error (MAPE) Comparison of Applied Algorithms

IBMO-LSSVM BMO-LSSVM BMO-Gauss-LSSVM

SSA-LSSVM SOGWO-LSSVM MVO-LSSVM



 137 

Fig. 7 shows the comparison between the target and the predicted values. The 

confirmed case prediction with total vaccination in Malaysia through  

IBMO-LSSVM, BMO-Gauss-LSSVM, and BMO-LSSVM, where IBMO-LSSVM is 

superior to the original BMO-LSSVM and variants such as BMO-Gauss-LSSVM in 

terms of performance. 
 

 
Fig. 7. Confirmed cases prediction: Target vs IBMO-LSSVM, and vs BMO-LSSVM,  

and vs BMO-Gauss-LSSVM 
 

Similar to Fig. 7, Fig. 8 shows a comparison of the performance of  

IBMO-LSSVM in comparison to other chosen algorithms. Again, IBMO-LSSVM 

performes exceptionally well in comparison to the other algorithms. 

 

 
Fig. 8. Confirmed cases prediction: Target vs IBMO-LSSVM, and vs SOGWO-LSSVM,  

and vs PSO-LSSVM, and vs MVO-LSSVM, and vs SSA-LSSVM, and vs ANN 
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6. Conclusion 

The improvement of recent bio-inspired algorithms, IBMO, has been proposed as a 

novel solution for forecasting the weekly average of confirmed cases for COVID-19 

or any other infectious disease with consideration to total vaccination rates. 

Improvements have been made to enhance the exploration process of BMO, where 

the implementation of Levy flight has been enforced and substituted in the sperm cast 

equation of the original BMO. The performance and effectiveness of the improved 

algorithm have been tested with other algorithms. Furthermore, the IBMO has been 

evaluated using a collection of 19 different single-objective benchmark testing 

functions. The functions of benchmark testing have been partitioned into three 

separate categories: unimodal, multimodal, and composite. In addition, IBMO has 

conducted tests on ten current CEC-C06 benchmarks. When the results of IBMO are 

compared to those of two well-known algorithms (PSO and GA) and four modern 

algorithms (FDO, DA, WOA, and SSA), the findings has shown that IBMO beats the 

competing algorithms in the majority of the situations and provides comparable 

results in the rest. For statistical significance, the Theil’sU test has been used. In all, 

four individual tests has been carried out on the IBMO algorithm to assess, 

demonstrate, and verify its performance and credibility. Moreover, the IBMO method 

is shown to be capable of addressing real-life problems by applying it in practice to 

one case taken from the real world, the primary concern of WHO. The IBMO is used 

in this work to adjust the LSSVM hyper-parameters. Later, considering the total 

number of vaccination cases, LSSVM will forecast COVID-19 confirmed cases using 

the optimal values predicted by the IBMO. IBMO-LSSVM has been compared 

against various state-of-the-art hybrid algorithms using the same property setup, 

including SOGWO-LSSVM, MVO-LSSVM, PSO-LSSVM, SSA-LSSVM, ANN’s 

original BMO-LSSVM, and variations of BMO (BMO-Gauss-LSSVM). When 

compared to its competitors, IBMO-LSSVM consistently achieves better results. 
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