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Abstract: In this work a model is introduced to improve forgery detection on the basis 

of superpixel clustering algorithm and enhanced Grey Wolf Optimizer (GWO) based 

AlexNet. After collecting the images from MICC-F600, MICC-F2000 and GRIP 

datasets, patch segmentation is accomplished using a superpixel clustering 

algorithm. Then, feature extraction is performed on the segmented images to extract 

deep learning features using an enhanced GWO based AlexNet model for better 

forgery detection. In the enhanced GWO technique, multi-objective functions are 

used for selecting the optimal hyper-parameters of AlexNet. Based on the obtained 

features, the adaptive matching algorithm is used for locating the forged regions in 

the tampered images. Simulation outcome showed that the proposed model is 

effective under the conditions: salt & pepper noise, Gaussian noise, rotation, blurring 

and enhancement. The enhanced GWO based AlexNet model attained maximum 

detection accuracy of 99.66%, 99.75%, and 98.48% on MICC-F600, MICC-F2000 

and GRIP datasets. 

Keywords: Adaptive Matching Algorithm, AlexNet, Copy-Move Forgery Detection, 

Grey Wolf Optimizer, Superpixel Clustering Algorithm. 

1. Introduction 

In recent decades, abundant multimedia images are generated, due to the rapid growth 

of internet technology [1, 2]. The multimedia images are used in numerous research 

fields like media misinformation, social media, intelligence, military operations, 

newspapers, defamation of famous characters, evidence in courts and many other 

applications [3-5]. The image editing tools like paint shop Pro and Adobe Photoshop 

are used to modify the content and appearance of images without leaving perceptible 

artifacts [6]. Numerous authentication techniques are introduced to secure the image 

communication process, where the authentication techniques are categorized into two 

types: active and passive authentication. Active authentication includes the 

techniques like cryptography, watermarking, etc., and inactive authentication, the 

original image content is available and compared with the test image, where the 

original image content is unavailable in passive authentication [7]. The test image is 
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investigated without prior knowledge of the original image content, where this type 

of authentication is applied in forgery detection [8-10]. Compared to other image 

forgeries like re-touching and splicing, copy-move is the wide-spread image forgery, 

due to its easy implementation and hard nature in recognition [11, 12]. The limited 

effects on digital images make copy-move forgery detection a challenging task [13]. 

Further, the forged regions have similar characteristics and features to the original 

host image, so most of the existing keypoint-based forgery recognition techniques 

fail to achieve better detection accuracy [14]. To highlight the aforementioned issues, 

an efficient and reliable recognition model is proposed in this paper. The 

contributions of this work are listed as follows. 

• Superpixel Clustering Algorithm is applied to segment the patches in the 

images, which are collected from the datasets like MICC-F600, MICC-F2000 and 

GRIP. 

• A Deep Learning Based Feature Extraction is performed using an enhanced 

GWO based alexNet model to extract feature vectors from the dissimilar scales of 

segmented patches. Enhanced GWO technique utilizes two multi-objective functions: 

leader selection strategy and Pareto archive for optimal hyper-parameter selection 

that improves the converge rate and reduces the running time of the model. 

• The Adaptive Matching Algorithm is used to extract similar keypoints in 

every patch for forgery localization. The proposed model performance is examined 

using the performance measures: recall, accuracy, precision, F-score, Prevalence 

Threshold (PT), error rate, False Omission Rate (FOR), and False Discovery Rate 

(FDR). 

This paper is organized as follows: some existing papers on the topic “copy-

move forgery detection” are surveyed in Section 2. The theoretical explanation and 

experimental analysis of the proposed enhanced GWO based AlexNet model are 

represented in Sections 3 and 4. Lastly, the conclusion of this study is depicted in 

Section 5. 

2. Related works 

T i n n a t h i  and S u d h a v a n i  [15] used an adaptive watershed segmentation 

algorithm for partitioning the forged image into the non-overlapped segments. To 

improve the segmentation performance and to remove the undesired regional minima, 

an adaptive galactic swarm optimizer was applied for selecting the optimal 

parameters. Further, hybrid wavelet Hadamard transform and random sample 

consensus technique were applied for feature extraction and optimal feature selection. 

Finally, the forgery region extraction method was presented to recognize the copied 

regions in the host images, where the implemented model was computationally 

complex. K a s b a n  and N a s s a r  [16] firstly transforms the RGB image into YCbCr 

space and further, Hilbert huang transform was used for extracting feature values 

from the chrominance red-component Cr. Next, classification was performed 

utilizing different techniques in that Support Vector Machine (SVM) achieved higher 

detection accuracy in forgery detection, but it supports only binary classification. 

E l a s k i l y  et al. [17] developed a novel Convolutional Neural Network (CNN) for 
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copy-move forgery detection. The CNN model learns hierarchical features from the 

collected images having been used to detect the forged regions. M e e n a  and T y a g i  

[18] initially categorized the original images into over-lapping blocks, and further, 

12 high pass and 4 low pass coefficients were extracted from each over-lapping block 

using Tetrolet transform. Lexicographically, the extracted feature vectors were 

sorted, and then the similar blocks were determined for matching the extracted 

Tetrolet feature vectors. The CNN model requires a larger amount of data for 

achieving better classification results. A g a r w a l  and V e r m a  [19] utilized the 

Simple Linear Iterative Clustering (SLIC) Algorithm and VGGNet model to segment 

tampered patches and to extract feature values from the segmented tampered patches. 

An adaptive patch matching method was used to identify the suspicious regions and 

then the segmented tampered patches were matched with the suspicious regions for 

classifying both forged and unforged regions. Z h u  et al. [20] presented an end-to-

end neutral network based on residual refinement network and adaptive attention for 

copy-move forgery detection. Here, the channel and position attention feature vectors 

were combined using the adaptive attention process to enrich the feature 

representation and to capture the context information. Then, the matching process 

was accomplished by atrous spatial pyramid pooling for generating the coarse masks. 

Next, the coarse masks were optimized by residual refinement that helps in retaining 

the structures of object boundaries. L i u, G u a n  and Z h a o  [21] developed a 

convolutional kernel model for copy-move forgery detection. The deep learning 

models: VGGNet, residual refinement network and convolutional kernel were 

computationally costly. 

L i n  et al. [22] used Scale-Invariant Feature Transform (SIFT) and Local 

Intensity Order Pattern (LIOP) descriptors to extract features from the original image. 

Further, the matching relationship was improved by using transitive matching and the 

false matches were removed using the filtering approach. Lastly, the affine 

transformation was used to locate the duplicated regions in the images. A l b e r r y, 

H e g a z y  and S a l a m a  [23] combined fuzzy C means algorithm and SIFT for 

effective copy-move forgery detection. Y a n g  et al. [24] used SIFT and KAZE 

feature descriptors to extract feature vectors/points from the original images. Then, 

an improved matching technique was used to identify the best matched feature points. 

Further, a filtering technique and an iteration strategy were used to eliminate the false 

matches, and finally, the correlation coefficient map was utilized for locating the 

duplicate regions. However, the SIFT descriptor was computationally heavy and 

mathematically complicated. N i y i s h a k a  and B h a g v a t i  [25] used Binary 

Robust Invariant Scalable Keypoints (BRISK) descriptor and image blob for finding 

similar keypoints in the original image for an effective copy-move region detection. 

H u a n g  and C i o u  [26] used a SIFT descriptor to extract important key-points from 

the original images. Further, the Helmert transformation technique was applied to 

group the matching pairs to obtain the coarse forgery regions. Finally, the isolated 

areas were eliminated from the coarse forgery regions for locating the forgery regions 

more accurately. The simulation results showed that the use of hand-crafted features 

like BRISK and SIFT obtained only comparable performance under the conditions of 

the post-processing operations (jpeg compression, image blurring and noise addition) 
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and geometric transformations (rotation and scaling). W a n g  et al. [27] developed 

super-pixel segmentation to divide the images into non-overlapping blocks and 

further, feature extraction was carried out by polar complex exponential transform 

and Speeded-Up Robust Feature (SURF) descriptor. The dense matched feature 

points were identified by eliminating the false matched points for achieving effective 

copy-move forgery detection, but the developed model was computationally 

complex. 

R a j u  and N a i r  [28] developed a binary discriminative feature descriptor to 

detect suspected regions in the original images. The presented model obtained 

comparable forgery detection performance under the conditions such as brightness 

change, color blurring, color reduction, and contrast adjustments. G a n i  and Q a d i r  

[29] used discrete cosine transform technique for extracting feature vectors from the 

original images. In addition, kd-tree based nearest neighbor searching technique was 

used for matching the extracted feature vectors to identify the duplicate regions in the 

images. S o n i, D a s  and T h o u n a o j a m  [30] developed a SURF descriptor for 

extracting feature values from the original images. Next, two nearest neighbor and 

affine transform were applied to match the extracted feature vectors for better forgery 

detection. However, the discrete cosine transform technique and SURF descriptor 

were computationally intensive. C h e n, L u  and C h o u  [31] employed region 

growing strategies and SIFT descriptor for rotational copy-move forgery detection. 

In addition, P a r k  et al. [32] combined local binary patterns and SIFT descriptors for 

detecting copy-move forgeries in the images. The semantic space between the 

extracted feature subsets was high, while utilizing the hand-crafted feature vectors 

that may reduce the classification results. E l h a m i n i a, H a r a t i  and T a h e r i n i a  

[33] utilized a probabilistic system on the basis of Markov random field to detect 

copy-move forgeries on the MICC-F220 and MICC-F600 datasets. B i l a l  et al. [34] 

used SURF descriptor and spatial clustering algorithm to extract features and to 

match the similar features for the detection of copy-move forgery regions. As stated 

earlier, the hand-crafted features like SURF were not robust and computationally 

intensive, due to high dimensions. C h e n  et al. [35] used Fractional Quaternion 

Zernike Moments (FrQZMs) and modified patch matching algorithm for both feature 

extraction and matching. However, the traditional models, especially keypoint based 

methods fail in handling the cases, while copy-move forgeries only involve smooth 

and small regions. Further, the keypoint based methods fail to classify the naturally 

identical regions and copy-move regions.  

The motivation of this research manuscript is to propose a new model for image 

forgery recognition. The proposed enhanced GWO based AlexNet model has the 

capability in detecting small tampering regions and achieving high detection accuracy 

against image manipulation attacks such as salt & pepper, Gaussian noise, rotation, 

blurring and enhancement. A detailed explanation of the proposed model: Enhanced 

GWO Based AlexNet model is given in Section 3. 
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3. Methodology 

In copy-move forgery detection, the proposed model consists of four steps: data 

collection: MICC-F600, MICC-F2000 and GRIP dataset, patch segmentation: 

superpixel clustering, feature extraction: Enhanced GWO based AlexNet model, and 

forgery localization: Adaptive matching algorithm, which are briefly detailed below. 

3.1. Dataset description 

In this work, the proposed enhanced GWO based AlexNet model performance is 

investigated on MICC-F600, MICC-F2000, and GRIP datasets. The GRIP dataset 

comprises 80 images with a pixel resolution of 768 × 1024 [36]. In the GRIP dataset, 

the forged regions in the original images are of different shapes and sizes that making 

forgery detection challenging. The link to download the GRIP dataset is 

http://www.grip.unina.it/. Similarly, the MICC-F600 dataset comprises 600 images 

(440 original images and 160 tampered images) with pixel resolution ranges 

between 800 × 532 and 3888 × 2592 [37]. In the MICC-F600 dataset, the size of the 

tampered region varies from one image to another image. Further, the  

MICC-F2000 dataset consists of 2000 images (1300 original images and 700 

tampered images) with a pixel resolution of 2048 × 1536. In the MICC-F2000 

dataset, the tampered regions indicate 1.12% of the whole original images.  

The link to download MICC-F600 and MICC-F2000 datasets is 

http://lci.micc.unifi.it/labd/2015/01/copy-move-forgery-detection-and-localization/.  

3.2. Patch segmentation 

After the collection of tampered images, the patch segmentation process is performed 

using the superpixel clustering algorithm that works based on k-means clustering. 

The superpixel clustering algorithm segments the similar pixels from the tampered 

images, which are technically named superpixels. Initially, the collected tampered 

images are fed to the CIELAB that contains two vectors: pixel position and color 

value of the pixels [38]. The position 𝑃 and color value cv of the pixels are 

mathematically depicted in the next equations: 

(1)   𝑃 = (𝑥, 𝑦),  

(2)   cv = (𝑙, 𝑎, 𝑏),  

where (𝑥, 𝑦) represents image coordinates, and 𝑙, 𝑎 and 𝑏 denotes RGB color values. 

Further, the similarity between the feature vectors are estimated and then local 

clustering is used to segment the superpixels. In this clustering algorithm, the 

superpixel size is calculated by dividing the total pixels by separated superpixels. The 

Superpixel Size is mathematically depicted in the next equation: 

(3)   SSp = √
𝑛

Sp
,  

where Sp indicates separated superpixels, and 𝑛 denotes the number of pixels. The 

seed points in the image need to be moved towards 3 × 3 centered region during the 

clustering process, or else it leads to interference. By using the adjacent and own seed 

points, the similarity between the image pixels are calculated. The color difference 

and space distance between the image pixels is determined using the next equations: 

http://www.grip.unina.it/
http://lci.micc.unifi.it/labd/2015/01/copy-move-forgery-detection-and-localization/
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(4)   Diflab = √(𝑙Sp − 𝑙𝑖)
2 + (𝑎Sp − 𝑎𝑖)

2 + (𝑏Sp − 𝑏𝑖)
2,  

(5)   Dis𝑥𝑦 = √(𝑥Sp − 𝑥𝑖)
2 + (𝑦Sp − 𝑦𝑖)

2,  

where, 𝑖 denotes corresponding image pixels, and the pixel similarity is calculated 

using 

(6)   𝐷𝑖 = Diflab +
𝑚

𝑆
Dis𝑥𝑦,  

where, 𝑚 = √(Spt1 − Spt2)˄2, and 𝑆 =
cv1−cv2

255
. The parameters 𝑚 and 𝑆 represent 

the distance, and color similarity between two seed points Spt1 and Spt2. The two-

pixel values are similar, if the value of 𝐷𝑖 is higher. As the result, more superpixels 

are segmented from the collected tampered image. In this scenario, the cluster size is 

fixed as 485, and the resultant image of the superpixel clustering algorithm is depicted 

in Fig. 1. 
 

 
Fig. 1. Resultant image of Superpixel Clustering Algorithm 

3.3. Feature extraction 

After patch segmentation, feature extraction is performed using an enhanced GWO 

based AlexNet model to extract feature vectors from the dissimilar scales of 

segmented patches. In this paper, the enhanced GWO technique is combined with 

AlexNet model to select the optimal hyper-parameters that significantly diminish the 

model’s running time, and improve the converge rate. As per the network 

requirements, the segmented images are resized to 227 × 227 pixels, which are given 

to the AlexNet model (pre-trained CNN) via the input layer for feature extraction 

[39]. The AlexNet model comprises eight layers like five convolutions and three fully 

connected layers, where each layer is followed by Rectifier Linear Unit (ReLU) 

activation function and max-pooling operation. Here, the feature vectors are extracted 

from the last fully connected layer with the help of softmax classifier. The extracted 

deep learning feature vectors have more detailed information and minor variations 

between the tampered and original region. In-depth reconstruction, the extracted 

feature vectors provide continuous matching pixels for identifying the tampered 

regions accurately. The hyper-parameters of the AlexNet model selected by enhanced 

GWO technique are momentum is 0.6, training algorithm is stochastic gradient 

descent, the learning rate is 0.015, validation frequency is 30, a maximum epoch is 

10, and L2 regularization is 1.0000×10–4. The design statistics of AlexNet model is 

depicted in Table 1. 
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Table 1.  Design statistics of AlexNet model 

Hidden layers No Design 

Convolution 

1 250 filters in size 5 × 5 with max pooling operation 

2 250 filters in size 3 × 3 with max pooling operation 

3 380 filters in size 3 × 3 with max pooling operation 

4 380 filters in size 3 × 3 with max pooling operation 

5 250 filters in size 3 × 3 with max pooling operation 

Fully connected 

1 3096 nodes with ReLU activation function 

2 3096 nodes with ReLU activation function 

3 200 nodes with ReLU activation function 

 

The GWO is a swarm intelligence based technique, which is more reliable in 

hyper parameter optimization compared to other traditional optimization techniques 

[40]. Generally, the grey wolf belongs to the Canidae family, where a predominance 

gathering is maintained. Based on the leadership hierarchy, the grey wolves split into 

four groups such as alpha  𝛼, beta  𝛽, delta 𝛿, and gamma  𝛾. In this optimization 

technique, the decision making is done by the grey wolves belonging to the group 𝛼, 

where the grey wolves belongs to the group 𝛽 are sub-ordinates, which assists in 

decision making. The third best solution and the remainder of the upcoming solution 

are considered as 𝛿 and 𝛾. The GWO technique majorly includes three steps such as 

searching the prey, encircling, and attacking the prey. The traditional GWO technique 

uses simple principles for ranking the solutions in every iteration and updating their 

position [41]. In the enhanced GWO technique, multi-objective functions like leader 

selection strategy and Pareto archive are applied to select the best solutions, and to 

eliminate the crowded segments. In the GWO technique, the encircling process is 

mathematically indicated in the next equations:  

(7)   dis = |𝑐 × 𝑧𝑢(𝑡) − 𝑧(𝑡)|,  

(8)   𝑧(𝑡 + 1) = 𝑧𝑢(𝑡) − 𝑘 × dis,  

where dis represents distance, t states present iteration, 𝑧𝑢(𝑡) indicates location of 

prey, 𝑧(𝑡) states position of grey wolf, 𝑘 and 𝑐 indicates coefficients. The 

coefficients 𝑘 = 2𝑜𝑟1 − 𝑜 and 𝑐 = 2𝑟2, where 𝑜 is a decreasing parameter, 𝑟1and 𝑟2 

are random values that range between zero to one. In this technique, the grey wolves 

belong to 𝛼, 𝛽 and 𝛿 know the prey’s location to simulate hunting behaviour, which 

is mathematically depicted in the next equations: 

(9)   dis⃗⃗⃗⃗  ⃗
𝛼 = |𝑐 1 × 𝑧 𝛼 − 𝑧 |, dis⃗⃗⃗⃗  ⃗

𝛽 = |𝑐 2 × 𝑧 𝛽 − 𝑧 | and dis⃗⃗⃗⃗  ⃗
𝛿 = |𝑐 3 × 𝑧 𝛿 − 𝑧 |,  

(10)   𝑧 (𝑡) =
𝑧 1+𝑧 2+𝑧 3

3
,  

where 𝑧 1 = 𝑧 𝛼 − �⃗� 1 × (dis⃗⃗⃗⃗  ⃗
𝛼), 𝑧 2 = 𝑧 𝛽 − �⃗� 2 × (dis⃗⃗⃗⃗  ⃗

𝛽), and 𝑧 3 = 𝑧 𝛿 − �⃗� 3 × (dis⃗⃗⃗⃗  ⃗
𝛿). 

Every cycle of the GWO technique generates new solutions, where the Pareto 

archive stores the non-dominated Pareto optimal solutions. An archive controller is 

used to control the archive that finds the non-dominated solutions for 30 iterations. 

Pareto archive eliminates the most crowded segments, if the number of non-

dominated Pareto optimal solutions exceeds the archive size. In addition, the leader 

selection strategy selects 𝛼, 𝛽 and 𝛿 using a roulette wheel of the least crowded 

segments that further saves the best non-dominated optimal solutions. The parameters 

used in enhanced GWO technique are; dimension is 4, number of agents is 30, batch 
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size is 32, iteration is 30, upper bounds is [1, 0.5, 15, 5.0000×10–4], and lower bound 

is [0.5, 0.01, 5, 1.0000×10–4]. The selected 320 AlexNet feature vectors are used for 

dense path re-construction. 

3.4. Forgery localization 

To identify the tampered region, the dense depth of the patches is re-constructed and 

matched with other patches. The suspicious tampered regions in the images are 

identified by comparing the patches. The key-point locations are re-localized to 

achieve effective re-construction with AlexNet feature vectors. Based on the  

re-located feature vectors, the Depth Map (DM) is generated to initialize the 

reconstruction process, which is mathematically defined in the equation 

(11)   DM = {𝐹𝑖,𝑗|𝑖 ∈ 1,… ,𝑤, 𝑗 ∈ 1,… , ℎ},  

where 𝑤 indicates width of feature vector, ℎ denotes height of feature vector, 𝐹𝑖,𝑗 

indicates color value or pixel brightness extracted as feature vectors at 

location 𝑖 and 𝑗. The pixels depth (𝑖, 𝑗) are calculated based on ∆DM = 0, as 

specified in the equation 

(12)   4DM𝑖,𝑗 − DM𝑖+1,𝑗 − DM𝑖−1,𝑗 − DM𝑖,𝑗+1 − DM𝑖,𝑗−1 = 0.  

Further, the median difference dif𝑥𝑦 is determined on all the patches using the 

extracted feature vectors in order to re-construct the dense depth of the tampered 

image, and then dif𝑥𝑦 is compared with the median thresholding value th. Then, a 

new median difference 𝑁dif𝑥𝑦 is estimated, if the difference rate is lower than the th, 

which is mathematically stated in the equation 

(13)   𝑁dif𝑥𝑦 = |𝐼𝑛𝑥 − 𝐼𝑛𝑦|,  

where In𝑥 − In𝑦 indicates patch Intensity. Then, each patch is transformed into 

binary value that helps in finding the tampered regions more efficiently and 

accurately. The re-construction of depth value diminishes the dissimilarity between 

the forged and original patches. The binary conversion is mathematically defined in 

equation  

(14)   𝑁dif ′(𝑖, 𝑗) = {
0 𝑁dif𝑥𝑦  ≤ th

1 𝑁dif𝑥𝑦 > th
}.  

Then, the similar keypoints are extracted in each patch using adaptive patch 

matching algorithm. The re-constructed patches are indicated as  

 RP = {RP1, RP2, RP3, … , RP𝑛}, where 𝑛 denotes number of scales. Next, the 

correlation between the patches is calculated by matching the keypoints of the 

patches CRP = {CRP1, CRP2, CRP3, . . . , CRP𝑛}, where CRP indicates Correlation 

Coefficients of the Patches. Further, the threshold value is calculated for each patch 

based on CRP, which is given as thRP = {thRP
1 , thRP

2 , thRP
3 , … , thRP

n }. The same patch 

pairs are determined by the threshold value of each patch  

 SP = {SP1, SP2, SP3, . . . , SP𝑛}. The matched keypoints in the patches are found by 

using the same patch pairs MKP = {MKP1, MKP2, MKP3, … ,MKP𝑛}. 
The Matched KeyPoints MKP are combined with the segmented patches for 

detecting the forged regions. The unforged areas are removed efficiently by combing 
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MKP with the segmented patches. Initially, calculate the time TE of pixel appearance 

in every scale using the equation  

(15)   TE = {temin, temin+1, … , temax},  
where maxand min represents the maximum and minimum pixel appearance rate. 

Due to several input image, TE value will be a random sequence and it should satisfy 

the condition of temax ≤ 𝑛. The unforged regions are eliminated using the standard 

deviation SD and mean 𝑀 values which are estimated using the next equations:  

(16)   SD = √
1

max−min
∑ (te𝑖 − 𝑀)2max

𝑖=min ,  

(17)   𝑀 =
1

max−min
∑ te𝑖

max
𝑖=min .  

The unforged regions are eliminated by subtracting the mean value with twice 

standard deviation value (𝑀 − 2SD). The matched keypoints are merged with the 

segmented patches, as represented in the equation  

(18)   MR(𝑥, 𝑦) = {
1 𝑀 − 2SD ≤ ∑ 𝑓𝑖(𝑥, 𝑦) ≤ temax

𝑛
𝑖=1

0 0 ≤ ∑ 𝑓𝑖(𝑥, 𝑦) < 𝑀 − 2SD𝑛
𝑖=1

},  

where MR(𝑥, 𝑦) indicates merged region, 𝑓𝑖(𝑥, 𝑦) represents forged region and 𝑛 

denotes number of scales. Finally, the keypoints are combined and the 

forged/suspicious regions in tampered image are determined. 

4. Experimental results 

In copy-move forgery detection, the enhanced GWO based AlexNet model is 

simulated using MATLAB 2020 software environment on a computer with Intel core 

i7 processor, 16-GB random access memory and windows 10 (64 bit) operating 

system. The experimental results are validated with 5-fold cross validation technique 

(80:20% training and testing of data). In this application, the effectiveness of the 

proposed enhanced GWO based AlexNet model is analysed by comparing its 

performance with few existing models: adaptive segmentation and hybrid feature 

extraction algorithm [15], Tetrolet transform [18], Probabilistic system based on 

Markov random field [33], SURF feature descriptor with spatial clustering algorithm 

[34] and FrQZMs with modified patch matching algorithm [35] on MICC-F600, 

MICC-F2000, and GRIP datasets. In quantitative analysis, the proposed enhanced 

GWO based AlexNet model performance is evaluated using the performance 

measures like recall, accuracy, precision, F-score, PT, error rate, FOR, and FDR. The 

accuracy rate denotes the correctly recognized forged regions among all the images 

in the datasets. The precision rate denotes that the recognized forged region is true or 

not, and the recall rate states that the forged regions are correctly recognized or not. 

The F-score gives a single value by integrating the recall and precision rates. The 

mathematical expressions of detection accuracy, precision, recall, and F-score are 

represented in the next four equations: 

(19)   Accuracy =
TP+TN

TP+TN+FP+FN
× 100 %,  

(20)   Precision =
TP

TP+FP
× 100 %,  

(21)   Recall =
TP

TP+FN
× 100 %,  
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(22)   F-score =
2TP

2TP+FN+FP
× 100 %.  

The FOR and FDR performance measures indicate the percentage of the forged 

regions, which incorrectly recognized. The PT is a hypothetical screening test in 

copy-move forgery detection that is calculated by False Positive Rate (FPR), and 

True Positive Rate (TPR). The error rate represents the incorrectly recognized forged 

regions among all the images in the databases. The mathematical expressions of FOR, 

FDR, PT and error rate are indicated in the next equations: 

(23)   FOR =
FN

TN+FN
× 100 %,  

(24)   FDR =
FP

TP+FP
× 100 %,  

(25)   PT =
√FPR

√TPR+√FPR
× 100 %,  

(26)   Error rate = 100 − Accuracy,  

where True Negative (TN) represents that the original images are correctly 

recognized as original images, True Positive (TP) specifies that the tampered images 

are correctly recognized as tampered images, False Negative (FN) states that the 

tampered images are incorrectly recognized as original images and False Positive 

(FP) rate denotes that the original images are incorrectly recognized as tampered 

images. 

4.1. Quantitative performance with different parameter optimization techniques 

In this sub-section, the performance of different hyper-parameter optimization 

techniques is analysed with AlexNet model on three benchmark datasets such as 

MICC-F600, MICC-F2000, and GRIP in light of F-score, recall, precision, and 

detection accuracy. By investigating Table 2, the enhanced GWO technique with 

AlexNet model obtained significant performance in copy-move forgery detection on 

MICC-F600, MICC-F2000, and GRIP datasets related to other optimization 

techniques such as firefly, Ant Colony Optimization (ACO) and conventional GWO 

technique. In the MICC-F600 dataset, the enhanced GWO based AlexNet model has 

achieved 99.66% of detection accuracy, 98.58% of precision, 98.48% of recall, and 

99.64% of F-score, which are better compared to other hyper-parameter optimization 

techniques. Similarly in MICC-F2000 and GRIP databases, the proposed enhanced 

GWO based AlexNet model attained a maximum accuracy value of 99.75% and 

98.48%, precision of 97.61% and 98.93%, recall of 97.21% and 97.13%, and F-score 

of 98.50% and 99.40%. The graphical presentation of different hyper-parameter 

optimization techniques in light of F-score, recall, precision, and detection accuracy 

is depicted in Fig. 2. 

In Table 3, the performance of different hyper-parameter optimization 

techniques is analysed with AlexNet model using FDR, FOR, PT and error rate. 

Related to other combinations, the enhanced GWO with AlexNet model obtained a 

low error value on MICC-F600, MICC-F2000, and GRIP datasets. In MICC-F600 

dataset, the enhanced GWO based AlexNet model achieved lower FDR value of 

2.31%, FOR value of 1.16%, PT of 13.36% and error rate of 0.34%. Correspondingly 

in the other two datasets, the enhanced GWO based AlexNet model achieved superior 

performance in copy-move forgery recognition compared to other combinations: 
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AlexNet model with other hyper-parameter optimization techniques. Hence, the 

graphical presentation of different hyper-parameter optimization techniques in light 

of FDR, FOR, PT, and the error rate is represented in Fig. 3. In this paper, the 

enhanced GWO technique is proposed to optimize the hyper-parameters in AlexNet 

for feature extraction. The selection of suitable hyper-parameters in AlexNet 

improves the extraction of deep learning feature vectors for better forgery detection. 

For instance: the selection of an appropriate learning rate improves the model’s 

converge rate. 

Table 2.  Performance evaluation with different hyper-parameter optimization techniques in light of  

F-score, recall, precision, and detection accuracy 

AlexNet model 

Datasets Optimizers Accuracy (%) Precision (%) Recall (%) F-score (%) 

MICC-F600 

Without optimization 86.55 86.94 89.51 86.26 

Firefly 71.63 58 43.68 69.13 

ACO 96.12 93.52 92.41 86.12 

GWO 95.88 93.65 95.73 96.37 

Enhanced GWO 99.66 98.58 98.48 99.64 

MICC-F2000 

Without optimization 81.05 92.63 96.99 84.93 

Firefly 71.40 57.25 42.98 68.27 

ACO 95.08 92.98 91.11 84.34 

GWO 95.03 93.18 94.18 94.94 

Enhanced GWO 99.75 97.61 97.21 98.50 

GRIP 

Without optimization 86.41 93.28 96.12 84.26 

Firefly 69.70 56.21 42.23 67.66 

ACO 94.18 93.30 91.85 85 

GWO 94.54 93.49 95.33 94.53 

Enhanced GWO 98.48 98.93 97.13 99.40 

 

 
Fig. 2. Graphical presentation of different hyper-parameter optimization techniques in light of F-score, 

recall, precision, and detection accuracy 
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Table 3.  Performance evaluation with different hyper-parameter optimization techniques in light 

of FDR, FOR, PT and error rate 

AlexNet model 

Datasets Optimizers FDR (%) FOR (%) PT (%) Error rate (%) 

MICC-F600 

Without optimization 6.08 6.51 16.06 13.45 

Firefly 9.26 7.47 25.48 28.37 

ACO 4.53 5.36 14.65 3.88 

GWO 3.70 1.91 14.24 4.12 

Enhanced GWO 2.31 1.16 13.36 0.34 

MICC-F2000 

Without optimization 7.60 7.37 16.49 18.95 

Firefly 10.74 8.89 25.04 28.60 

ACO 5.34 5.95 15.93 4.92 

GWO 4.98 3 14.16 4.97 

Enhanced GWO 3.35 2.68 12.98 0.25 

GRIP 

Without optimization 8.48 8.16 17.40 13.59 

Firefly 11.67 10.32 25.79 30.30 

ACO 6.48 6.63 16.79 5.82 

GWO 6.13 3.84 14.73 5.46 

Enhanced GWO 3.91 2.26 13.32 1.52 

 

 
Fig. 3. Graphical presentation of different hyper-parameter optimization techniques in light of FDR, 

FOR, PT and error rate 

4.2. Quantitative performance with different feature extraction techniques 

In this sub-section the performance of different feature extraction techniques is 

analyzed with enhanced GWO technique on MICC-F600, MICC-F2000, and GRIP 

datasets by means of F-score, precision, detection accuracy, recall, FDR, FOR, PT, 

and error rate. By inspecting Tables 4 and 5, the combination: enhanced GWO 

technique with AlexNet model obtained better in copy-move forgery detection 

compared to other feature extraction techniques: VGG-16, VGG-19, ResNet 18, and 

GoogLeNet. As seen in Tables 4 and 5, the enhanced GWO based AlexNet model 

obtained higher detection accuracy and a lower error value on three benchmark 

datasets: MICC-F600, MICC-F2000, and GRIP. In this paper, the AlexNet model 

learns higher-level feature vectors from data in incremental manners, so there is no 

need for hard core feature extraction and domain expertise. The AlexNet model as a 

feature extractor improves the detection accuracy of learning algorithm, and reduces 

the computational time. The graphical representation of different feature extraction 

techniques in light of F-score, recall, precision, detection accuracy, FDR, FOR, PT 

and error rate is depicted in Figs 4 and 5. 
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Table 4.  Performance evaluation with different feature extraction techniques in light of F-score, 

recall, precision and detection accuracy 

Enhanced GWO technique 

Datasets Features Accuracy (%) Precision (%) Recall (%) F-score (%) 

MICC-F600 

VGG-16 93.73 94.29 89.37 91.24 

VGG-19 93.03 89.71 91.16 91.73 

ResNet 18 95.03 92.56 97.48 93.72 

GoogLeNet 96.02 92.83 94.27 90.67 

AlexNet 99.66 98.58 98.48 99.64 

MICC-F2000 

VGG-16 93.16 93.96 89.36 91.98 

VGG-19 92.07 89.95 91.03 92.02 

ResNet 18 96.30 92.90 98.08 93.81 

GoogLeNet 97.18 93.53 94.24 90.80 

AlexNet 99.75 97.61 97.21 98.50 

GRIP 

VGG-16 92.47 92.64 88.72 91.15 

VGG-19 92.66 90.45 90.99 92.34 

ResNet 18 96.32 92.63 97.06 93.97 

GoogLeNet 97.15 93.32 94.19 90.74 

AlexNet 98.48 98.93 97.13 99.40 

 
Fig. 4. Graphical presentation of different feature extraction techniques in light of F-score, recall, 

precision, and detection accuracy 

Table 5.  Performance evaluation with different feature extraction techniques in light 

of FDR, FOR, PT and error rate 

Enhanced GWO technique 

Datasets Features FDR (%) FOR (%) PT (%) Error rate (%) 

MICC-F600 

VGG-16 12.55 11.54 17.71 6.27 

VGG-19 12.79 11.06 27.50 6.97 

ResNet 18 11.24 10.55 18.08 4.97 

GoogLeNet 7.47 5.80 15.48 3.98 

AlexNet 2.31 1.16 13.36 0.34 

MICC-F2000 

VGG-16 12.93 12.72 18.22 6.84 

VGG-19 13.65 11.51 28.08 7.93 

ResNet 18 12.21 11.32 19.31 3.7 

GoogLeNet 7.71 6.97 16.01 2.82 

AlexNet 3.35 2.68 12.98 0.25 

GRIP 

VGG-16 14.19 12.71 19.35 7.53 

VGG-19 14.76 11.27 28.02 7.34 

ResNet 18 12.70 12.36 19.27 3.68 

GoogLeNet 8.16 7.56 15.53 2.85 

AlexNet 3.91 2.26 13.32 1.52 
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Fig. 5. Graphical presentation of different feature extraction techniques in light of FDR, FOR, PT and 

error rate 

4.3. Quantitative performance of proposed model under different attacks 

Here, the proposed enhanced GWO based AlexNet model performance is validated 

under different attacks like salt & pepper, Gaussian noise, rotation, blurring, and 

enhancement on MICC-F600, MICC-F2000 and GRIP databases by means of  

F-score, precision, detection accuracy, recall, FDR, FOR, PT, and error rate. In 

Tables 6 and 7 and Figs 6 and 7, the result is validated for rotation (30 degrees), 

Gaussian blur (10), enhancement (histogram equalization), salt & pepper (noise level 

of 0.1), and Gaussian noise (variance of 0.1 and mean of 0.2). The following attacks 

are detected successfully by the enhanced GWO based AlexNet model, where its 

results are graphically indicated in Fig. 8. 

Table 6.  Performance evaluation of proposed model under different attacks in light of F-score, 

precision, detection accuracy, and recall 

Enhanced GWO based AlexNet model 

Datasets Attacks Accuracy (%) Precision (%) Recall (%) F-score (%) 

MICC-F600 

Salt & pepper 77.37 74.76 80.35 82.34 

Gaussian noise 61.06 53.42 34.36 56.24 

Rotation 81.66 83.05 83.13 80.98 

Blurring 89.06 84.81 89.19 91.83 

Enhancement 84.72 93.57 95.23 86.58 

MICC-F2000 

Salt & pepper 75.45 81.25 90.42 72.63 

Gaussian noise 59.21 54.05 29.97 56.86 

Rotation 85.38 82 79.27 70.92 

Blurring 89.14 80.89 79.19 83.66 

Enhancement 92.78 97.48 87.21 93.01 

GRIP 

Salt & pepper 71.99 87.82 85.39 77.55 

Gaussian noise 69.01 47.20 40.24 57.72 

Rotation 94.11 84.85 82.22 72.57 

Blurring 86.92 80.31 87.33 91.36 

Enhancement 90.91 86.77 88.03 86.25 
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Fig. 6. Graphical analysis of proposed model under different attacks in light of F-score, precision, 

detection accuracy, and recall 

Table 7.  Performance evaluation of proposed model under different attacks in light of 

FDR, FOR, PT and error rate 

Enhanced GWO based AlexNet model 

Datasets Attacks FDR (%) FOR (%) PT (%) Error rate (%) 

MICC-F600 

Salt & pepper 18.17 16.63 21.50 22.63 

Gaussian noise 13.98 16.60 26.81 38.94 

Rotation 12.45 14.56 19.30 18.34 

Blurring 14.82 18.39 19.82 10.94 

Enhancement 17.20 12.06 17.83 15.28 

MICC-F2000 

Salt & pepper 10.46 14.97 25.87 24.55 

Gaussian noise 13.76 19.82 32.36 40.79 

Rotation 15.86 6.84 20.91 14.62 

Blurring 15.16 14.92 25.52 10.86 

Enhancement 13.44 4.34 20.85 7.22 

GRIP 

Salt & pepper 13.54 20.23 22.58 28.01 

Gaussian noise 14.35 20.27 32.75 30.99 

Rotation 12.31 17.79 24.23 5.89 

Blurring 18 18.38 19.68 13.08 

Enhancement 17.20 13.75 26.68 9.09 

 

 
Fig. 7. Graphical analysis of proposed model under different attacks in light of FDR, FOR, PT and 

error rate 
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S. No Tampered image with attacks Segmented image Detected forged image 

a) 

   

b) 

   

c) 

   

d) 

   

e) 

   
 

Fig. 8. Results of image forged based on different attacks: Salt & pepper (a); rotation (b); Gaussian 

noise (c); Enhancement (d); Blurring (e) 

4.4. Comparative performance and discussion  

By inspecting Table 8, the proposed enhanced GWO based AlexNet model obtained 

better performance in forgery recognition compared to the existing models such as 

adaptive segmentation and hybrid Feature Extraction Algorithm [15], Tetrolet 

transforms [18], Probabilistic system based on Markov random field [33], SURF 

feature descriptor with spatial clustering algorithm [34] and FrQZMs with modified 

patch matching algorithm [35] on MICC-F600, MICC-F2000, and GRIP datasets in 

light of F-score, recall and precision. The enhanced GWO based AlexNet model 

almost showed 1.5% to 6% improvement in forgery detection compared to the 

existing models by means of precision. Correspondingly, the proposed enhanced 

GWO based AlexNet model obtained higher recall and F-score values related to the 

comparative models. 

Table 8.  Comparative investigation between the proposed and existing models 

Models Dataset 
Precision  

(%) 

Recall  

(%) 

F-score  

(%) 

Adaptive segmentation and hybrid feature extraction 
algorithm [15] 

MICC-F600 92.45 93.67 92.75 

Tetrolet transform [18] GRIP 97.56 - 98.76 

Probabilistic system based on Markov random field [33] MICC-F600 - 84.37 - 

SURF with spatial clustering algorithm [34] MICC-F2000 96.83 95.24 96.03 

FrQZMs with modified patch matching algorithm [35] GRIP - - 95.33 

Enhanced GWO based AlexNet model 

MICC-F600 98.58 98.48 99.64 

MICC-F2000 97.61 97.21 98.50 

GRIP 98.93 97.13 99.40 
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The obtained experimental results showed that the proposed model effectively 

detects the copy-move forgeries involved in a smooth and small region. Additionally, 

the enhanced GWO based AlexNet model significantly classifies the naturally 

identical regions and copy-move regions. As stated earlier, the inclusion of the 

enhanced GWO technique in the AlexNet model diminishes the running time and 

improves the converge rate of the model. By seeing Table 9, the enhanced GWO 

technique with AlexNet model achieved limited running time compared to other 

optimization techniques on MICC-F600, MICC-F2000 and GRIP datasets. 

Table 9.  Performance evaluation in terms of running time 
Optimizers Dataset Patch Segmentation (s) Feature extraction (s) Matching (s) Total (s) 

Firefly 

MICC-F600 9.41 19.07 10.87 39.35 

MICC-F2000 7.86 15.63 10.35 33.84 

GRIP 7.05 12.97 8.78 28.81 

ACO 

MICC-F600 2.83 12.39 4.29 19.51 

MICC-F2000 1.58 9.27 4.13 14.98 

GRIP 0.63 6.46 3.11 10.20 

Enhanced GWO 

MICC-F600 0.88 6.15 2.11 9.14 

MICC-F2000 0.32 4.62 1.87 6.81 

GRIP 0.11 3.21 1.03 4.35 

5. Conclusion 

In this paper, a new enhanced GWO based AlexNet model is introduced for effective 

copy-move forgery detection. Firstly, a superpixel clustering algorithm is used for 

patch segmentation in the tampered images. Further, an enhanced GWO based 

AlexNet model is proposed to extract features from the different scales of segmented 

patches that are used for re-constructing the dense depth of the image pixels. This 

action eases the process of matching the forged region with the original region. 

Finally, an adaptive patch matching algorithm is used to locate the suspicious regions 

in the tampered images. As seen in the resulting phase, the enhanced GWO based 

AlexNet model achieved higher accuracy of 99.66%, 99.75% and 98.48% on  

MICC-F600, MICC-F2000, and GRIP databases. In addition, the enhanced GWO 

based AlexNet model showed good performance in forgery detection related to 

comparative models in light of precision, recall, and F-score. The experimental 

outcomes showed that the proposed enhanced GWO based AlexNet model accurately 

detects and locates the forged regions, even under the conditions of salt & pepper 

noise, Gaussian noise, rotation, blurring, and enhancement. The proposed model 

detects multiple forgery cases and small tampered regions, even while the tampered 

image is smooth. As a future extension, the hybrid deep learning based feature 

descriptor is included in the proposed model for further enhancement of forgery 

detection. 
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