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Abstract: Fog computing is one of the emerging forms of cloud computing which 

aims to satisfy the ever-increasing computation demands of the mobile applications. 

Effective offloading of tasks leads to increased efficiency of the fog network, but at 

the same time it suffers from various uncertainty issues with respect to task demands, 

fog node capabilities, information asymmetry, missing information, low trust, 

transaction failures, and so on. Several machine learning techniques have been 

proposed for the task offloading in fog environments, but they lack efficiency. In this 

paper, a novel uncertainty proof Type-2-Soft-Set (T2SS) enabled apprenticeship 

learning based task offloading framework is proposed which formulates the optimal 

task offloading policies. The performance of the proposed T2SS based apprenticeship 

learning is compared and found to be better than Q-learning and State-Action-

Reward-State-Action (SARSA) learning techniques with respect to performance 

parameters such as total execution time, throughput, learning rate, and response 

time.  

Keywords: Task offloading, Uncertainty, Apprenticeship learning, Fog computing,  

Q-learning, Sarsa learning.  

1. Introduction 

Fog computing is an extension of cloud computing in which the computing is brought 

to edge devices, which is also referred as edge computing. It allows a substantial 

number of operations related to computation, storage and networking to be performed 

over the edge devices [1-3]. There exist many tasks which involve long latency for 

completion and eventually burden the links. Such tasks are offloaded to nearby edge 

computing devices to achieve lower delay and accelerate the speed of completion of 

tasks. But fog environments comprises of a lot of uncertainties create hurdles in 

achieving efficiency during the task offloading process. Some of the potential 

uncertainties caused in a fog environment are improper identification of the category 

of tasks, low trust towards the task’s load, fluctuating capacity of the computing 
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nodes, varying demands of the customers, poor task location awareness, 

unpredictable delay in task assignment, task collision, missing information about the 

computational fog nodes, information asymmetry, transaction failures, and so on. 

Among all these uncertainties, improper handling of fluctuating requirements of the 

tasks and the resources of the fog node resources leads to fog degradation. Hence, 

there is a necessity to develop the task offloading strategy which is uncertainty proof 

[4, 5]. 

Type-2-Soft-Set (T2SS) framework is one of the recent and popular 

mathematical frameworks which deal with parametric uncertainty by parameterizing 

already parameterized set of input in dynamic computation environment. The 

efficiency achieved by T2SS in handling the data imprecision is found to be good 

compared to other mathematical frameworks like fuzzy set, rough set, probability 

theory, interval-valued set, hesitant set, and so on [6, 7]. The application of T2SS can 

be found in solving many decision-making problems in the fields like medical 

informatics, information science, engineering, environment, economics, finances, 

business and so on [8-10]. 

The conventional reinforcement learning algorithms suffer from the problem of 

reward computation [11, 12].This problem is overcome by the inverse reinforcement 

learning, which learns to compute reward based on the behavior and policies by 

experts and is popularly referred to as apprenticeship learning [13, 14]. The reward 

function is not specified explicitly in apprenticeship learning, instead a set of 

demonstrations of the experts are mentioned, from which the unknown reward 

function is recovered [15-17]. The apprenticeship learning agent tries to draw the 

policy which will achieve performance close to the performance of the expert with 

minimum training. By integrating the T2SS framework with reliable apprenticeship 

learning algorithm the uncertainty in the tasks and resources can be handled 

efficiently. Hence in this paper an apprenticeship learning algorithm powered with 

the T2SS framework is used to perform offloading of tasks in a fog computing 

environment. 

The objectives of the paper are as follows: handle the uncertainties in the mobile 

devices, fog nodes, and cloud center resources using T2SS mathematical framework; 

design a novel T2SS based apprenticeship learning framework for the task offloading 

in a fog computing environment; expected value analysis of the proposed task 

offloading framework in finite and infinite fog computing scenarios; evaluate the 

performance of the proposed task offloading framework in comparison with  

Q-learning and SARSA learning techniques using artificial dataset, uncertainty of 

requests and uncertainty of fog nodes. 

The remaining sections of the paper are organized as follows; Section 2 

discusses related work; Section 3 presents the system model of the proposed task 

offloading framework; Section 4 discusses the proposed T2SS based apprenticeship 

learning based framework for the task offloading with supporting algorithms;  

Section 5 deals with results and discussion by considering the artificial dataset, 

uncertainty of the tasks and fog nodes; and finally Section 6 draws the conclusion. 
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2. Related work 

H u s s e i n  and M o u s a  [14] present a novel task offloading approach based on ant 

colony optimization for fog computing. The main reason for going with fog 

computing is that it improves the Quality of service of the applications which are 

sensitive foe delay by reducing the latency. The tasks associated with Internet of 

Things (IoT) applications must be properly distributed across the fog nodes else they 

suffer from higher response time. Here a hybrid algorithm is developed by combining 

two nature-inspired algorithms that are ant colony optimization and particle swarm 

optimization to perform load balancing task. From the experimental results obtained 

it is observed that the performance of the proposed algorithm is better than the 

conventional round robin algorithm. However the task offloading policies are of poor 

quality as they are subjected to premature convergence and the policies get stagnated 

soon. The IoT nodes produces data which dynamically changes, based on the 

changing experiment scenarios but the policies formulated are less adaptive. Multiple 

objectives with respect to power consumption, and cost involved in computation and 

communication are also ignored.  

A d h i k a r i, M u k h e r j e e  and S r i r a m a  [15] discuss priority and deadline 

aware task offloading mechanism which is leveraged with multiple levels of queues 

for fog computing system. IoT applications related to smart city projects put forth the 

demand for substantial amount of computational resources for processing in real-time 

environment. Due to the increased physical distance between the IoT devices and 

cloud server several challenges are imposed which include latency, response time, 

congestion, and delay. So fog computing demands a fair task offloading technique 

which determines ideal fog node for processing the incoming tasks. In view of this a 

deadline and priority dependent task scheduling scheme is proposed for handling 

computation intensive tasks. For every incoming tasks priority is assigned by 

considering the deadline and is allocated to suitable multiple feedback queue. The 

optimal fog node is chosen by considering resource availability and transmission time 

consumed by the IoT applications. The proposed technique reduces the offloading 

time of the incoming higher priority tasks by meeting their deadline. However the 

lower priority task gets postponed for indefinite period of time and suffers from 

starvation problem. Even the resources of fog nodes gets blocked without being 

efficiently allocated between the tasks.  

Z h a n g  et al. [16] deal with fair task offloading mechanism for fog computing 

networks. Here an analytical framework is proposed for fair task offloading. During 

offloading the task delay is reduced by efficiently distributing the tasks among 

battery-powered fog nodes. For each fog node fairness metric is computed in the fog 

computing network. For each of the tasks, task delay and energy consumption of the 

task is computed. The task offloading happens in two stages, in the first step the 

offloading fog nodes are identified based on the fairness metric. In the second step 

the tasks is offloaded among the selected fog nodes by using the rules which reduce 

the task delay incurred. Simulation results provide inference that the performance of 

the proposed task offloading framework is good pertaining to fairness index of energy 

consumption and delay incurred in task offloading. But the practical application of 

the framework is less as it is designed by considering single terminal node and 
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presence of multiple terminal nodes in fog network is completely ignored. The 

deployment density of fog nodes is not taken into consideration and fails to achieve 

proper balance between fog Quality of Service (QoS) and the cost involved in the fog 

nodes deployment.  

A l f a k i h  et al. [17] deal with task offloading procedure embedded with proper 

allocation of resources using SARSA learning for fog environment.The SARSA 

learning algorithm is employed to make resource management decisions by 

offloading the computations that are sensitive towards delay and computation to 

reliable edge computing devices. The offloading problem is viewed as optimization 

problem which takes into account two performance metrics that are power 

consumption and delay involved in task computation. The offloading decisions are 

made in three different ways that are offloading to the nearest edge server available, 

offloading to the edge server located at adjacent locations, and last one is offloading 

to the remotely available cloud server. While making offloading decisions the 

problems associated with the mobility of mobile devices from one region to another 

region is handled efficiently. The SARSA learning agent uses epsilon greedy policy 

for selecting best possible action for the task offloading by gaining maximum 

possible rewards. The efficiency of the task offloading decisions is analysed by 

considering many real world applications. The performance of the proposed SARSA 

learning has been found to be better compared to the conventional reinforcement 

learning. The adjacent edge devices are effectively utilized for processing the 

offloaded tasks and offloading decisions are made by taking into account previous 

workload and current workload in online mode. But with the increase in the number 

of requests from the mobile devices, the SARSA algorithm easily gets trapped in 

local minimum solution and accuracy achieved is low. 

R a h b a r i  and N i c k r a y  [18] present a task offloading mechanism for mobile 

fog computing using regression tree technique. Heavy task offloading is one of the 

serious kind of challenge observed in fog computing because of time and energy 

constraints. The best suitable fog node is identified using regression tree algorithm. 

The power consumption of mobile devices at initial stage is recorded. If the measured 

power consumption level is greater than the power consumption of the Wi-Fi then 

appropriate task offloading decisions are taken. The parameters considered in 

identifying the best fog nodes are computation cost, operation speed, resource 

availability, integrity of resources, and user authentication. Module placement 

method is employed to quickly find the suitable edge nodes for execution of the 

computation intensive tasks by considering the decision parameters like speed and 

cost of operations. The output of module placement method is evaluated using the 

Markov Decision Process (MDP) and the arrival rate of the tasks is assumed to follow 

Poisson distribution process. The offloading decisions taken by regression algorithm 

are optimized by applying probability over the network resource utilization. The 

training and testing phases of regression algorithm are not time consuming as the fog 

devices arrival rate is analyzed properly using MDP. But the regression tree model 

used for sampling of tasks in fog environment gets stuck in overfitting problem. 

Y a o  and A n s a r i  [19] discuss the application of Lyapunov based 

reinforcement learning algorithm for efficient offloading of tasks in fog computing. 
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The task allocation in fog-based IoT networks is investigated for distributing the task 

on the fog nodes by efficiently adapting to the varying wireless channel conditions 

and fog resources. It is possible to predict the nature of incoming next task so online 

algorithm is designed to make the offloading decisions on fly. As the local 

information about the tasks is not complete so complete historical data of the task is 

utilized in mapping task onto appropriate fog nodes. The Lyapunov optimization 

method creates the virtual queue to process the arrival and departure of the tasks in 

fog network. Based on Lyapunov optimization over incomplete task information, the 

reinforcement learning agent takes action over many steps of training to take actions 

by gaining maximum number of rewards. The derivation of complexity of the 

proposed optimization technique is performed on theoretical bound. Based on the 

simulation output produced, it is determined that the technique is able to attain best 

performance in terms of asymptotic terminologies. However, de facto standard rules 

are not available for properly defining the Lyapunov optimization function which 

results in improper trade-off between exploration and exploitation. 

To summarize, most of the existing works exhibit the following drawbacks. 

• Unable to determine the uncertainty in the mobile device’s tasks, fog node, and 

cloud center resources. 

• Drop in the accuracy of task allocation as it fails to handle dynamically 

changing topology of the fog computing network. 

• Conventional reinforcement learning suffers from poor reward computation as 

the task offloading policies drawn are not near to expert policies. 

• Computational complexity of the existing machine learning approaches is high 

as the number of parameters increase during optimization and frequent overlapping 

computation states in hidden layers. 

• The accuracy of offloading of tasks onto the computation resources is less as 

the arrival rate of the tasks is assumed to follow Poisson distribution process, but in 

real-time fog computing scenario the task arrival rate is random. 

3. System model 

The system consists of m mobile devices, n number of fog nodes and o number of 

cloud centers:  

(1)  MD = {md1, md2, md3, … , md𝑚}, 
(2)  FN = {fn1, fn2, fn3, … , fn𝑛}, 

(3)  CC = {cc1, cc2, cc3, … , cc𝑜}. 
A fog node is assumed to have finite number of fog resources: 

(4)  fn𝑖 = {fr𝑖}𝑖=0
𝑖=𝑝

, 
where p represents the maximum amount of resources contained in a fog node.  

A cloud is assumed to have infinite number of resources: 

(5)  cc𝑖 = {cc𝑖}𝑖=0
𝑖=∞. 

A task request from each of the mobile device is identified by a unique identifier 

and is composed of attributes, namely task arrival time, task deadline, and task size: 

(6)  md𝑖 = ⟨𝑡𝑖𝑑 , 𝑡𝑎𝑡 = (ta, td, ts)⟩. 
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A fog node is identified by a unique identifier and is composed of attributes 

namely fog resource speed, fog resource capacity, and fog resource storage: 

(7)  fn𝑖(𝑟𝑖) = ⟨fr𝑖𝑑 , fr𝑎𝑡 = (frs, frc, frs)⟩. 
A cloud center is identified by a unique identifier and is composed of attributes, 

namely cloud resource speed, cloud resource capacity, and cloud resource storage: 

(8)  cc𝑖(𝑟𝑖) = ⟨cr𝑖𝑑 , cr𝑎𝑡 = (crs, crc, crs)⟩. 
A mobile device submits n task requests to the task offloading framework to 

distribute the tasks among the fog nodes: 

(9)  md𝑖 = {md𝑖(𝑡1), … , md𝑖(𝑡𝑛)} → fn𝑖 = {fn𝑖, … , fn𝑖(fr𝑛)}. 
The uncertainty of the tasks in the mobile devices varies between low, medium 

or high: 

(10)  𝑈(md𝑖) = ⟨𝑈(md𝑖(𝑡𝑖
𝑙), 𝑈(md𝑖(𝑡2

𝑚),…, 𝑈(md𝑖(𝑡𝑛
ℎ)⟩. 

A fog node contains n resources to process the incoming task requests. The 

uncertainty of the resources in the fog nodes vary between low, medium or high:  

(11)  𝑈(fn𝑖) = ⟨𝑈(fn𝑖(fr𝑖
𝑙), 𝑈(fn𝑖(fr2

𝑚), …, 𝑈(fn𝑖(fr𝑛
ℎ)⟩. 

The uncertainty of the resources in the cloud centers vary between low, medium 

or high, 

(12)  𝑈(cc𝑖) = ⟨𝑈(cc𝑖(cr𝑖
𝑙), 𝑈(cc𝑖(cr2

𝑚), … , 𝑈(cc𝑖(cr𝑛
ℎ)⟩. 

The T2SS is applied over the task requests of the mobile requests to handle the 

uncertainties in the task requests: 

(13)  T2SS(md𝑖) = {T2SS(md𝑖(𝑡1))⋃T2SS(md𝑖(𝑡2)⋃ … ⋃T2SS(md𝑖(𝑡𝑛))}. 

The T2SS is applied over the fog nodes to handle the uncertainties in the 

resources of the fog nodes: 

(14)  T2SS(fn𝑖) = {T2SS(fn𝑖(fr1))⋃ … ⋃T2SS(fn𝑖(fr𝑛))}. 

The T2SS is applied over the cloud centers to handle the uncertainties in the 

resources of the cloud centers: 

(15)   T2SS(cc𝑖) = {T2SS(cc𝑖(cr1))⋃ … ⋃T2SS(cc𝑖(cr𝑛))}. 
The Apprenticeship Learning based Task Offloading Agent AL-TOA 

formulates the p task offloading policies after effectively handling the uncertainties 

in the mobile devices and fog nodes: 

(16)  ∏ = 〈∏1, ∏2, ∏3, . . . , ∏𝑝〉. 

4. Proposed approach 

The proposed T2SS based apprenticeship learning task offloading framework for fog-

computing environment is shown in Fig. 1. The framework contains three functional 

components: Input Uncertainty Handler (I-UH), Computing Devices Uncertainty 

Handler (CD-UH), and Apprenticeship Learning based Task Offloading Agent  

(AL-TOA). The IDUH handles the uncertainties in the mobile device request 

parameters. The CD-UH handles the uncertainties in the fog nodes resource 

parameters. After that the AL-TOA operates over the uncertainty free request and 

resource parameters to formulate optimal task offloading policies. 
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Fig. 1. Proposed T2SS based Apprenticeship learning task Offloading framework 

4.1. Input Uncertainty Handler (I-UH) 

I-UH functional module of the task offloading framework inputs the mobile device 

task requests to generate the T2SS based mobile device task requests. The T2SS 

parameterizes the already parameterized set of mobile device task requests to remove 

the parameter uncertainties in the mobile device task requests. The working of I-UH 

functional module is given in Algorithm 1. I-UH functional module is composed of 

two stages that are training and testing stages. During training stage, for every ordered 

pair of mobile devices T2SS of mobile devices are gets created. Similarly during 

testing stage aggregate of T2SS of mobile devices gets computed. Finally the T2SS 

version of mobile devices composed of tasks is outputted.  

Algorithm 1. Working of I-UH 

Step 1. Begin 

Step 2. Input mobile devices 

MD = md1(𝑡𝑘), md2(𝑡𝑘), md3(𝑡𝑘), . . . , md𝑚(𝑡𝑘) 
Step 3. Output T2SS based mobile devices 

T2SS − MD = T2SS(md1(𝑡𝑘)), TESS(md2(𝑡𝑘)), . . . , T2SS(md𝑚(𝑡𝑘)) 
Step 4. Training of I-UH 

Step 5. For every training md𝑖 ∈ MD do 

Step 6.    For every ordered training mobile device pair (md𝑖(𝑡𝑘), md𝑖(𝑡𝑘)at) 

in MD do 

Step 7.  ∀ md𝑖(𝑡𝑘)at ∈ mdat initialize 𝜎(md𝑖(𝑡𝑘)at = ∅  

Step 8.           Compute training T2SS of mobile devices 

Step 9. T2SS − MD = {𝜎(md𝑖(𝑡𝑘)at)|md𝑖(𝑡𝑘)at|md𝑖(𝑡𝑘)at ∈  mdat} 

Step 10.   End For 

Step 11. End For 

Step 12. Testing of I-UH 

Step 13. For every testing md𝑖 ∈ MD do 
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Step 14.   For every ordered testing mobile device pair (md𝑖(𝑡𝑘), md𝑖(𝑡𝑘)at) in 

MD do 

Step 15.         Aggregate T2SS − MD ∷ T2SS − MD ⋃(md𝑖(𝑡𝑘), md𝑖(𝑡𝑘)at) 

Step 16. End For 

Step 17. End For 

Step 18. Output T2SS − MD = 

 T2SS(md1(𝑡𝑘)). . . T2SS(md𝑚(𝑡𝑘)) 
Step 19. End 

4.2. Computing Devices Uncertainty Handler (CD-UH) 

The CD-UH functional module of the task offloading framework consists of two sub 

functional components: T2SS based fog nodes uncertainty handler FN-UH and T2SS 

based cloud center uncertainty handler CC-UH. The FN-UH inputs the fog node 

resources to generate the T2SS based fog node resources. The CC-UH inputs the 

cloud center resources to generate the T2SS based cloud center resources. The main 

purpose of the algorithm is to apply T2SS framework to parameterize the already 

parameterized set of fog nodes and cloud center resources to remove the parameter 

uncertainties in the resources of the fog nodes and cloud centers. The working of CD-

UH functional module is given in Algorithm 2. The CD-UH functional module is 

composed of two stages that are training and testing stages. During training stage, for 

every ordered pair of training fog nodes T2SS of fog nodes are created and for every 

pair of cloud centers, T2SS of cloud centers get created. Similarly during testing 

stage, for every pair of testing fog nodes and cloud centers, enumeration of T2SS of 

fog nodes and cloud centers are formulated.  

Algorithm 2. Working of CD-UH 

Step 1. Begin 

Step 2. Input fog nodes and cloud centers 

FN = fn1(fr𝑘), fn2(fr𝑘), fn3(fr𝑘), . . . , fn𝑛(fr𝑘) 
CC = cc1(cr𝑘), cc2(cr𝑘), cc3(cr𝑘), . . . , cc𝑜(cr𝑘) 

Step 3. Output 

T2SS − FN = T2SS(fn1(fr𝑘)), T2SS(fn2(fr𝑘)), … , T2SS(fn𝑛(fr𝑘)) 

T2SS − CC = T2SS(cc1(cr𝑘)), T2SS(cc2(cr𝑘)), … , T2SS(cc𝑛(cr𝑘)) 
Step 4. Training of FN-UH 

Step 5. For every training fog nodesfn𝑖 ∈ FN do 

Step 6.    For every ordered training fog nodes (fn𝑖(fr𝑘), fn𝑖(fr𝑘)at) in FN do 

Step 7.          ∀ fn𝑖(fr𝑘)at ∈ fnat initialize 𝜎(fn𝑖(fr𝑘)at = ∅  

Step 8.           Compute training T2SS of fog nodes 

Step 9. T2SS − FN = {𝜎(fn𝑖(fr𝑘)at)|fn𝑖(fr𝑘)at|fn𝑖(fr𝑘)at ∈ fnat} 

Step 10.   End For 

Step 11. End For 

Step 12. Training of CC-UH 

Step 13. For every training cloud center cc𝑖 ∈ CC do 

Step 14.  For every ordered training mobile device pair (cc𝑖(cr𝑘), cc𝑖(cr𝑘)at) 

in CC do 
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Step 15. ∀ cc𝑖(cr𝑘)at ∈ ccat initialize 𝜎(cc𝑖(cr𝑘)at = ∅  

Step 16.           Compute training T2SS of fog nodes 

Step 17. T2SS − CC = {𝜎(cc𝑖(cr𝑘)at)|cc𝑖(cr𝑘)at|cc𝑖(cr𝑘)at ∈ ccat} 

Step 18.   End For 

Step 19. End For 

Step 20. Testing of FN − UH 

Step 21. For every testing fn𝑖 ∈ FN do 

Step 22.   For every ordered testing fog node pair (fn𝑖(fr𝑘), fn𝑖(fr𝑘)at) in FN 

do 

Step 23.         Aggregate T2SS − FN ∷ T2SS − FN ⋃(fn𝑖(fr𝑘), fn𝑖(fr𝑘)at) 

Step 24.     End For 

Step 25. End For 

Step 26. Output T2SS − FN = T2SS(fn1(fr𝑘)), … , T2SS(fn𝑛(fr𝑘)) 
Step 27. Testing of CC-UH 

Step 28. For every testing cc𝑖 ∈ CC do 

Step 29.   For every ordered testing fog node pair (cc𝑖(cr𝑘), cc𝑖(cr𝑘)at) in CC 

do 

Step 30.         Aggregate T2SS − CC ∷ T2SS − CC ⋃(cc𝑖(cr𝑘), cc𝑖(cr𝑘)at) 

Step 31. End For 

Step 32. End For 

Step 33. Output T2SS − CC =  T2SS(cc1(cr𝑘)), … , T2SS(cc𝑛(cr𝑘)) 
Step 34. End 

4.3. Apprenticeship Learning based Task Offloading Agent (AL-TOA) 

The AL-TOA functional component of the task offloading framework inputs the 

T2SS based mobile device task requests, T2SS based fog node resources, and T2SS 

based cloud center resources to formulate the task offloading policies using 

apprenticeship learning. The agent keeps the set of expert tasks offloading actions as 

the basis and mimics the best actions to arrive at best offloading policies. The 

working of AL-TOA functional module is given in Algorithm 3. The working of  

AL-TOA functional module is composed of two stages that are training of AL-TOA 

and testing of AL-TOA. During training of AL-TOA, the Q-values of fog nodes and 

cloud centers gets updated with best task offloading policies by keeping the expert 

task offloading policies. During testing of AL-TOA, highest value Q-functions gets 

enumerated to generate global optimal task offloading policies.  

Algorithm 3. Working of AL-TOA 

Step 1. Begin 

Step 2. Input 

𝑇2𝑆𝑆 − 𝑀𝐷 = T2SS(md1(𝑡𝑘)), TESS(md2(𝑡𝑘)), . . . , T2SS(md𝑚(𝑡𝑘)) 

𝑇2𝑆𝑆 − 𝐹𝑁 = T2SS(fn1(fr𝑘)), T2SS(fn2(fr𝑘)), … , T2SS(fn𝑚(fr𝑘)) 

Step 3. Output ∏ = ∏1, ∏2, . ∏𝑝 

Step 4. Initialize the expert actions set EA = {ea1 = 𝜙, ea2 = 𝜙, ea3 =
𝜙, … , ea𝑛 = 𝜙} 

Step 5. Initialize Q-values of fog nodes with state 𝑆𝑡  expert actions ea𝑡 
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𝑄fn(𝑆𝑡, ea𝑡) = {𝑄fn1
(𝑆𝑡, ea𝑡) = 𝜙, 𝑄fn2

(𝑆𝑡, ea𝑡) = 𝜙, … , 𝑄fn𝑛
(𝑆𝑡, ea𝑡) = 𝜙} 

Step 6. Initialize Q-values of cloud centers with expert actions 

𝑄cc(𝑆𝑡, ea𝑡) = {𝑄cc1
(𝑆𝑡, ea𝑡) = 𝜙, 𝑄cc2

(𝑆𝑡, ea𝑡) = 𝜙, … , 𝑄cc𝑛
(𝑆𝑡, ea𝑡) = 𝜙} 

Step 7. CALL Training of AL-TOA subroutine 

Step 8. STAGE-1: Training of AL-TOA  

Step 9. CALL Testing of AL-TOA subroutine 

Step 10. STAGE-2: Testing of AL-TOA//  

Step 11. Stop 

 

Algorithm 3.1. Working of STAGE-1: Training AL-TOA subroutine 

Step 1. Begin 

Step 2. For every training 

T2SS(md𝑖(𝑡𝑘)), T2SS(fn𝑖(fr𝑘)), and  T2SS(cc𝑖(cr𝑘)) do 

Step 3. Choose any expert action ea𝑖  ∈ EA and observe the reward 𝑟𝑖 ∈ 𝑅 

Step 4. Compute laxity time of task in fog nodes Lax(T2SS(fn𝑖(fr𝑘))), i.e., 

 Lax(T2SS(fn𝑖(fr𝑘))) = 𝐷(T2SS(md𝑖(𝑡𝑘)) − ET(T2SS(md𝑖(𝑡𝑘)) −

CT(T2SS(md𝑖(𝑡𝑘))), where 𝐷(T2SS(md𝑖(𝑡𝑘)) represent the deadline,   

 ET(T2SS(md𝑖(𝑡𝑘)) represent execution time, and CT(T2SS(md𝑖(𝑡𝑘))
 represent the completion time 

Step 5.  Compute laxity time of task in cloud center Lax(T2SS(cc𝑖(cr𝑘))) 

 Lax(T2SS(cc𝑖(cr𝑘))) = 𝐷 (T2SS(md𝒊(𝑡𝑘)) − ET(T2SS(md𝑖(𝑡𝑘)) ∗ pp −

CT (T2SS(md𝑖(𝑡𝑘))) − DS(T2SS(md𝑖(𝑡𝑘)))/TR(T2SS(md𝑖(𝑡𝑘))), 

where DS (T2SS(md𝑖(𝑡𝑘))) represent the data size, and  

               transmission rate represented by TR(T2SS(md𝑖(𝑡𝑘))) 

Step 6. IF Lax (T2SS(fn𝑖(fr𝑘))) > 0 &&Lax (T2SS(cc𝑖(cr𝑘))) < 0  

Step 7.  Update Q-value of fog nodes  

𝑄fn𝑖
(𝑠𝑡  , ea𝑡) = 𝑄fn𝑖

(𝑠𝑡 , ea𝑡) + [αr𝑡 + 𝛽 max 𝑄fn𝑖
(𝑠𝑡+1 , ea𝑡+1) −   𝑄fn𝑖

(𝑠𝑡  , ea𝑡)] 

Step 8. ELSE IF Lax (T2SS(fn𝒊(fr𝑘))) = 0 &&Lax (T2SS(cc𝑖(cr𝑘))) = 0 

Step 9.                    Update Q-value of fog nodes 

 𝑄cc𝑖
(𝑠𝑡 , ea𝑡) = 𝑄cc𝑖

(𝑠𝑡 , ea𝑡) + [αr𝑡 + 𝛽 max 𝑄cc𝑖
(𝑠𝑡+1 , ea𝑡+1) −  𝑄cc𝑖

(𝑠𝑡 , ea𝑡)] 

Step 11.        ELSE 

Step 12.                  Update Q-value of both fog nodes and cloud centers 

𝑄fn𝑖
(𝑠𝑡 , ea𝑡) = 𝑄fn𝑖

(𝑠𝑡  , ea𝑡) + [αr𝑡 + 𝛽 max 𝑄fn𝑖
(𝑠𝑡+1 , ea𝑡+1) − 𝑄fn𝑖

(𝑠𝑡 , ea𝑡)] 

 𝑄cc𝑖
(𝑠𝑡 , ea𝑡) = 𝑄cc𝑖

(𝑠𝑡 , ea𝑡) + [αr𝑡 + 𝛽 max 𝑄cc𝑖
(𝑠𝑡+1 , ea𝑡+1) −  𝑄cc𝑖

(𝑠𝑡 , ea𝑡)] 

Step 13.       END IF 

Step 14.       Compute the value function of task offloading  

              𝑉(𝜋)(𝑠𝑡  , ea𝑡) = 𝐸(𝜋){𝑟𝑡|𝑠𝑡}1 

Step 15.      Compute the action value function of task offloading 
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            ∏𝑖 = 𝛿 + 𝛿 𝑄 (arg maxea𝑖
𝑄fn𝑖

(𝑠𝑡 , ea𝑡)) + 𝛿 𝑄 (arg maxea𝑖
𝑄cc𝑖

(𝑠𝑡 , ea𝑡)) 

Step 16.       Output the computed task offloading policy ∏𝑖 

Step 17. End For 

Step 18. Formulate the policy set ∏ = ∏∪ ∏𝑖 

Step 19. End 

 

Algorithm 3.2. Working of STAGE-2 Testing AL-TOA subroutine 

Step 1. Begin 

Step 2. For every training 

T2SS(md𝑖(𝑡𝑘)), T2SS(fn𝑖(fr𝑘)), and T2SS(cc𝑖(cr𝑘)) do 

Step 3. For every task offloading policy ∏𝑖 do 

Step 4. Enumerate the value function of task offloading function 

 ∏ = ∏⋃ 𝑄 (arg maxea𝑖
𝑄fn𝑖

(𝑠𝑡 , ea𝑡)) ⋃ 𝑄 (arg maxea𝑖
𝑄cc𝑖

(𝑠𝑡 , ea𝑡)) 

Step 5. End For 

Step 6. End For 

Step 7. Output the task offloading polices ∏ = ∏1, ∏2, . . . , ∏𝑝 

Step 8. End 

5. Results and discussion 

This section provides the details of the experimental setup and performance 

comparisons of ALA with SARSA [17] and QL [18], towards effective task 

offloading in a fog computing environment.  

5.1. Experimental setup 

For the experimental evaluation of the proposed task offloading framework ALA 

iFogSim simulator is used. The iFogSim simulator is one of the popular toolkits used 

extensively to perform visual modeling and simulation of the task offloading and 

resource allocation10-15 strategies in fog/edge computing environment. The 

performance of the proposed offloading strategy is compared with other two well-

known offloading strategies like QL and SARSA in three different dimensions 

artificial dataset, uncertainty of tasks and uncertainty of fog nodes towards the 

considered performance metrics [19]. Simulation parameters setup are as follows: 

– simulation duration = 120-240 s; 

– status observation period = 10-15 ms; 

– uplink latency (IoT device to nodes = 10-15 ms; 

–  nodes to cloud= 140-180 ms); 

–  processing time (client module = 20-60 ms; 

–  filter module = 10-50 ms; 

– analysis module = 100-200 ms; 

–  event handling module = 20-60 ms); 

– deadline to deliver applications = 300-400 ms; 

– delay involved in connected to central manager = 45-65 ms; 
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– delay involved in fog nodes communication = 45-75 ms; 

– data receiving frequency = 3-9 s). 

5.2. Artificial dataset 

The artificial dataset considered for evaluation is composed of 1000 resource 

intensive tasks, 300 fog nodes, and four different instances. Each of the instances is 

represented in the form of PQR.  In which P represent the In-Consistency (IC) in the 

task distribution, Q represent the uncertainty of requests, and R represent uncertainty 

of fog nodes. The value taken for Q and R is either Low (L) or High (H) which gets 

represented in the form of ICLL, ICLH, ICHL, and ICHH [19].  

5.2.1. Total execution time 

A graph of artificial dataset instances versus total execution time is shown in Fig. 2. 

With respect to ICLL instance, the total execution time incurred by ALA is low; the 

total execution time incurred by QL is moderate whereas the total execution time 

incurred by SARSA is too high. With respect to ICLH instance, the total execution 

time incurred by ALA is too low; the total execution time incurred by QL is moderate 

whereas the total execution time incurred by SARSA is too high. With respect to 

ICHL instance, the total execution time incurred by ALA is moderate; the total 

execution time incurred by QL is high whereas the total execution time incurred by 

SARSA is moderate. With respect to ICHH instance, the total execution time incurred 

by ALA is too low; the total execution time incurred by QL and SARSA are 

moderate. 

 

 
Fig. 2. Artificial dataset instances vs. total execution time 

5.2.2. Throughput 

A graph of artificial dataset instances versus throughput is shown in Fig. 3. With 

respect to ICLL instance, the throughput achieved is above average; the throughput 

achieved by QL and SARSA are moderate. With respect to ICLH instance, the 

throughput achieved by ALA is too high; the throughput achieved by QL is moderate 

whereas the throughput achieved by SARSA is too low. With respect to ICHL 

instance, throughput achieved by ALA is above moderate; the throughput achieved 
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by QL is moderate whereas the throughput achieved by SARSA is too low. With 

respect to ICHH instance, the total execution time incurred by ALA and QL is above 

average; the throughput achieved by SARSA is too low.  

 

 
Fig. 3. Artificial dataset instances vs. throughput 

5.2.3. Learning rate 

A graph of artificial dataset instances versus learning rate is shown in Fig. 4. With 

respect to ICLL instance, the learning rate of ALA is above average; the learning rate 

achieved by QL is too low and the learning rate achieved by SARSA is moderate. 

With respect to ICLH instance, the learning rate attained by ALA and QL are too 

high; the learning rate attained by SARSA is too low. With respect to ICHL instance, 

learning rate attained by ALA is high and the learning rate attained by QL and 

SARSA are moderate. With respect to ICHH instance, the learning rate attained by 

ALA is high but the learning rate attained by QL and SARSA are below average. 

 

 
Fig. 4. Artificial dataset instances vs. learning rate 

5.2.4. Response time 

A graph of artificial dataset instances versus response time is shown in Fig. 5. With 

respect to ICLL instance, the response time of ALA is moderate; the response time 

incurred by QL and SARSA are high. With respect to ICLH instance, the response 

time incurred by ALA is too low and the response time incurred by QL and SARSA 
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are high. With respect to ICHL instance, the response time incurred by ALA is too 

low and the response time incurred by QL is too high whereas the response time 

incurred by SARSA is moderate. With respect to ICHH instance, the response time 

incurred by ALA is too low, but the response time incurred by QL and SARSA are 

too high. 

 

 
Fig. 5. Artificial dataset instances vs. response time 

 

Considering the artificial dataset with minimum uncertainty among requests and 

fog nodes, the performance achieved by the proposed ALA framework compared to 

AL and SARSA is found to be good towards the performance metrics like total 

execution time, throughput, learning rate, and response time as the reward 

computation burden is reduced and the chances of task offloading policies getting 

trapped into suboptimal choices are very less due to efficient balance between 

exploration and exploitation phases of the learning. 

5.3. Uncertainty of requests 

The uncertainty of the requests is measured on a scale which ranges between 0 and 

1. The uncertainty of the requests are computing by calculating the weighted average 

of the four vital uncertainty causing factors which includes requests migration, 

requests fluctuating load, early preemption of requests, and uneven coupling of the 

requests.  

5.3.1. Total execution time 

A graph of uncertainty of requests versus total execution time is shown in Fig. 6. 

During low uncertainty level of requests, the total execution time incurred by ALA 

is low, the total execution time incurred by QL is moderate, and the total execution 

time incurred by SARSA is too high. During moderate uncertainty level of requests, 

the total execution time incurred by ALA still remains to be low and the total 

execution time incurred by QL and SARSA are high. During high uncertainty level 

of requests, the total execution time incurred by ALA still remains to be low and the 

total execution time incurred by QL and SARSA are moderate. 
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Fig. 6. Uncertainty of requests vs. total execution time 

 

5.3.2. Throughput 

A graph of uncertainty of requests versus throughput is shown in Fig. 7. During low 

uncertainty level of requests, the throughput achieved by ALA is high, the throughput 

achieved by QL is moderate, and the throughput achieved by SARSA is too high. 

During moderate uncertainty level of requests, the throughput achieved by ALA high, 

the throughput achieved by QL is too low, and the throughput achieved by QL is 

moderate. During high uncertainty level of requests, the throughput achieved by ALA 

is high, the throughput achieved by QL is too low, and the throughput achieved by 

QL is moderate. 
 

 
Fig. 7. Uncertainty of requests vs. throughput 

5.3.3. Learning rate 

A graph of uncertainty of requests versus learning rate is shown in Fig. 8. During low 

uncertainty level of requests, the learning rate attained by ALA is high, but the 

learning rate attained by QL and SARSA are low. During moderate uncertainty level 
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of requests, the learning rate attained by ALA is above moderate but the learning rate 

attained by achieved by QL and SARSA are too low. During high uncertainty level 

of requests, the learning rate attained by ALA is above moderate, whereas the 

learning rate attained by QL and SARSA are too low. 

 

 
Fig. 8. Uncertainty of requests vs. learning rate 

5.3.4. Response time 

A graph of uncertainty of requests versus response is shown in Fig. 9. During low 

uncertainty level of requests, the response time incurred by ALA is moderate, but the 

response time incurred by achieved by QL and SARSA are high. During moderate 

uncertainty level of requests, the response time incurred by is too low, the response 

time incurred by QL and SARSA are too high. During high uncertainty level of 

requests, the response time incurred by ALA is moderate, the response time incurred 

by QL and SARSA are too high.  

 

 
Fig. 9. Uncertainty of requests vs. response time 

 

The performance of the proposed ALA framework is evaluated by considering 

artificial dataset containing uncertainty of requests. The factors causing uncertainty 

in tasks include fluctuating tasks requests, improper placement of fog nodes, uneven 
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coupling of the requests, and early pre-emption of requests. The performance 

achieved by the proposed ALA framework is found to be good compared to QL and 

SARSA towards the performance metrics like total execution time, throughput, 

learning rate, and response time as the apprenticeship learning agent effectively uses 

the newly acquired domain information to override the old policies to form optimal 

task scheduling policies.  

5.4. Uncertainty of fog nodes 

The uncertainty of the fog nodes is measured on a scale which ranges between zero 

and one. The uncertainty of the fog nodes are computing by calculating the weighted 

average of the four vital uncertainties causing factors which includes fog nodes 

processing speed, fog nodes storage, fog nodes placement, and load on fog nodes. 

5.4.1. Total Execution Time 

A graph of total execution time versus uncertainty of fog nodes is shown in Fig. 10. 

During low uncertainty level of fog nodes, the total execution time incurred by ALA 

is low, the total execution time incurred by QL is moderate, and the total execution 

time incurred by SARSA is too high. During moderate uncertainty level of fog nodes, 

the total execution time incurred by ALA still remains to be low and the total 

execution time incurred by QL is too high and the total execution time incurred by 

SARSA is moderate. During high uncertainty level of fog nodes, the total execution 

time incurred by ALA still remains to be low, the total execution time incurred by 

QL is very high and the total execution time incurred by SARSA is moderate.  

 

 
Fig. 10. Total execution time vs. fog nodes uncertainty 

 

5.4.2.Throughput 

A graph of throughput versus throughput is shown in Fig. 11. During low uncertainty 

level of fog nodes, the throughput achieved by ALA is high and the throughput 

achieved by the QL and SARSA are low. During moderate uncertainty level of fog 
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nodes, the throughput achieved by ALA still remains to be high, the throughput 

achieved by QL is too low, and the throughput achieved by QL is moderate. During 

high uncertainty level of fog nodes, the throughput achieved by QL is too low by 

ALA still remains to be high, the throughput achieved by QL is moderate and the 

throughput achieved by SARSA is low.  

 

 
Fig. 11. Throughput vs. fog nodes uncertainty 

5.4.3. Learning rate 

A graph of learning rate versus uncertainty of fog nodes is shown in Fig. 12. During 

low uncertainty level of fog nodes, the learning rate attained by ALA and QL are 

high, and the learning rate attained by SARSA is low. During moderate uncertainty 

level of fog nodes, the learning rate attained by ALA still remains to be high and the 

learning rate attained by QL and SARSA are too low. During high uncertainty level 

of fog nodes, the learning rate attained by ALA still remains to be high, the 

throughput achieved by QL and SARSA are low.  

 

 
Fig. 12. Learning rate vs. fog nodes uncertainty 
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5.4.4. Response time 

A graph of throughput versus response time is shown in Fig. 13. During low 

uncertainty level of fog nodes; the response time incurred by ALA is moderate and 

the response time incurred by QL and SARSA are high. During moderate uncertainty 

level of fog nodes; the throughput achieved by ALA still remains to be low, the 

throughput achieved by QL is too high, and the response time incurred by achieved 

by SARSA is too high. During high uncertainty level of fog nodes; the response time 

incurred by ALA is moderate, but the response time incurred by QL and SARSA are 

high. 

 

 
Fig. 13. Response time vs. fog nodes uncertainty 

 

The performance of the proposed ALA framework is evaluated by considering 

artificial dataset containing uncertainty of fog nodes. The factors causing uncertainty 

of fog nodes include fluctuating load towards fog nodes, lower trust towards fog 

nodes storage, and inefficient processing speed of the fog nodes. The performance 

achieved by the proposed ALA framework is found to be good compared to QL and 

SARSA towards the performance metrics like total execution time, throughput, 

learning rate, and response time as the successful reward computation ratio is high 

even the state space of requests and fog nodes are larger.  

6. Conclusion 

The paper presents a novel T2SS based apprenticeship learning framework for the 

task offloading in fog computing which formulates optimal offloading policies 

without the need for specifying reward function explicitly. Expected value analysis 

of the proposed apprenticeship learning based framework is done by considering QL 

and SARSA techniques in finite and infinite fog computing scenarios. The 

experimental evaluation of the proposed framework is carried out using iFogSim 

simulator by considering three different dimensions including artificial dataset, 

uncertainty of the tasks and uncertainty of the fog nodes. The proposed 
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apprenticeship learning framework outperforms the QL and SARSA with respect to 

performance metrics like total execution time, throughput, learning rate, and response 

time. However practical implementation of the proposed approach is difficult because 

of its complex structure and properties. It is also subjected to frequent failures while 

solving large scale uncertainty of continuity among edge devices in fog computing 

environment.  

R e f e r e n c e s 

1. B o n o m i, F., R. M i l i t o, J. Z h u, S. A d d e p a l l i. Fog Computing and Its Role in the Internet 

of Things. – In: Proc. of 1st Edition of the MCC Workshop on Mobile Cloud Computing, 2012, 

pp. 13-16. 

2. W e n, Z., R. Y a n g, P. G a r r a g h a n, T. L i n, J. X u, M. R o v a t s o s. Fog Orchestration for 

Internet of Things Services. – IEEE Internet Computing, Vol. 21, 2016, No 2, pp. 16-24. 

3. M a n z a l i, Y., M. E l  F a r, M. C h a h h o u, M. E l m o h a j i r. Enhancing Weak Nodes in 

Decision Tree Algorithm Using Data Augmentation. – Cybernetics and Information 

Technologies, Vol. 22, 2022, No 2, pp. 50-65. 

4. J e a u n i t a, T. J., V. S a r a s v a t h i. A Multi-Agent Reinforcement Learning-Based Optimized 

Routing for QoS in IoT. – Cybernetics and Information Technologies, Vol. 21, 2021, No 4,  

pp. 45-61. 

5. T o s h e v, A. Particle Swarm Optimization and Tabu Search Hybrid Algorithm for Flexible Job 

Shop Scheduling Problem-Analysis of Test Results. – Cybernetics and Information 

Technologies, Vol. 19, 2019, No 4, pp. 26-44. 

6. M a j i, P. K., R. B i s w a s, A. R o y. Soft Set Theory. – Computers & Mathematics with 

Applications, Vol. 45, 2003, No 4, pp. 555-562. 

7. Z h a n g, Z., S. Z h a n g. Type-2 Fuzzy Soft Sets and Their Applications in Decision Making. – 

Journal of Applied Mathematics, 2012. 

8. Z h a n g, Z., S. Z h a n g. A Novel Approach to Multi Attribute Group Decision Making Based on 

Trapezoidal Interval Type-2 Fuzzy Soft Sets. – Applied Mathematical Modelling, Vol. 37, 

2013, No 7, pp. 4948-4971. 

9. A l c a n t u d, J. C. R. Some Formal Relationships among Soft Sets, Fuzzy Sets, and Their 

Extensions. – International Journal of Approximate Reasoning, Vol. 68, 2016, pp. 45-53. 

10. M o r e n o, J. E., M. A. S a n c h e z, O. M e n d o z a, A. R o d r i g u e z-D i a z, O. C a s t i l l o,  

P. M e l i n, J. R. C a s t r o. Design of an Interval Type-2 Fuzzy Model with Justifiable 

Uncertainty. – Information Sciences, Vol. 513, 2020, pp. 206-221. 

11.  A b b e e l, P., A. Y. N g. Apprenticeship Learning via Inverse Reinforcement Learning. – In: Proc. 

of 21st International Conference on Machine Learning, 2004, 1.  

12. S z e p e s v a r i, C. Algorithms for Reinforcement Learning. – Synthesis Lectures on Artificial 

Intelligence and Machine Learning, Vol. 4, 2010, No 1, pp. 1-103.  

13. A l-Q u r a n, A., N. H a s s a n, E. M a r e i. A Novel Approach to Neutrosophic Soft Rough Set 

under Uncertainty. – Symmetry, Vol. 11, 2019, No 3, 84.  

14. H u s s e i n, M., M. M o u s a. Efficient Task Offloading for IoT-Based Applications in Fog 

Computing Using Ant Colony Optimization. – IEEE Access, Vol. 8, 2020, pp. 37191-37201. 

15. A d h i k a r i, M., M. M u k h e r j e e, S. S r i r a m a. DPTO: A Deadline and Priority-Aware Task 

Offloading in Fog Computing Framework Leveraging Multilevel Feedback Queueing. – IEEE 

Internet of Things Journal, Vol. 7, 2020, pp. 5773-5782. 

16. Z h a n g, G., F. S h e n, Y. Y a n g, H. Q i a n, W. Y a o. Fair Task Offloading among Fog Nodes in 

Fog Computing Networks. – In: Proc. of IEEE International Conference on Communications 

(ICC’18), 2018, pp. 1-6. 

17. A l f a k i h, T., M. M. H a s s a n, A. G u m a e i, C. S a v a g l i o, G. F o r t i n o. Task Offloading 

and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based 

on SARSA. – IEEE Access, Vol. 8, 2020. pp. 54074-54084. 

https://www.semanticscholar.org/author/M.-Hussein/23958404
https://www.semanticscholar.org/author/M.-Mousa/144880357
https://www.semanticscholar.org/author/Mainak-Adhikari/2644477
https://www.semanticscholar.org/author/M.-Mukherjee/3114683
https://www.semanticscholar.org/author/S.-Srirama/1698593


 58 

18. R a h b a r i, D., M. N i c k r a y. Task Offloading in Mobile Fog Computing by Classification and 

Regression Tree. – Peer-to-Peer Networking and Applications, Vol. 13, 2020, No 1,  

pp. 104-122. 

19. Y a o, J., N. A n s a r i. Task Allocation in Fog-Aided Mobile IoT by Lyapunov Online 

Reinforcement Learning. – IEEE Transactions on Green Communications and Networking, 

Vol. 4, 2019, No 2, pp. 556-565. 
 

Received: 11.08.2022; Second Version: 14.12.2022; Accepted: 28.12.2022 
 


