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Abstract: This paper presents the design of a desired linear phase digital Finite 

Impulse Response (FIR) High Pass (HP) filter based on Adaptive Systematic Cuckoo 

Search Algorithm (ACSA). The deviation, or error from the desired response, is 

assessed along with the stop-band and pass-band attenuation of the filter. The 

Cuckoo Search algorithm (CS) is used to avoid local minima because the error 

surface is typically non-differentiable, nonlinear, and multimodal. The ACSA is 

applied to the minimax criterion (L∞-norm) based error fitness function, which offers 

a better equiripple response for passband and stopband, high stopband attenuation, 

and rapid convergence for the developed optimal HP FIR filter algorithm. The 

simulation findings demonstrate that when compared to the Parks McClellan (PM), 

Particle Swarm Optimization (PSO), CRazy Particle Swarm Optimization (CRPSO), 

and Cuckoo Search algorithms, the proposed HP FIR filter employing ACSA leads 

to better solutions. 

Keywords: Cuckoo search algorithm, High pass filter, Minimax, Swarm Intelligence, 

Weighted error. 

1. Introduction 

A digital filter system boosts or concentrates specific signal qualities by applying 

mathematical operations to a discrete-time sampled signal. Filtering is the process of 

passing desired frequencies and stopping the undesired ones through the system [1]. 

Two types of digital filters are discussed here, i.e., FIR and Infinite Impulse Response 
(IIR) filters. FIR filters are attractive because they possess linear phase and are stable, 

give precise performance characteristics, could be designed both in software and 

hardware platforms IIR filters require less memory with fewer coefficients [2]. The 

optimal filter design offers a roughly flat pass-band and attenuates the stop-band to 

infinity. 

mailto:puneet4u@gmail.com


 168 

Because of their numerous applications in areas like control systems 

engineering, biomedical signal processing, audio systems, image processing, etc., 

digital filters have attracted attention during the past few decades. Digital filters are 

used in control systems engineering for system modelling, identification, stabilization 

[3] and wavelets denoising [4]. In biomedical signal processing, digital filters are 

primarily used for medical images like ECG, EEG, and MRI images denoising [5, 6]. 

Digital filters are employed in audio systems for a variety of purposes, including 

equalization, crosstalk cancellation, channel up mixing, and acoustic room 

compensation [7].  

In literature, the desired frequency response is obtained by generating a set of 

filter coefficients using several design approaches with a challenge to minimize pass 

band and stop band ripples simultaneously along with sharp cutoff and reduced filter 

order. Digital FIR filters cannot be designed optimally using traditional design 

concepts. The advantages of optimization techniques like evolutionary computation, 

particle swarm, cuckoo search algorithm, artificial bee colony algorithm, etc. have 

been highlighted in several studies over the past two decades that highlight the 

drawbacks of conventional techniques. It has been demonstrated that the Adaptive 

Genetic Algorithm (AGA), which has been used to design the best FIR low pass 

filters, performs better than other PSO iterations [8]. Optimized filter coefficients are 

used to propose adaptive discrete wavelet transform [9]. To create and improve FIR 

digital filters, an upgraded PSO algorithm called refrPSO that is based on the 

refracting opposite learning model is employed [10]. For frequency sampling-based 

FIR filter design, the Artificial Bee Colony (ABC) algorithm is used [11]. Cuckoo 

Search Algorithm (CSA) exhibits better performance in comparison to the GA [12], 

PSO [13, 14] and craziness based PSO [15].  

Several hybrid algorithms such as GA and SA or more adaptive methods have 

been suggested for filter design. In [16], a hybrid PSO and fitness-based Adaptive 

Differential Evolution PSO method (ADEPSO) is used to effectively design linear 

phase FIR filters. [17] provides an overview of PSO and other technique 

hybridization ideas. FIR low pass digital filter design uses a hybrid artificial bee 

colony algorithm [18]. A coherent integration of the Moth Flame Optimization 

(MFO) and Powell’s Pattern Search (PPS) techniques is presented for the optimal 

design of a Finite Impulse Response (FIR) filter in order to keep a fine balance 

between the search technique’s exploitation and exploration capabilities [19].  

This work performs a thorough ACSA study for the FIR HP filter, which can be 

broadened to design various FIR filters (low pass, band pass and band stop). In order 

to obtain low magnitude ripples in the passband and significant attenuation in the 

stopband, the filter coefficients using ACSA are calculated. The achieved results are 

compared with those of PSO, CRPSO, and CSA optimization methods. 

The rest of the paper is structured as follows: The filter design issue is described 

in Section 2. In Section 3, the applied optimization algorithms are covered. The 

simulation analysis and findings are discussed in Section 4. The paper is concluded 

in Section 5. 
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2. Problem formulation 

To design FIR high-pass filter, the response of filter 𝐻(𝑒𝑗𝜔) is compared with the 

frequency response desired for high pass filter with filter coefficients ℎ[𝑛], where 𝑛 

ranges between 0 to 𝑁, and 𝑁 is the order of the filter. Let 𝐼HP(𝜔) be the desired 

frequency response, and can be defined as 

(1) 𝐼HP(𝜔) = {
0, 𝜔 ∈ [0, 𝜔c) stopband,

1, 𝜔 ∈ [𝜔c, 𝜋] passband,
 

c is cut off frequency. 𝐻(𝑒𝑗𝜔) is calculated from ℎ[𝑛] of filter as  

(2) 𝐻(𝑒𝑗𝜔) = ∑ ℎ[𝑛]𝑒−𝑗𝜔𝑛𝑁
𝑛=0 , 

ℎ[𝑛] = ℎ[𝑁 − 𝑛], 0 ≤ 𝑛 ≤ 𝑁, implies the condition for symmetric coefficients 

which leads to: 

(3) 𝑃(𝜔) = ℎ [
𝑁

2
] + 2 ∑ ℎ [

𝑁

2
− 𝑛]

𝑁

2
𝑛=1 cos( 𝜔 ∗ 𝑛), 

(4) 𝑃(𝜔) = ℎ[𝐿] + 2 ∑ ℎ[𝐿 − 𝑛]𝐿
𝑛=1 cos( 𝜔 ∗ 𝑛), 

(5) 𝑃(𝜔) = ∑ 𝑝[𝑛]
𝑁

2
𝑛=0 cos( 𝜔 ∗ 𝑛),  

where 𝑃(𝜔) is amplitude response and 𝑝[0] = ℎ[𝐿], 𝑝[𝑛] = 2ℎ[𝐿 − 𝑛], 
1 ≤ 𝑛 ≤ 𝐿.  

The error, i.e., objective function is obtained and minimized by approximating 

𝑃(𝜔) to response of an ideal filter, i.e., 𝐼HP(𝜔). Various types of error functions 

based on L1-norm, L2-norm and Chebyshev L∞-norm; also known as minimax 

solution are used for the design purpose. L1-norm results in a high stopband 

attenuation (Astop) and flat passband. In L2-norm based filters, high overshoot is 

obtained near the discontinuity. Here, the L∞-norm is used to calculate the error 

function 𝐸(𝜔) given in the next equation as minimax solution leads to equal ripples 

in both passband and stopband with the smallest maximal error and the smallest 

overshoot amongst L1, L2 & L∞ norms [20]: 

(6) 𝐸(𝜔) = max
𝜔

|𝑃(𝜔) − 𝐼HP(𝜔)|.  

In this paper, error is calculated using the PSO, CRPSO, CSA and ACSA 

optimization techniques and the better filter is the one, which has lower error 

function values. 

3. Employed algorithms 

Here, we will first discuss the Adaptive Cuckoo Search Algorithm and the concept 

of dynamic decreasing switching parameter used in Gbest-Cuckoo Search Algorithm 

(GCSA). Then, these two approaches are combined to form the dynamic decreasing 

switching parameter based Adaptive systematic Cuckoo Search Algorithm (ACSA) 

and ACSA will be used to optimize FIR HP filter. 

3.1. The Adaptive Cuckoo Search Algorithm 

CSA is a metaheuristic optimization technique that was developed in 2009 and is 

based on the cuckoo bird’s breeding strategy with three key criteria. “The host cuckoo 

can either discard the egg or leave the nest and make a new one somewhere else” 
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[21]. The next equations define the local and global random walks in CSA, 

respectively. They have established parameters in [22]: 

(7) 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛼𝑠 ⊗ 𝐻(𝑃𝑎 − 𝜀) ⊗ (𝑥𝑗(𝑡) − 𝑥𝑘(𝑡)), 

(8) 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝛼𝐿(𝑠, 𝜆). 

Here, depending on the search space’s dimension, 𝛼 is a constant and 𝐿(𝑠, 𝜆) is 

represented as a random walk through Levy flight [23]. As demonstrated in the next 

equation, the value of the switching parameter is changed linearly with the number 

of iterations in order to boost CSA efficiency:  

(9) 𝑃𝑎𝐶𝑖
= (𝑃𝑎Max × 𝐶𝑖) Epoch⁄ . 

Their parameters are defined in Table 1. 

Table 1. Dynamic Switching parameter definition [22] 

Parameters Description 

𝐶𝑖 Current iteration 

Epoch Total number of iterations 

𝑃𝑎𝐶𝑖
 Current iteration switching parameter 

𝑃𝑎Max Maximum switching parameter value 

3.2. Gbest-Cuckoo Search Algorithm 

CS significantly improves global optimization. To improve the search strategy’s 

balance between exploitation behaviour and exploration while also automating it, the 

Gbest-guided Cuckoo Search algorithm (GCS) is used [20]. GCS gives information 

ranging from the global best nests on earth to abandoned. Rather than maintaining a 

constant value of 𝜆 =1.5, here we updated 𝜆 as mentioned in the next equation:  

(10) 𝜆 = (𝜆max − 𝜆min ) ∗
(Epoch−iter)

Epoch
+ 𝜆min, 

where 𝜆max and 𝜆min represents the minimum and maximum value of 𝜆, respectively. 

The parameter 𝑃𝑎 can be appropriately adjusted to increase the convergence rate. 

Therefore, 𝑃𝑎 is changed based the next equation to make the algorithm self-tunned:  

(11) 𝑃𝑎 =
rand

𝐷
, 

where 𝐷 is the dimension of the problem, and “rand” is the random number,  
rand∈ [0, 1]. 

3.3. Adaptive Systematic Cuckoo Search Algorithm 

The most significant drawback of CSA is that parameter tuning is necessary, which 

makes it less effective than GCS. In GCS, no tuning of parameters are used in the 

form of 𝜆 and 𝑃𝑎 as already discussed in Equations (10) & (11), respectively. In order 

to make GCS more efficient, Adaptive systematic Cuckoo Search Algorithm (ACSA) 

is proposed in which we varied mean free path (𝜆) as mentioned in Equation (10). 

Additionally, it is proposed that as the iterations increase, value of the switching 

parameter, Pa, linearly decreases as shown in the next equation. This will improve 

the exploitation capability of the ACSA: 

(12) 𝑃𝑎𝐶𝑖
= 𝑃𝑎Max − (

𝑃𝑎Min×𝐶𝑖

Epoch
), 

Their specifications are listed in Table 2. 
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Table 2. Dynamic Switching parameter definition 

Parameters Description 

𝑃𝑎𝐶𝑖
 Switching parameter of the current iteration 

𝑃𝑎Max Maximum switching parameter value 

𝑃𝑎Min Minimum switching parameter value 

𝐶𝑖 Current iteration 

Epoch Total number of iterations 
 

 
Fig. 1. ACSA flowchart 

 

The flowchart of proposed ACSA algorithm is illustrated in Fig. 1, and the 

following are specific two steps for utilizing ACSA to design a FIR filter. 

Step 1. Initialization 

A.  Initialize the order of the HP FIR filter N=20, the maximum number of 

iterations Epoch, the number of host nests n, lower and upper bounds of digital filter 

coefficients, –1 and +1. In this article, we initialize n = 25 and Epoch = 1000 for the 

design of HP FIR filter. 

B.  The set of N+1 filter coefficients (candidate solutions) shown as  
𝑎 = [𝑎0, 𝑎1, . . . , 𝑎𝑁]T are represented by randomly generated n host nests.  

C.  Consider the fitness function (Fit) for the design of the digital high pass FIR 

filter also known as error objective function shown in Equation (6). 

Step 2. Iteration 

A.  Compute the Fitness function Fitold for the randomly generated nest i by 

using levy flight in Equations (6), (8) and (10). 
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B.  Compute the fitness function Fitnew for the randomly generated nest k by 

using levy flight in Equations (6), (8) and (10). 

D.  Compare the fitness values. If Fitold > Fitnew then egg i will be used in 

place of egg k.  

E.  Remove the worst nest according to the probability 𝑃𝑎𝐶𝑖
 and build new nests 

based on best 𝐺best using Equation (12). 

G.  Save current best solutions and update the value of “iter”, i.e.,  

iter = iter + 1. 

H.  Find best nest that utilizes optimum high pass filter coefficients ab by 

repeating steps A-G until the stopping criterion (iter  max iter) is achieved. 

By adjusting the various control parameters, the optimization algorithm’s 

performance for a particular problem can be significantly improved. Controlling 

parameters for each algorithm are selected in this work after multiple simulations are 

given in Table 3.  

Table 3. FIR high pass filter design control parameters  

Parameters Symbol PSO CRPSO CSA ACSA 

Population size Popsize 90 90 25 25 

Inertia weight W 0.9-0.4 0.9-0.4 - - 

Maximum iteration cycle Epoch 1000 1000 1000 1000 

Particle velocity vmin; vmax 0.01; 1 0.01; 1 - - 

Learning parameters C1; C2 2; 2 2; 2 - - 

Discovering rate of alien eggs  Pa - - 0.25 - 

Number of nests n - - 25 25 

Maximum switching parameter value 𝑃𝑎Max - - - 0.5 

Minimum switching parameter value 𝑃𝑎Min - - - 0.25 

Filter coefficients limits  –1, +1 –1, +1 –1, +1 –1, +1 

4. Simulation results and analysis 

In order to design digital FIR high pass filter, the error function in Equation (6) has 

characteristics that are extremely nonlinear, non-convex, and multimodal. To 

discover the best answer, i.e., filter coefficients, has led to the adoption of 

computationally effective evolutionary & swarm intelligent algorithms. Around 50 

simulations with arbitrary changes in the parameters are carried on Windows 10 

Home with Intel® Core™ i5-4200U CPU 2.30 GHz, 6 GB RAM running the 

MATLAB R2015a and best results are presented. The filter order, N=20, and  

cut-off frequency, 𝜔c = 0.45𝜋, are design parameters. PSO, CRPSO, CSA, and 

ACSA approaches are used to reduce the digital filter error function. Table 4 reports 

the 20th order digital FIR symmetric high pass filter optimal coefficients which are 

obtained using PM, PSO, CRPSO, CSA, and ACSA algorithms. 

Using several applicable optimization strategies, the magnitude response (in dB) 

of the 20th order digital FIR HP filter is graphically compared in Fig. 2. The stopband 

is enlarged and displayed in Fig. 3 to more clearly illustrate the performance of all 

the applied methods. Fig. 4 displays the 20th order FIR high pass filter’s larger 

passband response. The plots clearly illustrate that ACSA has the highest minimum 

Attenuation in the Stopband (Astop). 
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Table 4. The 20th order FIR high pass filter optimized coefficients 

No 
Optimization  

algorithm 

Optimized coefficients (hk), 0 ≤ k ≤ N, N=20  

hk= hN–1–k 

1 PM 

–0.1863758845828, 0.04644467460062, 0.08515327450669,  

0.05432463761543, –0.01518974100395, –0.01289178007653,  

0.07985895679551, 0.11947030919084, –0.02932159098185,   

–0.28974723718015, 0.57905517463708 

2 PSO 

0.01186758764384, –0.00886712467503, –0.00006530694347,  

0.04992096255993, –0.00025319972781, –0.04962977797468,  

0.00005252454461, 0.10461458217427, 0.00277709062765,  

–0.31551696734379, 0.49956064758609 

3 CRPSO 

0.0117735147941, –0.00886564763796, –0.00136354303979,  

0.04049119945231, –0.00074037826118, –0.04497943617491,  

0.00025177187698, 0.10632370323137, 0.00021403189245,  

–0.31474552822784, 0.49952972552265 

4 CSA 

0.01263150443432, –0.01024987224338, –0.00358988118388,  

0.04302469905999, –0.00237777218853, –0.0496723876118,  

0.00075668476165, 0.10430541043714, 0.00194701644974,  

–0.31602852556023, 0.49959962213189 

5 
ACSA  

(proposed) 

0.01266279421033, –0.03321594702298, 0.00629818991882, 

0.03909925402334, –0.00291851200238, –0.04987233875317,   

–0.00001355966039, 0.10425767752073, –0.00262729189841,   

–0.3166314272823, 0.49998146109844 
 

 
Fig. 2. The 20th order FIR high pass filter magnitude response (dB) 

 

 
Fig. 3. The 20th order FIR high pass filter enlarged stopband response (dB) 
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Fig. 4. The 20th order FIR high pass filter enlarged passband response (dB) 

 

Table 5 presents and compares the performance metrics for the design of the 

digital FIR HPF using PM, PSO, CRPSO, CSA, and ACSA. As compared to CSA  

(–24.28 dB, 0.0611), CRPSO (–22.36 dB, 0.0763), PSO (–20.98 dB, 0.0894), and 

PM (–8.21 dB, 0.3884), ACSA has the lowest stopband attenuation and ripples of  

–29.70 dB, 0.0328. It is also shown in Table 3 that the algorithm execution time (s) 

for ACSA is minimum, i.e., 6.05 s as compared to CSA (8.81 s), CRPSO (10.34 s), 

PSO (11.66 s) and PM (15.05 s), respectively. This is due to the fact that all 

parameters in ACSA are self-tuned and leads to fast convergence.     

Table 5. The 20th order FIR high pass filter performance evaluation 

Algorithm 

Minimum 

Stopband 

Attenuation 
(dB) 

Stopband 

Ripples 

Maximum 

Passband 

Attenuation  
(dB) 

Passband 

Ripples 

Execution 

Time (s) 

PM –8.21 0.3884 2.85 0.1625 15.05 

PSO –20.98 0.0894 0.74 0.0424 11.66 

CRPSO –22.36 0.0763 0.66 0.0377 10.34 

CSA –24.28 0.0611 0.61 0.0353 8.81 

ACSA –29.70 0.0328 0.53 0.0306 6.05 
 

Fig. 5 displays the designed digital FIR HPF’s normalized magnitude response. 

ACSA gives the minimum discontinuity overshoot in the ideal filter, whereas PM 

produces the most. When compared to the PM, PSO, CRPSO, and CSA algorithms, 

it has been found that ACSA produces the minimum passband ripples.  

Fig. 6 displays an enlarged normalized stopband response. ACSA offers the 

highest minimum stopband attenuation.  

The mean, variance, and standard deviation of the stopband and passband 

ripples are illustrated in Table 6. 

The convergence curve of 20th order FIR high pass filter using PSO, CRPSO, 

CSA and proposed ACSA is shown in Fig. 7. It can be seen that FIR high pass filter 

design using ACSA algorithm achieves convergence faster as compared to PSO, 

CRPSO and CSA algorithms due to self-tuned parameters.  
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Fig. 5. The 20th order FIR high pass filter normalized magnitude response 

 

 
Fig. 6. The 20th order FIR high pass filter enlarged normalized stopband response 

 

Table 6. The 20th order FIR high pass filter qualitative analysis 

Algorithm 
Stopband attenuation (dB) Passband ripple 

Mean Variance Standard deviation Mean Variance Standard deviation 

PM –22.1054 –52.2457 –26.1229 0.1721 0.0235 0.1533 

PSO –26.6552 –58.1542 –29.0771 0.0914 0.0156 0.1249 

CRPSO –29.4521 –60.1425 –30.0713 0.0625 0.0124 0.1114 

CSA –32.2576 –63.4524 –31.7262 0.0459 0.0076 0.0872 

ACSA –35.4582 –62.4256 –31.2128 0.0386 0.0045 0.0671 
 

 
Fig. 7. Convergence curve of 20th order FIR HPF using PSO, CRPSO, CSA and ACSA 
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5. Conclusion 

In this article, a 20th order FIR HP filter is designed using a variety of optimization 

approaches, including PSO, CRPSO, CSA, and proposed ACSA. The suggested 

design strategy for designing the best band pass and low pass filters can be 

implemented using the transformation techniques. In comparison to other 

optimization techniques with similar parameters, ACSA provided the best result. The 

FIR HP filter with an ACSA basis exhibits the lowest passband and stopband ripples 

and the maximum stopband attenuation. Additionally, it is executed with the fewest 

errors and is the fastest. The convergence profile illustrates how the suggested ACSA 

also outperforms PSO, CRPSO, and CSA approaches in terms of exploration and 

improved exploitation. 
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