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Abstract: The automated induction of inflection rules is an important research area 

for computational linguistics. In this paper, we present a novel morphological rule 

induction model called B-Morpher that can be used for both inflection analysis and 

morphological analysis. The core element of the engine is a modified Bayes classifier 

in which class categories correspond to general string transformation rules. Beside 

the core classification module, the engine contains a neural network module and 

verification unit to improve classification accuracy. For the evaluation, beside the 

large Hungarian dataset the tests include smaller non-Hungarian datasets from the 

SIGMORPHON shared task pools. Our evaluation shows that the efficiency of  

B-Morpher is comparable with the best results, and it outperforms the state-of-the-

art base models for some languages. The proposed system can be characterized by 

not only high accuracy, but also short training time and small knowledge base size.    

Keywords: Morphology, Machine learning, Rule induction. 

1. Introduction 

According to the theory of morphology and computational linguistics, words are built 

up from morphemes, that are the smallest morphological units with associated 

meaning [1]. The grammatically correct root form of a word is called the lemma, 

while the added morphemes that modify its base meaning are called affixes. These 

affixes can be prefixes (prepended to the word), suffixes (appended to the word) or 

infixes (inserted in the middle of the word). In morphologically complex languages, 

affixes may change some of the characters in the root form as well, resulting in for 

example vowel or consonant gradation. This means that determining the lemma is 

slightly more difficult. Simply dropping the affixes does not yield the grammatically 

correct root form, but only the stem. The process of adding affixes to a word is called 

inflection, while the inverse operation is called lemmatization or stemming, 

depending on whether the required output is the lemma or the stem respectively. The 

morphological analysis of a word returns both the lemma and the list of affix types, 

optionally including the affix boundaries too. 
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In this paper, we present a novel morphology engine having the following key 

properties: 

• The engine can perform inflection, lemmatization and morphological 

analysis, and learn the necessary rules of morphologically complex languages such 

as Hungarian. 

• The model learns these rules from a training data set containing (word, 

lemma, morphosyntactic tags) triples. 

• The model considers inflection and lemmatization as generic string 

transformations that are constructed from simple atomic rewrite rules. 

• The process of analysis and inflection is considered as a classification 

problem. 

• The engine contains a composition of different models to provide a better 

accuracy output. 

• The engine uses a fast and self-explainable training model. 

• The engine supports efficient incremental training, which means that it is able 

to learn new patterns at any time without any significant overhead. 

2. Related survey  

First, we introduce the basic morphological concepts used in this paper. 

• Morphology: Morphology is concerned with the study of word forms. 

• Morpheme A morpheme is the smallest unit which carries meaning. 

• Lemma: The basic, canonical form of a word (example: studies  study). 

• Stem: The core word after removing the affixes (example: studies  studi). 

• Inflection: To change the role of a word in the sentence without changing the 

category of the word (example: play  played). 

• Derivation: To change the meaning, category of a word by adding new 

morphemes to the stem. (example:  sad  sadness). 

• Affix: A morpheme unit to change the role or of the category of the words. 

• Prefix, suffix, infix: Affix at the beginning, at the end or in the target word. 

The first widely used morphology model for agglutinative languages was the 

two-level morphology model [2]. In this model, the inflected forms are represented 

on the following two levels: the surface level contains the written form, while the 

lexical level contains the morphological structure. The valid lemmas and affix types 

are stored in a dictionary, and Finite State Transducers (FST) are used for applying 

the transformations. The model differentiates two elementary phonological rules: 

context restriction rules (only if) and surface coercion rules (if). From these 

elementary rules, we can create complex composite rules (e.g., if and only if). One of 

the first approaches to use automated rule generation for two-level morphology has 

been proposed in [3]. The main idea behind the algorithm is to identify elementary 

INSERT, DELETE, REPLACE and NOCHANGE transformation steps in the 

training words, and merge them together. The goal is to have two-level rules whose 

context is long enough to uniquely identify the transformation position, but not too 

long to be overspecified. To acquire optimal two-level rules, a Directed Acyclic 

Graph (DAG) is used. 
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The most widely used baseline unsupervised method is the Morfessor engine 

published by [4]. Morfessor is a language independent word segmentation model 

using statistical approach to determine the building blocks with highest probabilities. 

In recent years, we can observe an increased interest in semi-supervised models too. 

In these approaches, only a small amount of annotated word forms is available for 

model training, but most of the lexicon contains unannotated words. The goal is to 

find efficient approaches to maximize the information found in the annotated 

examples. In [5], the model of Conditional Random Fields (CRF) is used to determine 

the optimal segmentation. CRF is a discriminative model for sequential tagging and 

segmentation published by [6]. The proposed methods extend the CRF-based 

approach to leverage unannotated data in a straightforward and computationally 

efficient manner via feature set augmentation, utilizing predictions of unsupervised 

segmentation algorithms. 

In [7], a Labelled semi-supervised Morphological Segmentation (LMS) engine 

is presented, that explicitly models morphotactics. The engine can be used for 

morphological segmentation, for stemming and for morphological tag classification. 

Unlike the previous models, it uses a rich, fine-grained label set. The engine is based 

on a probabilistic model to determine the corresponding labels for the tested words. 

Also, this method applies the CRF model to determine the winner label assignments. 

Based on the performed test, the Finnish and Zulu languages have the most complex 

label system. 

F a r u q u i  et al. [8] published a model of inflection generation as sequence-to-

sequence transducer using a neural network engine. The model transforms its input 

to a sequence of output characters representing the inflected form. The training set of 

the model contains pairs of lemma and inflected forms. To improve the supervised 

model, unlabelled data are added to the training set. The experiments show that the 

model achieves better or comparable results to the state-of-the-art methods in the 

benchmark inflection generation tasks. 

Many state-of-art morphological models are gathered by SIGMORPHON 

(Special Interest Group on computational MORphology and PHONology). The 

training and test data are provided on-line, and the tasks can be solved using any 

technique. The best models are published in [9-11]. 

K a n n  and S c h u t z e  [12] developed a Morphological Encoder and Decoder 

(MED) engine using neural encoder-decoder models together with special encoding 

of the input and output as symbol sequences. The model showed superior 

performance in the SIGMORPHON competitions. The proposed engine is an 

extension of the network architecture proposed by B a h d a n a u, K y u n g h y u n  and 

Y o s h u a  [13] for machine translation, which is a special kind of the Recurrent 

Neural Network (RNN) encoder-decoder model. The encoder module consists of a 

Gated RNN Unit (GRU) that reads an input sequence of vectors and encodes it into 

a fixed length context vector. The decoder uses the context vector to predict the output 

using conditional probability based on current input, current context and current 

hidden state values. The attention-based version of this model allows different vectors 

for each step by automatic learning of an alignment model. 
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The UF 2017 method proposed in [14] models the morphological reinflection 

problem using an encoder-decoder architecture. For an input word, every character is 

encoded through a Bi-directional GRU network. Another GRU network is deployed 

as a decoder to generate the inflection. The UTNII 2017 model, published in [15] is 

based on the seq2seq model, and with its configuration, it was the second best of 2017 

in the high-resource scenarios. The Hamburg 2018 model published by Schroder [16] 

introduces the concept of patches that act as string transducer actions. The resulting 

model is a language-agnostic network model that aims to reduce the number of 

learned edit operations by introducing equivalence of classes over graphical features 

of individual characters. The IITBHU 2018 model published in [17] uses a Pointer-

Generator Network (PGN) to mitigate the problem of copying many characters 

between word forms. The lemma and the morphosyntactic tags are encoded by two 

separate encoders. Compared to other similar performing systems, this model is 

trained end-to-end, does not require data augmentation techniques, and uses soft 

attention over hard monotonic attention, making the resulting system more flexible. 

The MSU 2018 model [18] aimed to improve the accuracy in medium and low-

resource scenarios by explicitly equipping the decoder with the information from the 

character-based language model, however the advantage was not clear. 

The main goal of our investigation was to analyse a novel approach with 

integration of pattern matching and machine learning modules. The motivation is 

based on the next facts: 

• The direct pattern matching based methods provide a more explainable 

solution than the other machine learning algorithms. 

• The concept of locality is a general accepted principle in many knowledge 

domains. 

• The integration of different methods can improve the efficiency of the 

inference systems. 

• Testing in which situations can be the pattern matching approach with Bayes 

classifier is competitive with the current complex neural network architectures.  

3. Architecture overview of the proposed morphological engine   

The surface layer of the morphology is usually represented with general string 

transformation models. Using this approach, both morphological analysis and 

inflection can be investigated as a classification problem. In the case of 

morphological analysis, category labels correspond to inflection categories or 

lemmas, while in the case of inflection, word transformation rules are the related 

category labels. In the field of classification models in ML, the most widely used 

approach is the application of neural networks. Neural networks have many 

advantageous properties, they provide excellent results on complex problem 

domains, most of the dominating classification engines in Natural Language 

Processing (NLP) use an engine based on NN. Beside the benefits, we can mention 

some properties where neural network models are not so powerful: 

− descriptive explanatory power (it is hard to explain the reasoning inside the 

network), 
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− relatively long training time for model construction, 

− higher costs in the case of incremental learning. 
 

 
Fig. 1. Architecture overview of the proposed B-Morpher engine 

 

The goal of our paper is to investigate an alternative classification method, 

which is an extension of the traditional Bayes Classification (BC) approach. As the 

BC model requires only a thin model, then: 

− the training phase is usually cheaper, 

− the decision is case-based, thus the elementary decision steps can be more 

easily verified, 

− it provides good results in handling of outlier cases. 

Considering the inflection generation task, we use the following interpretation: 

• Category label. The string transformation rule describing some replacement 

operations within the words; 

• Attribute. Context substrings of the transformation section plus the current 

morphosyntactic description. 

In the case of morphological analysis, the mapping is slightly different: 

• Category label. A pair containing morphosyntactic description and the 

transformation rule; 

• Attribute. Context substrings of the transformation section. 

In the proposed engine, an extension of this BC approach is implemented. The 

key features can be summarized in the following points: 

1. The output of the BC module is a weight vector containing the calculated 

weight values for all categories. 

2. In the case of morphological analysis, the engine performs a fine-tuning of 

the resulting weight vector using a NN classifier. The reason for this step was that 

our experience has shown that chaining BC and NN classifiers could provide better 

accuracy than the BC or the NN alone. The key point in the NN component is that 

the input vector is an estimation of the BC classifier and not the item feature vector. 

In the case of inflection generation, the use of NN engine provides only marginal 

improvement in accuracy. 

3. An additional verification module containing both ML and rule-based units 

is applied to measure the validity and credibility of the candidate categories. The 

verification engine performs among others probability-based ranking where the 

priority value depends on the conditional probability of the relevant letters. 
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The overview of the architecture of the implemented engine is given in Fig. 1. 

Another key property of the proposed model is that it uses fusional approach, which 

means that the set of morphosyntactic descriptions contains not only the elementary 

morphosyntactic description units, but every composed description found in any 

training example is a separate unit in the category set. This approach enables a more 

flexible and more general view as the set of supported languages covers both 

agglutinative and fusional languages. 

4. Formal morphology model   

Before defining the formal morphology model of the B-Morpher engine, let us 

introduce some common notations:  {𝑥𝑖}𝑖=1
𝑛  will denote an unordered set of n items. 

Another common formalism for defining indices is 𝑖 ∈ [1, 𝑛]   which means that the 

index i will run through the integer numbers in the closed interval of 1, …, n. 

Let  𝛴  be an alphabet containing arbitrary characters. Strings of length n are 

denoted by  𝛴𝑛 = {𝑠|𝑠 = 𝑠1, 𝑠2, … , 𝑠𝑛 ∈ ∑}. The length of s is denoted by |s|. The set 

of all strings is denoted by  𝛴∗ =∪{𝑖=0}
{∞}

  𝛴𝑖. The set of words is denoted by  

𝑊 = {𝑤𝑖} ⊂ 𝛴∗. Some of these words are lemmas, meaning that they represent the 

grammatically correct root form of base concepts. The set of lemmas is a subset of 

the word set 𝑊′ = {𝑤′𝑖} ⊂ 𝑊 . 

The set of affix types (or morphosyntactic descriptions) is denoted by 𝑇 = {𝑡𝑖}. 

The set indicates grammatical transformations of words. Applying an affix type on 

an input word will change its base meaning and transform its surface form by 

prepending (prefix), appending (suffix) or inserting (infix) additional characters to 

the word. Each affix type is associated with a set of transformation rules (denoted by 

𝑅 = {𝑟} that describe how we can produce the inflected forms of the input words 

according to the given affix type.  

The basis of the B-Morpher model is the so-called transformation engine 

submodule whose responsibility is to learn the transformation rules of the affix types. 

These rules model morphological transformations as string transformations, and are 

generated from a word pair set, extracted by B-Morpher from the original training 

data. 

4.1. Transformation rules 

For processing the words in the training set, we introduce an extended alphabet that 

will be used internally to denote the word-start and word-end positions: $ will mark 

the start of the word, while # will mark the end of the word. These are special 

characters; they do not belong to the original 𝛴  alphabet. The extended alphabet will 

be denoted by Σ# =  Σ ∪ {$, #}. Let us also define a new operator on the domain of 

words: 𝜇(𝑤) = 𝑤e = $ + 𝑤 + #. The inverse operator drops these characters:  

𝜇−1 (𝑤e) = 𝑤 . The set of extended words is denoted by 𝑊e. The goal of this phase 

is to align variant and invariant segments of the input words and store the changing 

variant segments in the rule base. For that, we first create an extended training word 

pair set, where the words are extended with the start and the end symbols. Then we 

split each word pair into matching segments, where each segment has either two 
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identical matching substrings of the two words, or two different substrings. A 

segment is called variant if they are different, otherwise it is called invariant. In a 

valid segment decomposition, variant and invariant segments are alternating. To 

select the best possible segment decomposition for each word pair, we choose the 

best matching invariant segments having maximal fitness value. The fitness value of 

a segment  𝜓  is inversely proportional with the index difference of the two substrings 

and proportional with their lengths. This formula encodes that the best segment is the 

one with the longest substrings that are near to each other’s position. After choosing 

the best invariant segment, we can recursively continue the segment selection 

algorithm on the remaining parts, until they are short enough to be identified as 

variant segments. 

4.2. Example  

For the Hungarian training word pair (dob, ledobott) which means (throw, threw 

down) in English, we first extend the words with the special characters:  

($dob#, $ledobott#). Algorithm yields this segment decomposition:  
(𝜓1

1 = $, 𝜓2
1 = $),(𝜓1

2 = dob, 𝜓2
2 = dob), (𝜓1

3 = #, 𝜓2
3 = ott#), where the 

middle segment is invariant, while the others are variant segments.  

From the variant segments we can deduce a set of atomic rewrite rules:  

𝑅 = {(𝛼, 𝜎, 𝜏, 𝜔)}, where 𝛼 is the prefix, 𝜎 is the changing substring, 𝜏 is the 

replacement and 𝜔 is the suffix. The rule context that must be searched in the input 

words later during inflection is (𝑟) =  𝛼 + 𝜎 + 𝜔 . We can see that this rule model 

can describe prefix, infix and suffix rules as well. Let us take a variant segment   

𝜓1
𝑖 → 𝜓2

𝑖 . The first rule that we generate is called a core atomic rule  

𝑟 = (𝛼𝑖𝑐, 𝜎𝑖𝑐, 𝜏𝑖𝑐, 𝜔𝑖𝑐), where 𝜎𝑖𝑐 = 𝜓1
𝑖 , |𝛼𝑖𝑐| = 0, 𝜏𝑖𝑐 = 𝜓2

𝑖  and |𝜔𝑖𝑐| = 0, 

meaning that the prefix and suffix parts are empty. The other atomic rules are 

generated by extending this core atomic rule with one character at a time on the left 

and right sides, symmetrically. 

To make the generated atomic rules unambiguous, we must make sure that only 

those rules are retained whose contexts appear only once in the base form of the word. 

This means that the retained rules will always yield the original in form given the 

base form. 

4.3. BC module 

In the core Bayes Classification Method, the prediction is based on the following 

model: 

𝑐𝑤 = argmax𝑐  {𝑃(𝑐) ∏ 𝑃(𝑎𝑖  |𝑐

𝑖

) }, 

where c is category label and a is attribute. 

In our proposal, the core element of the classification engine is based on the 

following formula: 

𝑐𝑤 = argmax𝑐  {max
𝑖

{𝑤(𝑐, 𝑎𝑖) } }, 

where w is weight value based on the training set. 
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Depending on the task type, the category c is either the affix type 

(morphosyntactic description) or the transformation rule. Attribute 𝑎𝑖 corresponds to 

a context substring (pattern), thus context substrings will be used as attributes to 

determine the winner category. Weight values denote the relevance of the pattern. 

When constructing the weight function our main considerations were the followings: 

• Rules whose context matches the input word are the relevant rules: 

• A rule with a longer matching substring in the input word is better than a rule 

with a shorter matching substring. 

• We should differentiate rules that have similar fitness values using their 

frequencies, i.e., the number of word pairs in the training set they apply to. 

In the proposed model, the following formula is implemented: 

𝑤(𝑐, 𝑎) = 𝑓(𝑤𝑠,
|𝑠|

|𝑞|
𝑤" (𝑐, 𝑠)), 

where:  

q is query item; 

a is a matching substring pattern, i.e., s(q) is met;  

𝑤𝑠 is weight value of s, based on the position of s in q; 

𝑤"() is weight value of s in the training set; 

𝑓() is monotone increasing function.  

4.4. Verification module 

In the verification unit, one of the steps is to calculate the conditional probabilities of 

given vowel sequences in the context area of the affix transformation: 

𝑝(𝑣1, … , 𝑣𝑚|𝑐), 

where  𝑣𝑖denotes vowel elements from the context part of the investigated word and 

c denotes the corresponding category label. The weight values for the candidate 

categories are updated using the following formula: 

𝑐𝑤 = argmax𝑐  {𝑓(𝑝(𝑣1, … , 𝑣𝑚|𝑐) max
𝑖

{𝑤(𝑐, 𝑎𝑖) } }. 

In the classification process, the weight values depend on the length and position 

of the common matching substrings. One key issue of this approach is the case when 

the training set does not contain matching samples. This can happen in case of small 

or unbalanced training sets. To manage this problem, the proposed verification engine 

contains a Nearest Neighbor Searching (NNS) module, too. The NNS module 

performs a similarity-based search in the training set to find the most similar 

examples. This kind of search differs from exact search in that for a given query word 

q, the NNS should retrieve a set of candidate words. 

In our model, we use the edit distance function to measure the similarity of 

words. The complexity of NNS algorithms is in general much higher than that of 

exact search. Based on the literature [19] there are two main techniques to reduce 

computation costs: a) filtering candidate words from the dictionary, and b) using a 

search tree to locate the neighboring elements. Concerning the search tree, M-tree or 

VP-tree [20] are the dominating techniques. 

In our system, we have developed a novel method based on the combination of 

the dynamic programming and prefix tree approaches. According to our experiments, 
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this method significantly dominates the baseline VP-tree method. The NNS module 

generates a search tree corresponding to a prefix tree of the words, where nodes are 

assigned to characters. The proposed NNS algorithm performs a modified A* search 

algorithm where the cost value is equal to the sum of the previous editing 

transformation costs plus the upper limit cost of the expected future steps. The value 

of the second component depends on the length of the word segment that is not 

processed yet. 

4.5. Transducer module 

The first module in the engine that performs morphological analysis uses a BC 

classification method with the following representation formalism: 

• Input items are triplets (𝑤0, 𝑡, 𝑤1), where 𝑤0  is a lemma, t is the inflection 

class and 𝑤1 denotes the inflected word. 

• Having (𝑤0, 𝑤1), we can generate the corresponding transformation rule r, 

as string transformation function, where 𝑟(𝑤0) = 𝑤1.  

• Pattern attributes of the words are given by 𝑤 = 𝑤(𝑎1, … , 𝑎𝑚), where 𝑎𝑖 is 

a substring in w.  

Every transformation rule r may belong to one or more inflection classes. During 

the morphological analysis, the goal is to determine the winner inflection rule having 

the largest probability. Instead of using real probability values, we introduce a 

weighting model. The model is based on the following assumptions: 

• The longer the pattern attribute 𝑎𝑖 is for a training word w in sample s, the 

larger the training weight of 𝑎𝑖 is for the rule r. 

• The longer the pattern attribute 𝑎𝑖 is for a query word q, the larger the testing 

weight of 𝑎𝑖 is for the rule r. 

• The global training weight of 𝑎𝑖 is calculated with the maximum aggregator. 

• In the calculation, the weight of a pattern substring depends on the total 

length of the query word as well as on the length of the training word. 
 

 
Fig. 2. Schema of the WFST-BC transducer 

 

The operation of the module can be given with a Weighted Finite State 

Transducer (WFST) having the structure depicted in Fig. 2. Considering the standard 

alphabet of the words, the upper limit for the total number of nodes can be 

approximated with the following formula: 

∑ min{𝐶𝑖, 𝑁} ≤ 𝐿𝑁𝑖∈[1,...,𝐿] , 
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where N is the number of training classes, C is the number of characters in the 

alphabet, L is maximum length of the words. 

Considering the any-character cases (which are used to process the remaining 

parts of the words), the upper limit can be given with 

𝐿2𝑁. 

As each standard or any-character node may be the last node of the word, the 

upper approximation for the termination nodes is also 

𝐿2𝑁. 

Having T inflection classes and N training items, the corresponding WFST has: 

− 𝑂(𝐿𝑁) standard character nodes, 

− 𝑂(𝐿2𝑁) any-character nodes (*), 

− 𝑂(𝐿2𝑁) word termination nodes, 

− 𝑂(𝑇) are rule nodes. 

Thus, the corresponding transducer graph has 𝑂(𝐿2𝑁) nodes. We remark that 

the given WFST structure is suitable for prefix-based prediction. A similar WFST 

can be constructed for the postfix-based generation using back propagation 

traversing, too. 

Concerning the infix inflections, we can construct a compound transducer 

depicted in Fig. 3. Thus, the BC engine can be represented as a weighted finite state 

rational transducer. The output of the module is the weight vector of the inflection 

classes 〈𝑤1, . . . , 𝑤𝑚〉. Thus, considering the computational complexity of the 

proposed system, we can show that it is a special case of weighted rational transducers 

and it is in general not equivalent with probabilistic transducers (or Turing machines). 
 

 
Fig. 3. Schema of the WFST-BC transducer for infix transformation  

5. Experiment results 

For the experimental tests, we have used two main categories of training data sets. 

For the case of large data sets, a training data set for Hungarian was generated where 

the inflection cases were collected from on-line documents and the related 

morphological annotations were constructed automatically using a high quality 

existing morphological analyser program. For generation of the training and 

evaluation data we used Hunmorph published in [21] and Morphdb.hu [22]. We 

collected input word set from the National Szechenyi Library in an automated way, 

and Hunmorph determined the morphosyntactic tags and lemmas. For the 

transformation engines, we needed to generate word pairs, too. These word pairs were 
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extracted from the output of Hunmorph. The number of word candidates was 

13,345,903 from which Hunmorph recognized 4,423,882 items. After additional data 

filtering, the resulting training set contained 2,147,703 clean training triplets. The 

training and evaluation data was generated randomly from this data set, published on 

Github (https://github.com/szgabsz91/morpher-data). 

5.1. Efficiency comparison of BC and NN engines 

In the first experiments, we have compared the efficiency of the proposed BC engine 

with the efficiency of the standard three-layered back-propagation network. For the 

tests, we have selected the task to predict the POS property of the words. For input, 

we have used the large Hungarian training set (N0 = 2,147,703 items), and we have 

tested the following variants: 

− the engine contains only NN-unit, 

− the engine contains only BC-unit, 

− majority voting with BC-units, 

− majority voting with NN-units, 

− BC unit with NN-based refinement unit. 

The experimental results are summarized in Table 1. We can add that there is a 

big execution cost difference between the BC and NN modes in the case of large data 

sets. Considering N = 0.9N0, the training time for NN was 130 min, while 6 min for 

BC unit. 
 

Table 1. Comparison of different model architectures 

Size of training data set Method Accuracy (%) 

N=0.90×N0 NN 86 

 BC 96 

N=0.01×N0 NN 82 

 NC 87 

N=0.05×N0 NN 86 

 BC 94 

 Majority voting (3 NN units) 87 

 Majority voting (3 BC units) 96 

 BC+NN refinement 97 
 

As the experimental results show, the BC approach dominates the selected base 

NN version, but it is worth using majority voting and performing a NN-based 

refinement step. These additional processing elements can increase the accuracy level 

by 2-3 %. 

To analyse the execution cost efficiency of the proposed NNS unit, we 

compared the method with the naive brute-force method and with the VP-tree 

method. As the resulting data given in Table 2 shows, the proposed engine 

significantly dominates the other methods and it provides an acceptable speed to be 

used in the prototype system. The time values in Table 2 are given in seconds. It 

should be noted that this module will only be used if no exact matching can be found 

for the query word. 

In Table 2, column N denotes the size of the dataset, and column minD denotes 

the distance to the nearest element, column vpt-bt symbolizes the index construction 



 122 

time for the VP-Tree Algorithm, column vpt-qr is for the query time. The last two 

columns denote the same data for the proposed NNS Algorithm. As it can be seen, 

the query cost decreases if an exact matching element exists, i.e., there is no need to 

perform search in a wider area. 
 

Table 2. Comparison of execution costs in NNS 

N minD Naive vpt-bt vpt-qt p-bt p-qt 

100,000 2 5.9 126 1.9 1.2 0.001 

500,000 2 29.3 776 4.6 5.4 0.005 

500,000 1 29.1 773 0.21 5.1 0.0005 

500,000 0 28.3 763 0.001 5.8 0.0002 

1,000,000 1 59.5 1245 0.38 7.4 0.0004 

5.2. Experiments with the large Hungarian training set 

In these tests of the B-Morpher system, the data set was split into two disjoint parts: 

one for training and the other for tests. The size of the test part is 3000 examples. In 

the experiments, the accuracy of inflection generation was investigated using training 

sets of different sizes. The test results are presented in Table 3. The second column 

shows the number of affix types found in the training set. In the test, the prediction 

engine yields three candidates as output. Column acc1 denotes the accuracy level 

considering only the first candidate in the output. Column acc2 is for the case when 

the first two candidates were considered. Column acc3 denotes the case when all three 

output items are tested for matching. One can see that the method’s efficiency tends 

to be 100 % in limit, as every item in the training set will be recognized properly. 
 

Table 3. Efficiency of B-Morpher for inflection generation for Hungarian 

Training data size Number of affix types acc1 acc2 acc3 

20,000 (1 %) 349 83.0 91.0 93.7 

100,000 (5 %) 489 90.0 96.0 97.3 

200,000 (10 %) 578 93.0 97.5 98.5 

400,000 (20 %) 688 95.3 98.4 99.0 

600,000 (30 %) 771 96.3 99.0 99.4 

800,000 (40 %) 805 96.6 99.1 99.4 

1,000,000 (50 %) 871 97.3 99.3 99.5 

2,000,000 (100 %) 1043 99.4 100.0 100.0 
 

 
Fig. 4. Learning curve of the NN engine (N = 0.05×N0) 
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In these experiments, the proposed model was compared with available baseline 

models submitted as part of previous SIGMORPHON tasks: Helsinki (2016), UF and 

UTNII (2017), Hamburg, IITBHU and MSU (2018). Since the evaluation of these 

methods were tested only on CPU, we do not include time comparisons. To evaluate 

the B-Morpher model using the Hungarian language, the volumes of training data 

were gradually increased to see how the model scales. We used 10,000, 

20,000,…,100,000 training items. During comparison, 10,000 random input words 

were used and the query words were disjoint with the training item set. The 

knowledge base size is compared with Hunmorph. 
 

 
Fig. 5. Average accuracy vs training size 

 

The accuracy analysis of the models can be seen in Fig. 5, using previously 

unseen words. As we can see, B-Morpher has the highest accuracy (about 97.3 

percent using 100,000 training items), both for inflection and morphological analysis. 

This means that B-Morpher’s generalization is exceptional, since it can inflect and 

analyse previously unseen words correctly in nearly 98 % of the cases. IITBHU and 

MSU are very close, too, but the Hamburg model reaches only about 70 %. These 

results were achieved using our generated data. Comparing these with the originally 

published results of the baseline models, it can be seen that for the Hungarian 

language, the best models were CLUZH and LMU in 2017 with about 86 %, and the 

UZH model in 2018 reaching about 87 %. Fig. 6a shows the average training time of 

the B-Morpher model in seconds. Using 100,000 training items, the training phase 

ends in about 2.6 s in average. Fig. 6b displays the average inflection and 

morphological analysis times in milliseconds. 
 

 
Fig. 6. Average training, inflection and analysis times vs. training set size 

 

Considering inflection, the execution times increase about linearly from 0.03 ms 

to 0.05 ms. For the task of morphological analysis, using only the base BC engine, 
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query times increase from 0.4 ms to 1 ms. In this case, the accuracy level is about  

2-3 % weaker than the accuracy of the extended engine. These query response times 

(about 1000 words per 1 s) are weaker than the leading industrial analysers (about 

10000 words per 1 s), however our implementation is a prototype system not an 

optimized code written in some efficient language like C. Including the verification 

engine, the query times will increase. In this case, the obtained response time values 

are between 3.3 ms and 8 ms. 

Considering the file size of the exported knowledge bases, the values can be 

seen in Table 4. These files can be loaded quickly, skipping the training time. As the 

results show, MSU and UF produce smaller files, and B-Morpher provides a database 

of average size. 
 

Table 4. The database size of the exported knowledge bases  

Model File size (MB) 

B-Morpher 16.1 

Hunmorph-Ocamorph 22.7 

Helsinki 2016 58.3 

UF 2017 4.5 

UTNII 2017 92.4 

IITBHU 2018 8.3 

MSU 2018 1.5 

5.3. Experiments with the SIGMORPHON data sets 

First, the Task1 dataset from the SIGMORPHON 2016 shared tasks about inflection 

learning were analysed. The Hungarian training set contains 16,219 training 

examples. In the SIGMORPHON 2016 competition, the winner was the LMUMED 

engine using RNN methods. The winner accuracy level for the Hungarian was  

99.3 %. The other participating systems could achieve significantly lower results 

below 97 %. 

The B-Morpher system could achieve the following accuracy levels on related 

training and testing data sets for Hungarian. For the training phase, only the provided 

Task1 train dataset was used. The value of acc1 denotes the accuracy level 

considering only the first candidate in the output. Value acc2 is for the case when we 

consider the first two candidates and acc3 denotes the case when all three output items 

are tested for matching: 

− acc1=92.0 %, 

− acc2=97.3 %, 

− acc3=98.6 %. 

These numbers are below the winner accuracy but still they are slightly better 

that of the other participating systems. This result shows that although B-Morpher 

prefers larger datasets, it is competitive also for smaller datasets. It can provide 

similar efficiency as the other NN based systems, and it is significantly better than 

the non-neural network systems, which have an accuracy, level 10 % below the  

NN-based systems. 

A problem domain area where B-Morpher has advantage is the domain of 

incremental training processes. The update of the classifier model is a relatively 

simple and low cost operation. If it is allowed to add incorrectly predicted words to 
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the training set on an incremental way, we get drastically improving accuracy result. 

The second group of experiments relate to the SIGMOPRHON 2019 Task 2 shared 

task, where the task was to perform morphological analysis. The training data was 

given in the form of sentences. The sentence form can be used to get additional  

context level information in the classification process. With B-Morpher only word 

level analysis was performed since B-Morpher is a word level analyser. For this task, 

the best result was 95.05 % accuracy level. The corresponding accuracy values of the 

B-Morpher system on the Task 2 for Hungarian are the followings: 

− acc1=91.6 %, 

− acc2=95.0 %, 

− acc3=95.7 %. 

Based on these result values, we can say that B-Morpher provides good 

efficiency, namely the acc2 and acc3 accuracy values are above the winner 95.0 % 

accuracy. 

The test for morphological analysis was extended also for some other languages 

in order to investigate the language dependency of the proposed engine. In the 

selection of the test languages, a key aspect was to involve languages from different 

language families; therefore, the test was extended to the following languages: 

− Lithuanian, 

− Turkish, 

− Finnish, 

− Polish, 

− Slovak, 

− English, 

− Spanish, 

− Basque, 

− Indonesian, 

− Irish, 

− Breton. 

The accuracy for the selected languages is summarized in Table 5. In the table, 

the second column denotes the number of detected affix types in the training data 

sets. The column entitled baseline denotes the baseline accuracy values given in the 

shared task call. Column best denotes the best accuracy result achieved at the shared 

task competition. The last column denotes the difference between the winner 

accuracy and our acc3 values. Based on this accuracy difference, we can categorize 

the languages into four groups. 

Group A: The B-Morpher can provide very good results, acc3 value is better 

than the winner accuracy: 

− Hungarian, 

− Lithuanian, 

− Breton. 

Group B: The acc3 accuracy value of B-Morpher is satisfactory, not far from 

the best values: 

− English, 
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− Spanish, 

− Basque. 

Group C: The acc3 accuracy values are slightly lower than the winner accuracy 

at the shared task competition: 

− Finnish, 

− Irish. 

Group D: The acc3 accuracy values are significantly lower than the winner 

accuracy at the shared task competition: 

− Turkish, 

− Polish, 

− Slovak, 

− Indonesian. 

In this categorization, languages with a higher number of possible affixes are in 

Group D. One reason for the weak performance of B-Morpher for these languages 

can be that B-Morpher works mainly at surface level and the training sets at the 

competition are relatively sparse, there are no examples for all cases in the test set. 

One important experience from the performed tests is that we can see very 

significant accuracy differences for the different languages. Although a deeper 

analysis requires more investigations in the future, we can find some reasons for this 

variety.  

• The proposed method is strong for the agglutinative languages where well 

defined, relatively stable morphemes are used to denote different grammatical roles. 

• In the case of fusional languages, there are more flexibility in the surface 

form, more training data would be needed to discover the related statistical rules. For 

example, the inflection sample in Polish 

− byť   ⇒ je (V; SG; PRS; NEG; IND; IPFV; FIN; 3). 

− is a hard case for a surface level grammar induction engine. 

− In many languages, the surface level is not enough to detect the grammatical 

roles. A good example is the following example in Indonesian: 

dimekarkan ⇒ dimekarkan (PASS; V; SG), 

where there are no surface level changes between the lemma and inflected form.  

 
Table 5. Comparison of the accuracy for different languages (SIGMORPHON 19) 

Language affix_cnt Baseline Best acc-1 acc-2 acc-3 diff 

HU_Szeged 332 65.9 95.0 91.7 95.0 95.7 +0.7 

LI_HSE 336 41.4 80.1 74 82 83.4 +3.3 

TR_PUD 502 66.3 87.6 71 79 81.5 –6.1 

EN_GUM 73 79.6 97.5 90.1 96.0 97.1 –0.4 

SP_Ancora 172 84.3 98.8 95 98.2 98.8 0.0 

PL_SZ 716 63.1 95.1 73 83 86.5 –8.5 

SK_SNK 829 64.0 95.4 76 85 89 –6.4 

FI_FTB 659 72.9 96.9 87 92.5 93.9 –3.0 

BA_BDT 854 67.7 92.3 81 90 92.2 –0.1 

IN_GSD 128 71.7 92.5 78 86 88 –4.5 

IR_IDT 162 67.7 86.4 74 82 83.6 –2.8 

BR_KEB 86 76.5 91.1 87 91 93.4 +2.3 
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5. Conclusion 

In this paper, a novel morphological model called B-Morpher was presented that can 

learn complex inflection rules. B-Morpher can be used for both inflection analysis 

and morphological analysis. The core element of the engine is a modified Bayes 

classifier whose output is sent to an additional NN engine and an ML-based 

verification unit in order to increase the output accuracy. In the classification, class 

categories are given by simple string transformation rules or by affix types. The 

proposed model can be trained incrementally. Our evaluation shows that B-Morpher 

can achieve in general a good, but for some languages an excellent accuracy in both 

tasks. It outperforms state-of-art morphological models including those submitted to 

SIGMORPHON. B-Morpher’s accuracy reaches here near 99 %. Considering a 

training set of 100,000 examples and using our Python and Java implementations, the 

average training time is 3 s, the average inflection time is 0.05 ms and the average 

morphological analysis time is between 0.5-4.0 ms depending on the required 

accuracy level. The average size of the knowledge base is 16 MB for the simple 

engine model, which is a common size among the different models. The proposed  

B-Morpher model provides good efficiency in incremental training mode and it uses 

a very fast training process. The generated model also presents a self-explainable 

knowledge representation format. 
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