
 111

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 22, No 4

Sofia • 2022 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2022-0042

B-Morpher: Automated Learning of Morphological Language

Characteristics for Inflection and Morphological Analysis

László Kovács, Gábor Szabó
Institute of Information Science, University of Miskolc, Hungary

E-mails: kovacs@iit.uni-miskolc.hu szgabsz91@gmail.com

Abstract: The automated induction of inflection rules is an important research area

for computational linguistics. In this paper, we present a novel morphological rule

induction model called B-Morpher that can be used for both inflection analysis and

morphological analysis. The core element of the engine is a modified Bayes classifier

in which class categories correspond to general string transformation rules. Beside

the core classification module, the engine contains a neural network module and

verification unit to improve classification accuracy. For the evaluation, beside the

large Hungarian dataset the tests include smaller non-Hungarian datasets from the

SIGMORPHON shared task pools. Our evaluation shows that the efficiency of

B-Morpher is comparable with the best results, and it outperforms the state-of-the-

art base models for some languages. The proposed system can be characterized by

not only high accuracy, but also short training time and small knowledge base size.

Keywords: Morphology, Machine learning, Rule induction.

1. Introduction

According to the theory of morphology and computational linguistics, words are built

up from morphemes, that are the smallest morphological units with associated

meaning [1]. The grammatically correct root form of a word is called the lemma,

while the added morphemes that modify its base meaning are called affixes. These

affixes can be prefixes (prepended to the word), suffixes (appended to the word) or

infixes (inserted in the middle of the word). In morphologically complex languages,

affixes may change some of the characters in the root form as well, resulting in for

example vowel or consonant gradation. This means that determining the lemma is

slightly more difficult. Simply dropping the affixes does not yield the grammatically

correct root form, but only the stem. The process of adding affixes to a word is called

inflection, while the inverse operation is called lemmatization or stemming,

depending on whether the required output is the lemma or the stem respectively. The

morphological analysis of a word returns both the lemma and the list of affix types,

optionally including the affix boundaries too.

mailto:kovacs@iit.uni-miskolc.hu

 112

In this paper, we present a novel morphology engine having the following key

properties:

• The engine can perform inflection, lemmatization and morphological

analysis, and learn the necessary rules of morphologically complex languages such

as Hungarian.

• The model learns these rules from a training data set containing (word,

lemma, morphosyntactic tags) triples.

• The model considers inflection and lemmatization as generic string

transformations that are constructed from simple atomic rewrite rules.

• The process of analysis and inflection is considered as a classification

problem.

• The engine contains a composition of different models to provide a better

accuracy output.

• The engine uses a fast and self-explainable training model.

• The engine supports efficient incremental training, which means that it is able

to learn new patterns at any time without any significant overhead.

2. Related survey

First, we introduce the basic morphological concepts used in this paper.

• Morphology: Morphology is concerned with the study of word forms.

• Morpheme A morpheme is the smallest unit which carries meaning.

• Lemma: The basic, canonical form of a word (example: studies  study).

• Stem: The core word after removing the affixes (example: studies  studi).

• Inflection: To change the role of a word in the sentence without changing the

category of the word (example: play  played).

• Derivation: To change the meaning, category of a word by adding new

morphemes to the stem. (example: sad  sadness).

• Affix: A morpheme unit to change the role or of the category of the words.

• Prefix, suffix, infix: Affix at the beginning, at the end or in the target word.

The first widely used morphology model for agglutinative languages was the

two-level morphology model [2]. In this model, the inflected forms are represented

on the following two levels: the surface level contains the written form, while the

lexical level contains the morphological structure. The valid lemmas and affix types

are stored in a dictionary, and Finite State Transducers (FST) are used for applying

the transformations. The model differentiates two elementary phonological rules:

context restriction rules (only if) and surface coercion rules (if). From these

elementary rules, we can create complex composite rules (e.g., if and only if). One of

the first approaches to use automated rule generation for two-level morphology has

been proposed in [3]. The main idea behind the algorithm is to identify elementary

INSERT, DELETE, REPLACE and NOCHANGE transformation steps in the

training words, and merge them together. The goal is to have two-level rules whose

context is long enough to uniquely identify the transformation position, but not too

long to be overspecified. To acquire optimal two-level rules, a Directed Acyclic

Graph (DAG) is used.

 113

The most widely used baseline unsupervised method is the Morfessor engine

published by [4]. Morfessor is a language independent word segmentation model

using statistical approach to determine the building blocks with highest probabilities.

In recent years, we can observe an increased interest in semi-supervised models too.

In these approaches, only a small amount of annotated word forms is available for

model training, but most of the lexicon contains unannotated words. The goal is to

find efficient approaches to maximize the information found in the annotated

examples. In [5], the model of Conditional Random Fields (CRF) is used to determine

the optimal segmentation. CRF is a discriminative model for sequential tagging and

segmentation published by [6]. The proposed methods extend the CRF-based

approach to leverage unannotated data in a straightforward and computationally

efficient manner via feature set augmentation, utilizing predictions of unsupervised

segmentation algorithms.

In [7], a Labelled semi-supervised Morphological Segmentation (LMS) engine

is presented, that explicitly models morphotactics. The engine can be used for

morphological segmentation, for stemming and for morphological tag classification.

Unlike the previous models, it uses a rich, fine-grained label set. The engine is based

on a probabilistic model to determine the corresponding labels for the tested words.

Also, this method applies the CRF model to determine the winner label assignments.

Based on the performed test, the Finnish and Zulu languages have the most complex

label system.

F a r u q u i et al. [8] published a model of inflection generation as sequence-to-

sequence transducer using a neural network engine. The model transforms its input

to a sequence of output characters representing the inflected form. The training set of

the model contains pairs of lemma and inflected forms. To improve the supervised

model, unlabelled data are added to the training set. The experiments show that the

model achieves better or comparable results to the state-of-the-art methods in the

benchmark inflection generation tasks.

Many state-of-art morphological models are gathered by SIGMORPHON

(Special Interest Group on computational MORphology and PHONology). The

training and test data are provided on-line, and the tasks can be solved using any

technique. The best models are published in [9-11].

K a n n and S c h u t z e [12] developed a Morphological Encoder and Decoder

(MED) engine using neural encoder-decoder models together with special encoding

of the input and output as symbol sequences. The model showed superior

performance in the SIGMORPHON competitions. The proposed engine is an

extension of the network architecture proposed by B a h d a n a u, K y u n g h y u n and

Y o s h u a [13] for machine translation, which is a special kind of the Recurrent

Neural Network (RNN) encoder-decoder model. The encoder module consists of a

Gated RNN Unit (GRU) that reads an input sequence of vectors and encodes it into

a fixed length context vector. The decoder uses the context vector to predict the output

using conditional probability based on current input, current context and current

hidden state values. The attention-based version of this model allows different vectors

for each step by automatic learning of an alignment model.

 114

The UF 2017 method proposed in [14] models the morphological reinflection

problem using an encoder-decoder architecture. For an input word, every character is

encoded through a Bi-directional GRU network. Another GRU network is deployed

as a decoder to generate the inflection. The UTNII 2017 model, published in [15] is

based on the seq2seq model, and with its configuration, it was the second best of 2017

in the high-resource scenarios. The Hamburg 2018 model published by Schroder [16]

introduces the concept of patches that act as string transducer actions. The resulting

model is a language-agnostic network model that aims to reduce the number of

learned edit operations by introducing equivalence of classes over graphical features

of individual characters. The IITBHU 2018 model published in [17] uses a Pointer-

Generator Network (PGN) to mitigate the problem of copying many characters

between word forms. The lemma and the morphosyntactic tags are encoded by two

separate encoders. Compared to other similar performing systems, this model is

trained end-to-end, does not require data augmentation techniques, and uses soft

attention over hard monotonic attention, making the resulting system more flexible.

The MSU 2018 model [18] aimed to improve the accuracy in medium and low-

resource scenarios by explicitly equipping the decoder with the information from the

character-based language model, however the advantage was not clear.

The main goal of our investigation was to analyse a novel approach with

integration of pattern matching and machine learning modules. The motivation is

based on the next facts:

• The direct pattern matching based methods provide a more explainable

solution than the other machine learning algorithms.

• The concept of locality is a general accepted principle in many knowledge

domains.

• The integration of different methods can improve the efficiency of the

inference systems.

• Testing in which situations can be the pattern matching approach with Bayes

classifier is competitive with the current complex neural network architectures.

3. Architecture overview of the proposed morphological engine

The surface layer of the morphology is usually represented with general string

transformation models. Using this approach, both morphological analysis and

inflection can be investigated as a classification problem. In the case of

morphological analysis, category labels correspond to inflection categories or

lemmas, while in the case of inflection, word transformation rules are the related

category labels. In the field of classification models in ML, the most widely used

approach is the application of neural networks. Neural networks have many

advantageous properties, they provide excellent results on complex problem

domains, most of the dominating classification engines in Natural Language

Processing (NLP) use an engine based on NN. Beside the benefits, we can mention

some properties where neural network models are not so powerful:

− descriptive explanatory power (it is hard to explain the reasoning inside the

network),

 115

− relatively long training time for model construction,

− higher costs in the case of incremental learning.

Fig. 1. Architecture overview of the proposed B-Morpher engine

The goal of our paper is to investigate an alternative classification method,

which is an extension of the traditional Bayes Classification (BC) approach. As the

BC model requires only a thin model, then:

− the training phase is usually cheaper,

− the decision is case-based, thus the elementary decision steps can be more

easily verified,

− it provides good results in handling of outlier cases.

Considering the inflection generation task, we use the following interpretation:

• Category label. The string transformation rule describing some replacement

operations within the words;

• Attribute. Context substrings of the transformation section plus the current

morphosyntactic description.

In the case of morphological analysis, the mapping is slightly different:

• Category label. A pair containing morphosyntactic description and the

transformation rule;

• Attribute. Context substrings of the transformation section.

In the proposed engine, an extension of this BC approach is implemented. The

key features can be summarized in the following points:

1. The output of the BC module is a weight vector containing the calculated

weight values for all categories.

2. In the case of morphological analysis, the engine performs a fine-tuning of

the resulting weight vector using a NN classifier. The reason for this step was that

our experience has shown that chaining BC and NN classifiers could provide better

accuracy than the BC or the NN alone. The key point in the NN component is that

the input vector is an estimation of the BC classifier and not the item feature vector.

In the case of inflection generation, the use of NN engine provides only marginal

improvement in accuracy.

3. An additional verification module containing both ML and rule-based units

is applied to measure the validity and credibility of the candidate categories. The

verification engine performs among others probability-based ranking where the

priority value depends on the conditional probability of the relevant letters.

 116

The overview of the architecture of the implemented engine is given in Fig. 1.

Another key property of the proposed model is that it uses fusional approach, which

means that the set of morphosyntactic descriptions contains not only the elementary

morphosyntactic description units, but every composed description found in any

training example is a separate unit in the category set. This approach enables a more

flexible and more general view as the set of supported languages covers both

agglutinative and fusional languages.

4. Formal morphology model

Before defining the formal morphology model of the B-Morpher engine, let us

introduce some common notations: {𝑥𝑖}𝑖=1
𝑛 will denote an unordered set of n items.

Another common formalism for defining indices is 𝑖 ∈ [1, 𝑛] which means that the

index i will run through the integer numbers in the closed interval of 1, …, n.

Let 𝛴 be an alphabet containing arbitrary characters. Strings of length n are

denoted by 𝛴𝑛 = {𝑠|𝑠 = 𝑠1, 𝑠2, … , 𝑠𝑛 ∈ ∑}. The length of s is denoted by |s|. The set

of all strings is denoted by 𝛴∗ =∪{𝑖=0}
{∞}

 𝛴𝑖. The set of words is denoted by

𝑊 = {𝑤𝑖} ⊂ 𝛴∗. Some of these words are lemmas, meaning that they represent the

grammatically correct root form of base concepts. The set of lemmas is a subset of

the word set 𝑊′ = {𝑤′𝑖} ⊂ 𝑊 .

The set of affix types (or morphosyntactic descriptions) is denoted by 𝑇 = {𝑡𝑖}.

The set indicates grammatical transformations of words. Applying an affix type on

an input word will change its base meaning and transform its surface form by

prepending (prefix), appending (suffix) or inserting (infix) additional characters to

the word. Each affix type is associated with a set of transformation rules (denoted by

𝑅 = {𝑟} that describe how we can produce the inflected forms of the input words

according to the given affix type.

The basis of the B-Morpher model is the so-called transformation engine

submodule whose responsibility is to learn the transformation rules of the affix types.

These rules model morphological transformations as string transformations, and are

generated from a word pair set, extracted by B-Morpher from the original training

data.

4.1. Transformation rules

For processing the words in the training set, we introduce an extended alphabet that

will be used internally to denote the word-start and word-end positions: $ will mark

the start of the word, while # will mark the end of the word. These are special

characters; they do not belong to the original 𝛴 alphabet. The extended alphabet will

be denoted by Σ# = Σ ∪ {$, #}. Let us also define a new operator on the domain of

words: 𝜇(𝑤) = 𝑤e = $ + 𝑤 + #. The inverse operator drops these characters:

𝜇−1 (𝑤e) = 𝑤 . The set of extended words is denoted by 𝑊e. The goal of this phase

is to align variant and invariant segments of the input words and store the changing

variant segments in the rule base. For that, we first create an extended training word

pair set, where the words are extended with the start and the end symbols. Then we

split each word pair into matching segments, where each segment has either two

 117

identical matching substrings of the two words, or two different substrings. A

segment is called variant if they are different, otherwise it is called invariant. In a

valid segment decomposition, variant and invariant segments are alternating. To

select the best possible segment decomposition for each word pair, we choose the

best matching invariant segments having maximal fitness value. The fitness value of

a segment 𝜓 is inversely proportional with the index difference of the two substrings

and proportional with their lengths. This formula encodes that the best segment is the

one with the longest substrings that are near to each other’s position. After choosing

the best invariant segment, we can recursively continue the segment selection

algorithm on the remaining parts, until they are short enough to be identified as

variant segments.

4.2. Example

For the Hungarian training word pair (dob, ledobott) which means (throw, threw

down) in English, we first extend the words with the special characters:

($dob#, $ledobott#). Algorithm yields this segment decomposition:
(𝜓1

1 = $, 𝜓2
1 = $),(𝜓1

2 = dob, 𝜓2
2 = dob), (𝜓1

3 = #, 𝜓2
3 = ott#), where the

middle segment is invariant, while the others are variant segments.

From the variant segments we can deduce a set of atomic rewrite rules:

𝑅 = {(𝛼, 𝜎, 𝜏, 𝜔)}, where 𝛼 is the prefix, 𝜎 is the changing substring, 𝜏 is the

replacement and 𝜔 is the suffix. The rule context that must be searched in the input

words later during inflection is (𝑟) = 𝛼 + 𝜎 + 𝜔 . We can see that this rule model

can describe prefix, infix and suffix rules as well. Let us take a variant segment

𝜓1
𝑖 → 𝜓2

𝑖 . The first rule that we generate is called a core atomic rule

𝑟 = (𝛼𝑖𝑐, 𝜎𝑖𝑐, 𝜏𝑖𝑐, 𝜔𝑖𝑐), where 𝜎𝑖𝑐 = 𝜓1
𝑖 , |𝛼𝑖𝑐| = 0, 𝜏𝑖𝑐 = 𝜓2

𝑖 and |𝜔𝑖𝑐| = 0,

meaning that the prefix and suffix parts are empty. The other atomic rules are

generated by extending this core atomic rule with one character at a time on the left

and right sides, symmetrically.

To make the generated atomic rules unambiguous, we must make sure that only

those rules are retained whose contexts appear only once in the base form of the word.

This means that the retained rules will always yield the original in form given the

base form.

4.3. BC module

In the core Bayes Classification Method, the prediction is based on the following

model:

𝑐𝑤 = argmax𝑐 {𝑃(𝑐) ∏ 𝑃(𝑎𝑖 |𝑐

𝑖

) },

where c is category label and a is attribute.

In our proposal, the core element of the classification engine is based on the

following formula:

𝑐𝑤 = argmax𝑐 {max
𝑖

{𝑤(𝑐, 𝑎𝑖) } },

where w is weight value based on the training set.

 118

Depending on the task type, the category c is either the affix type

(morphosyntactic description) or the transformation rule. Attribute 𝑎𝑖 corresponds to

a context substring (pattern), thus context substrings will be used as attributes to

determine the winner category. Weight values denote the relevance of the pattern.

When constructing the weight function our main considerations were the followings:

• Rules whose context matches the input word are the relevant rules:

• A rule with a longer matching substring in the input word is better than a rule

with a shorter matching substring.

• We should differentiate rules that have similar fitness values using their

frequencies, i.e., the number of word pairs in the training set they apply to.

In the proposed model, the following formula is implemented:

𝑤(𝑐, 𝑎) = 𝑓(𝑤𝑠,
|𝑠|

|𝑞|
𝑤" (𝑐, 𝑠)),

where:

q is query item;

a is a matching substring pattern, i.e., s(q) is met;

𝑤𝑠 is weight value of s, based on the position of s in q;

𝑤"() is weight value of s in the training set;

𝑓() is monotone increasing function.

4.4. Verification module

In the verification unit, one of the steps is to calculate the conditional probabilities of

given vowel sequences in the context area of the affix transformation:

𝑝(𝑣1, … , 𝑣𝑚|𝑐),

where 𝑣𝑖denotes vowel elements from the context part of the investigated word and

c denotes the corresponding category label. The weight values for the candidate

categories are updated using the following formula:

𝑐𝑤 = argmax𝑐 {𝑓(𝑝(𝑣1, … , 𝑣𝑚|𝑐) max
𝑖

{𝑤(𝑐, 𝑎𝑖) } }.

In the classification process, the weight values depend on the length and position

of the common matching substrings. One key issue of this approach is the case when

the training set does not contain matching samples. This can happen in case of small

or unbalanced training sets. To manage this problem, the proposed verification engine

contains a Nearest Neighbor Searching (NNS) module, too. The NNS module

performs a similarity-based search in the training set to find the most similar

examples. This kind of search differs from exact search in that for a given query word

q, the NNS should retrieve a set of candidate words.

In our model, we use the edit distance function to measure the similarity of

words. The complexity of NNS algorithms is in general much higher than that of

exact search. Based on the literature [19] there are two main techniques to reduce

computation costs: a) filtering candidate words from the dictionary, and b) using a

search tree to locate the neighboring elements. Concerning the search tree, M-tree or

VP-tree [20] are the dominating techniques.

In our system, we have developed a novel method based on the combination of

the dynamic programming and prefix tree approaches. According to our experiments,

 119

this method significantly dominates the baseline VP-tree method. The NNS module

generates a search tree corresponding to a prefix tree of the words, where nodes are

assigned to characters. The proposed NNS algorithm performs a modified A* search

algorithm where the cost value is equal to the sum of the previous editing

transformation costs plus the upper limit cost of the expected future steps. The value

of the second component depends on the length of the word segment that is not

processed yet.

4.5. Transducer module

The first module in the engine that performs morphological analysis uses a BC

classification method with the following representation formalism:

• Input items are triplets (𝑤0, 𝑡, 𝑤1), where 𝑤0 is a lemma, t is the inflection

class and 𝑤1 denotes the inflected word.

• Having (𝑤0, 𝑤1), we can generate the corresponding transformation rule r,

as string transformation function, where 𝑟(𝑤0) = 𝑤1.

• Pattern attributes of the words are given by 𝑤 = 𝑤(𝑎1, … , 𝑎𝑚), where 𝑎𝑖 is

a substring in w.

Every transformation rule r may belong to one or more inflection classes. During

the morphological analysis, the goal is to determine the winner inflection rule having

the largest probability. Instead of using real probability values, we introduce a

weighting model. The model is based on the following assumptions:

• The longer the pattern attribute 𝑎𝑖 is for a training word w in sample s, the

larger the training weight of 𝑎𝑖 is for the rule r.

• The longer the pattern attribute 𝑎𝑖 is for a query word q, the larger the testing

weight of 𝑎𝑖 is for the rule r.

• The global training weight of 𝑎𝑖 is calculated with the maximum aggregator.

• In the calculation, the weight of a pattern substring depends on the total

length of the query word as well as on the length of the training word.

Fig. 2. Schema of the WFST-BC transducer

The operation of the module can be given with a Weighted Finite State

Transducer (WFST) having the structure depicted in Fig. 2. Considering the standard

alphabet of the words, the upper limit for the total number of nodes can be

approximated with the following formula:

∑ min{𝐶𝑖, 𝑁} ≤ 𝐿𝑁𝑖∈[1,...,𝐿] ,

 120

where N is the number of training classes, C is the number of characters in the

alphabet, L is maximum length of the words.

Considering the any-character cases (which are used to process the remaining

parts of the words), the upper limit can be given with

𝐿2𝑁.

As each standard or any-character node may be the last node of the word, the

upper approximation for the termination nodes is also

𝐿2𝑁.

Having T inflection classes and N training items, the corresponding WFST has:

− 𝑂(𝐿𝑁) standard character nodes,

− 𝑂(𝐿2𝑁) any-character nodes (*),

− 𝑂(𝐿2𝑁) word termination nodes,

− 𝑂(𝑇) are rule nodes.

Thus, the corresponding transducer graph has 𝑂(𝐿2𝑁) nodes. We remark that

the given WFST structure is suitable for prefix-based prediction. A similar WFST

can be constructed for the postfix-based generation using back propagation

traversing, too.

Concerning the infix inflections, we can construct a compound transducer

depicted in Fig. 3. Thus, the BC engine can be represented as a weighted finite state

rational transducer. The output of the module is the weight vector of the inflection

classes 〈𝑤1, . . . , 𝑤𝑚〉. Thus, considering the computational complexity of the

proposed system, we can show that it is a special case of weighted rational transducers

and it is in general not equivalent with probabilistic transducers (or Turing machines).

Fig. 3. Schema of the WFST-BC transducer for infix transformation

5. Experiment results

For the experimental tests, we have used two main categories of training data sets.

For the case of large data sets, a training data set for Hungarian was generated where

the inflection cases were collected from on-line documents and the related

morphological annotations were constructed automatically using a high quality

existing morphological analyser program. For generation of the training and

evaluation data we used Hunmorph published in [21] and Morphdb.hu [22]. We

collected input word set from the National Szechenyi Library in an automated way,

and Hunmorph determined the morphosyntactic tags and lemmas. For the

transformation engines, we needed to generate word pairs, too. These word pairs were

 121

extracted from the output of Hunmorph. The number of word candidates was

13,345,903 from which Hunmorph recognized 4,423,882 items. After additional data

filtering, the resulting training set contained 2,147,703 clean training triplets. The

training and evaluation data was generated randomly from this data set, published on

Github (https://github.com/szgabsz91/morpher-data).

5.1. Efficiency comparison of BC and NN engines

In the first experiments, we have compared the efficiency of the proposed BC engine

with the efficiency of the standard three-layered back-propagation network. For the

tests, we have selected the task to predict the POS property of the words. For input,

we have used the large Hungarian training set (N0 = 2,147,703 items), and we have

tested the following variants:

− the engine contains only NN-unit,

− the engine contains only BC-unit,

− majority voting with BC-units,

− majority voting with NN-units,

− BC unit with NN-based refinement unit.

The experimental results are summarized in Table 1. We can add that there is a

big execution cost difference between the BC and NN modes in the case of large data

sets. Considering N = 0.9N0, the training time for NN was 130 min, while 6 min for

BC unit.

Table 1. Comparison of different model architectures

Size of training data set Method Accuracy (%)

N=0.90×N0 NN 86

 BC 96

N=0.01×N0 NN 82

 NC 87

N=0.05×N0 NN 86

 BC 94

 Majority voting (3 NN units) 87

 Majority voting (3 BC units) 96

 BC+NN refinement 97

As the experimental results show, the BC approach dominates the selected base

NN version, but it is worth using majority voting and performing a NN-based

refinement step. These additional processing elements can increase the accuracy level

by 2-3 %.

To analyse the execution cost efficiency of the proposed NNS unit, we

compared the method with the naive brute-force method and with the VP-tree

method. As the resulting data given in Table 2 shows, the proposed engine

significantly dominates the other methods and it provides an acceptable speed to be

used in the prototype system. The time values in Table 2 are given in seconds. It

should be noted that this module will only be used if no exact matching can be found

for the query word.

In Table 2, column N denotes the size of the dataset, and column minD denotes

the distance to the nearest element, column vpt-bt symbolizes the index construction

 122

time for the VP-Tree Algorithm, column vpt-qr is for the query time. The last two

columns denote the same data for the proposed NNS Algorithm. As it can be seen,

the query cost decreases if an exact matching element exists, i.e., there is no need to

perform search in a wider area.

Table 2. Comparison of execution costs in NNS

N minD Naive vpt-bt vpt-qt p-bt p-qt

100,000 2 5.9 126 1.9 1.2 0.001

500,000 2 29.3 776 4.6 5.4 0.005

500,000 1 29.1 773 0.21 5.1 0.0005

500,000 0 28.3 763 0.001 5.8 0.0002

1,000,000 1 59.5 1245 0.38 7.4 0.0004

5.2. Experiments with the large Hungarian training set

In these tests of the B-Morpher system, the data set was split into two disjoint parts:

one for training and the other for tests. The size of the test part is 3000 examples. In

the experiments, the accuracy of inflection generation was investigated using training

sets of different sizes. The test results are presented in Table 3. The second column

shows the number of affix types found in the training set. In the test, the prediction

engine yields three candidates as output. Column acc1 denotes the accuracy level

considering only the first candidate in the output. Column acc2 is for the case when

the first two candidates were considered. Column acc3 denotes the case when all three

output items are tested for matching. One can see that the method’s efficiency tends

to be 100 % in limit, as every item in the training set will be recognized properly.

Table 3. Efficiency of B-Morpher for inflection generation for Hungarian

Training data size Number of affix types acc1 acc2 acc3

20,000 (1 %) 349 83.0 91.0 93.7

100,000 (5 %) 489 90.0 96.0 97.3

200,000 (10 %) 578 93.0 97.5 98.5

400,000 (20 %) 688 95.3 98.4 99.0

600,000 (30 %) 771 96.3 99.0 99.4

800,000 (40 %) 805 96.6 99.1 99.4

1,000,000 (50 %) 871 97.3 99.3 99.5

2,000,000 (100 %) 1043 99.4 100.0 100.0

Fig. 4. Learning curve of the NN engine (N = 0.05×N0)

 123

In these experiments, the proposed model was compared with available baseline

models submitted as part of previous SIGMORPHON tasks: Helsinki (2016), UF and

UTNII (2017), Hamburg, IITBHU and MSU (2018). Since the evaluation of these

methods were tested only on CPU, we do not include time comparisons. To evaluate

the B-Morpher model using the Hungarian language, the volumes of training data

were gradually increased to see how the model scales. We used 10,000,

20,000,…,100,000 training items. During comparison, 10,000 random input words

were used and the query words were disjoint with the training item set. The

knowledge base size is compared with Hunmorph.

Fig. 5. Average accuracy vs training size

The accuracy analysis of the models can be seen in Fig. 5, using previously

unseen words. As we can see, B-Morpher has the highest accuracy (about 97.3

percent using 100,000 training items), both for inflection and morphological analysis.

This means that B-Morpher’s generalization is exceptional, since it can inflect and

analyse previously unseen words correctly in nearly 98 % of the cases. IITBHU and

MSU are very close, too, but the Hamburg model reaches only about 70 %. These

results were achieved using our generated data. Comparing these with the originally

published results of the baseline models, it can be seen that for the Hungarian

language, the best models were CLUZH and LMU in 2017 with about 86 %, and the

UZH model in 2018 reaching about 87 %. Fig. 6a shows the average training time of

the B-Morpher model in seconds. Using 100,000 training items, the training phase

ends in about 2.6 s in average. Fig. 6b displays the average inflection and

morphological analysis times in milliseconds.

Fig. 6. Average training, inflection and analysis times vs. training set size

Considering inflection, the execution times increase about linearly from 0.03 ms

to 0.05 ms. For the task of morphological analysis, using only the base BC engine,

 124

query times increase from 0.4 ms to 1 ms. In this case, the accuracy level is about

2-3 % weaker than the accuracy of the extended engine. These query response times

(about 1000 words per 1 s) are weaker than the leading industrial analysers (about

10000 words per 1 s), however our implementation is a prototype system not an

optimized code written in some efficient language like C. Including the verification

engine, the query times will increase. In this case, the obtained response time values

are between 3.3 ms and 8 ms.

Considering the file size of the exported knowledge bases, the values can be

seen in Table 4. These files can be loaded quickly, skipping the training time. As the

results show, MSU and UF produce smaller files, and B-Morpher provides a database

of average size.

Table 4. The database size of the exported knowledge bases

Model File size (MB)

B-Morpher 16.1

Hunmorph-Ocamorph 22.7

Helsinki 2016 58.3

UF 2017 4.5

UTNII 2017 92.4

IITBHU 2018 8.3

MSU 2018 1.5

5.3. Experiments with the SIGMORPHON data sets

First, the Task1 dataset from the SIGMORPHON 2016 shared tasks about inflection

learning were analysed. The Hungarian training set contains 16,219 training

examples. In the SIGMORPHON 2016 competition, the winner was the LMUMED

engine using RNN methods. The winner accuracy level for the Hungarian was

99.3 %. The other participating systems could achieve significantly lower results

below 97 %.

The B-Morpher system could achieve the following accuracy levels on related

training and testing data sets for Hungarian. For the training phase, only the provided

Task1 train dataset was used. The value of acc1 denotes the accuracy level

considering only the first candidate in the output. Value acc2 is for the case when we

consider the first two candidates and acc3 denotes the case when all three output items

are tested for matching:

− acc1=92.0 %,

− acc2=97.3 %,

− acc3=98.6 %.

These numbers are below the winner accuracy but still they are slightly better

that of the other participating systems. This result shows that although B-Morpher

prefers larger datasets, it is competitive also for smaller datasets. It can provide

similar efficiency as the other NN based systems, and it is significantly better than

the non-neural network systems, which have an accuracy, level 10 % below the

NN-based systems.

A problem domain area where B-Morpher has advantage is the domain of

incremental training processes. The update of the classifier model is a relatively

simple and low cost operation. If it is allowed to add incorrectly predicted words to

 125

the training set on an incremental way, we get drastically improving accuracy result.

The second group of experiments relate to the SIGMOPRHON 2019 Task 2 shared

task, where the task was to perform morphological analysis. The training data was

given in the form of sentences. The sentence form can be used to get additional

context level information in the classification process. With B-Morpher only word

level analysis was performed since B-Morpher is a word level analyser. For this task,

the best result was 95.05 % accuracy level. The corresponding accuracy values of the

B-Morpher system on the Task 2 for Hungarian are the followings:

− acc1=91.6 %,

− acc2=95.0 %,

− acc3=95.7 %.

Based on these result values, we can say that B-Morpher provides good

efficiency, namely the acc2 and acc3 accuracy values are above the winner 95.0 %

accuracy.

The test for morphological analysis was extended also for some other languages

in order to investigate the language dependency of the proposed engine. In the

selection of the test languages, a key aspect was to involve languages from different

language families; therefore, the test was extended to the following languages:

− Lithuanian,

− Turkish,

− Finnish,

− Polish,

− Slovak,

− English,

− Spanish,

− Basque,

− Indonesian,

− Irish,

− Breton.

The accuracy for the selected languages is summarized in Table 5. In the table,

the second column denotes the number of detected affix types in the training data

sets. The column entitled baseline denotes the baseline accuracy values given in the

shared task call. Column best denotes the best accuracy result achieved at the shared

task competition. The last column denotes the difference between the winner

accuracy and our acc3 values. Based on this accuracy difference, we can categorize

the languages into four groups.

Group A: The B-Morpher can provide very good results, acc3 value is better

than the winner accuracy:

− Hungarian,

− Lithuanian,

− Breton.

Group B: The acc3 accuracy value of B-Morpher is satisfactory, not far from

the best values:

− English,

 126

− Spanish,

− Basque.

Group C: The acc3 accuracy values are slightly lower than the winner accuracy

at the shared task competition:

− Finnish,

− Irish.

Group D: The acc3 accuracy values are significantly lower than the winner

accuracy at the shared task competition:

− Turkish,

− Polish,

− Slovak,

− Indonesian.

In this categorization, languages with a higher number of possible affixes are in

Group D. One reason for the weak performance of B-Morpher for these languages

can be that B-Morpher works mainly at surface level and the training sets at the

competition are relatively sparse, there are no examples for all cases in the test set.

One important experience from the performed tests is that we can see very

significant accuracy differences for the different languages. Although a deeper

analysis requires more investigations in the future, we can find some reasons for this

variety.

• The proposed method is strong for the agglutinative languages where well

defined, relatively stable morphemes are used to denote different grammatical roles.

• In the case of fusional languages, there are more flexibility in the surface

form, more training data would be needed to discover the related statistical rules. For

example, the inflection sample in Polish

− byť ⇒ je (V; SG; PRS; NEG; IND; IPFV; FIN; 3).

− is a hard case for a surface level grammar induction engine.

− In many languages, the surface level is not enough to detect the grammatical

roles. A good example is the following example in Indonesian:

dimekarkan ⇒ dimekarkan (PASS; V; SG),

where there are no surface level changes between the lemma and inflected form.

Table 5. Comparison of the accuracy for different languages (SIGMORPHON 19)

Language affix_cnt Baseline Best acc-1 acc-2 acc-3 diff

HU_Szeged 332 65.9 95.0 91.7 95.0 95.7 +0.7

LI_HSE 336 41.4 80.1 74 82 83.4 +3.3

TR_PUD 502 66.3 87.6 71 79 81.5 –6.1

EN_GUM 73 79.6 97.5 90.1 96.0 97.1 –0.4

SP_Ancora 172 84.3 98.8 95 98.2 98.8 0.0

PL_SZ 716 63.1 95.1 73 83 86.5 –8.5

SK_SNK 829 64.0 95.4 76 85 89 –6.4

FI_FTB 659 72.9 96.9 87 92.5 93.9 –3.0

BA_BDT 854 67.7 92.3 81 90 92.2 –0.1

IN_GSD 128 71.7 92.5 78 86 88 –4.5

IR_IDT 162 67.7 86.4 74 82 83.6 –2.8

BR_KEB 86 76.5 91.1 87 91 93.4 +2.3

 127

5. Conclusion

In this paper, a novel morphological model called B-Morpher was presented that can

learn complex inflection rules. B-Morpher can be used for both inflection analysis

and morphological analysis. The core element of the engine is a modified Bayes

classifier whose output is sent to an additional NN engine and an ML-based

verification unit in order to increase the output accuracy. In the classification, class

categories are given by simple string transformation rules or by affix types. The

proposed model can be trained incrementally. Our evaluation shows that B-Morpher

can achieve in general a good, but for some languages an excellent accuracy in both

tasks. It outperforms state-of-art morphological models including those submitted to

SIGMORPHON. B-Morpher’s accuracy reaches here near 99 %. Considering a

training set of 100,000 examples and using our Python and Java implementations, the

average training time is 3 s, the average inflection time is 0.05 ms and the average

morphological analysis time is between 0.5-4.0 ms depending on the required

accuracy level. The average size of the knowledge base is 16 MB for the simple

engine model, which is a common size among the different models. The proposed

B-Morpher model provides good efficiency in incremental training mode and it uses

a very fast training process. The generated model also presents a self-explainable

knowledge representation format.

R e f e r e n c e s

1. B a u e r, L. Introducing Linguistic Morphology. Edinburgh, Edinburgh University Press, 2003.

2. K o s k e n n i e m i, K. Two-Level Morphology: A General Computational Model for Wordform

Recognition and Production. Department of General Linguistics, University of Helsinki, 1983.

3. T h e r o n, P., I. C l o e t e. Automatic Acquisition of Two-Level Morphological Rules. – In: Proc.

of 6th Conference on Applied Natural Language Processing, 1997, pp. 103-110.

4. C r e u t z, M., K. L a g u s. Unsupervised Models for Morpheme Segmentation and Morphology

Learning. – ACM Transactions on Speech and Language Processing (TSLP), Vol. 4, 2007,

No 3, p. 34.

5. R u o k o l a i n e n, T., O. K o h o n e n, S. V i r p i o j a. Painless Semi-Supervised Morphological

Segmentation Using Conditional Random_ELDS. – In: Proc. of 14th Conference of the

European Chapter of the Association for Computational Linguistics, 2014, pp 84-89.

6. L a f f e r t y, J., A. Mc C a l l u m, F. P e r e i r a. Conditional Random_ELDS: Probabilistic Models

for Segmenting and Labeling Sequence Data. – In: Proc. of 11th International Conference on

Machine Learning, 2002, pp. 282-289.

7. C o t t e r e l l, R., T. M u l l e r, A. F r a s e r, H. S c h u t z e. Labeled Morphological Segmentation

with Semi-Markov Models. – In: Proc. of 9th Conference on Computational Natural Language

Learning, 2015, pp. 164-174.

8. F a r u q u i, M., Y. T s v e t k o v, G. N e u b i g, C. D y e r. Morphological Injection Generation

Using Character Sequence to Sequence Learning. – arXiv preprint arXiv:1512.06110, 2015.

9. C o t t e r e l l, R., C. K i r o v, J. S y l a k-G l a s s m a n, D. Y a r o w s k y, J. E i s n e r,

M. H u l d e n. The SIGMORPHON 2016 Shared Task – Morphological Reinjection. – In:

Proc. of 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology,

and Morphology, 2016, pp. 10-22.

10. C o t t e r e l l, R., C. K i r o v, J. S y l a k-G l a s s m a n, G. W a l t h e r, E. V y l o m o v a, P. X i a,

M. F a r u q u i, S. K u b l e r, D. Y a r o w s k y, J. E i s n e r et al. CoNLL-SIGMORPHON

2017 Shared Task: Universal Morphological Reinjection in 52 Languages. – arXiv preprint

arXiv:1706.09031, 2017.

 128

11. C o t t e r e l l, R., C. K i r o v, J. S y l a k-G l a s s m a n, G. W a l t h e r, E. V y l o m o v a,

A. D. Mc C a r t h y, K. K a n n, S. M i e l k e, G. N i c o l a i, M. S i l f v e r b e r g et al. The

CoNLL{SIGMORPHON 2018 Shared Task: Universal Morphological Reinjection. – arXiv

preprint arXiv:1810.07125, 2018.

12. K a n n, K., H. S c h u t z e. Unlabeled Data for Morphological Generation with Character-Based

Sequence-to-Sequence Models. – arXiv preprint arXiv:1705.06106, 2017.

13. B a h d a n a u, D., C. K y u n g h y u n, B. Y o s h u a. Neural Machine Translation by Jointly

Learning to Align and Translate. – arXiv preprint arXiv:1409.0473, 2014.

14. Z h u, Q., Y. L i, X. L i. Character Sequence-to-Sequence Model with Global Attention for Universal

Morphological Reinjection. – In: Proc. of CoNLL SIGMORPHON 2017 Shared Task:

Universal Morphological Reinjection, 2017, pp. 85-89.

15. S e n u m a, H., A. A i z a w a. Seq2seq for Morphological Reinjection: When DeepLearning Fails.

– In: Proc. of CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological

Reinjection, 2017, pp. 100-109.

16. S c h r o d e r, F., M. K a m l o t, G. B i l l i n g, A. K o h n. Finding the Way from ä to a:

Sub-Character Morphological Injection for the SIGMORPHON 2018 Shared Task. – arXiv

preprint arXiv:1809.05742, 2018.

17. S h a r m a, A., G. K a t r a p a t i, D. M. S h a r m a. IIT (BHU) { IIITH at CoNLLSIGMORPHON

2018 Shared Task on Universal Morphological Reinjection. – In: Proc. of CoNLL

SIGMORPHON 2018 Shared Task: Universal Morphological Reinjection, 2018, pp. 105-111.

18. S o r o k i n, A. What Can We Gain from Language Models for Morphological Injection? – In: Proc.

of CoNLL SIGMORPHON 2018 Shared Task: Universal Morphological Reinjection, 2018,

pp. 99-104.

19. Y u, M., G. L i, D. D e n g, J. F e n g. String Similarity Search and Join: A Survey. – Frontiers of

Computer Science, Vol. 10, 2016, No 3, pp. 399-417.

20. F u, A. W. C., P. M. S. C h a n, Y. L. C h e u n g, Y. S. M o o n. Dynamic vp-Tree Indexing for

n-Nearest Neighbor Search Given Pair-Wise Distances. – The VLDB Journal, Vol. 9, 2000,

No 2, pp. 154-173.

21. T r o n, V., A. K o r n a i, G. G y e p e s i, L. N e m e t h, P. H a l a c s y, D. V a r g a. Hunmorph:

Open Source Word Analysis. – In: Proc. of Workshop on Software, 2005, pp. 77-85.

22. T r o n, V., P. H a l a c s y, P. R e b r u s, A. R u n g, P. V a j d a, E. S i m o n. Morphdb.hu: Hungarian

Lexical Database and Morphological Grammar. – In: Proc. of 50th International Conference

on Language Resources and Evaluation (LREC’06), 2006.

Received: 01.04.2022; Second Version: 02.09.2022; Accepted: 16.09.2022

