
 35

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 22, No 4

Sofia • 2022 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2022-0038

Fuzzy Neutrosophic Soft Set Based Transfer-Q-Learning Scheme

for Load Balancing in Uncertain Grid Computing Environments

Bhargavi K1, Sajjan G. Shiva2
1Department of CSE, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
2Department of CS, University of Memphis, Memphis, Tennessee, USA

E-mails: bhargavik@sit.ac.in Sshiva@memphis.edu

Abstract: Effective load balancing is tougher in grid computing compared to other

conventional distributed computing platforms due to its heterogeneity, autonomy,

scalability, and adaptability characteristics, resource selection and distribution

mechanisms, and data separation. Hence, it is necessary to identify and handle the

uncertainty of the tasks and grid resources before making load balancing decisions.

Using two potential forms of Hidden Markov Models (HMM), i.e., Profile Hidden

Markov Model (PF_HMM) and Pair Hidden Markov Model (PR_HMM), the

uncertainties in the task and system parameters are identified. Load balancing is then

carried out using our novel Fuzzy Neutrosophic Soft Set theory (FNSS) based transfer

Q-learning with pre-trained knowledge. The transfer Q-learning enabled with FNSS

solves large scale load balancing problems efficiently as the models are already

trained and do not need pre-training. Our expected value analysis and simulation

results confirm that the proposed scheme is 90 percent better than three of the recent

load balancing schemes.

Keywords: Transfer-Q-learning, load balancing, Grid, Performance, Fuzzy

Neutrosophic Soft Set, Uncertainty.

1. Introduction

The grid-computing environment is composed of several clusters of computing

devices dispersed over a large geographical area and operates in a coordinated

manner as a virtual supercomputing machine to perform computationally intensive

tasks [1, 2]. Some of the potential challenges in grid computation include

heterogeneity of hardware and software resources, multiple administration of

resources, inefficient load balancing, different protocols at different layers, lack of

trust in grid data models, poor stability, huge data handling by a single platform, large

scale data manipulation, improper pooling of resources, etc., [3, 4]. Among the

challenges faced by the grid-computing environment, load balancing is one that

affects the effective performance. The main objectives of the paper is to address load

balancing issue in the grid computing environment in following steps:

mailto:bhargavik@sit.ac.in

 36

• Handling uncertainty in grid resources and tasks.

• Developing a transfer Q-learning scheme for load balancing.

• Formulating high quality load balancing policies by implementing the

proposed scheme using SimGrid software.

• Results obtained are evaluated against performance metrics like Execution

time, Response time, Learning rate and Throughput.

Load balancing is tougher in grids compared to other conventional distributed

computing platforms due to several factors that include heterogeneity, autonomy,

scalability, adaptability, resource selection, resource distribution, data separation, etc,

[5, 6]. The uncertainty in this dynamic computing environment also affects the

performance. The main sources of uncertainty include variety of incoming data,

virtualization of resources, frequent migration of computing tasks, high consumption

of energy, dynamic pricing of computation models, grids distributed among wide

geographical area, elastic provisioning of grid resources, frequent variation in the task

processing time, etc. This uncertainty affects several performance parameters of the

grid which include bandwidth consumption, task processing time, memory

utilization, capacity of the resources and network, number of computing devices

involved in the computation, vulnerable to attacks, computational complexity, etc.

Hence, it is necessary to identify and handle the uncertainty of the tasks and grid

resources before making load balancing decisions.

The Profile Hidden Markov Model (PF_HMM) and Pair Hidden Markov Model

(PR_HMM) are potential forms of Hidden Markov Models (HMM) used in

identification of the uncertainty in the system parameters by measuring both visible

states and partial observable state parameters of the system model [7, 8]. Some of the

potential applications of HMM include speech recognition, digital communication,

spicing signal prediction, convergence of multiple user activities, vehicle trajectory

projection, stock market prediction, protein family profiling, gene finding and so on

[9, 10].

Neutrosophic Soft Set theory (NSS) is a mathematical framework, which solves

decision-making problems under uncertainties and imprecision environments. It

considers the truth, falsity, and indeterminacy membership functions to solve real

world problems. The “neutrosophic” is originated from “neutrosophy” which means

neutral. Every component of NSS is explained by considering three contrast estimates

of data: inaccurate, absurd, and condensed form [11-13]. Fuzzy Neutrosophic Soft

Set theory (FNSS) is one of the parameterized families of neutrosophic soft set

theories in the universe that effectively handles parameter uncertainty in distributed

computing environment through approximation of the parameters. FNSS handles the

uncertainty in measured parameters using three approximation metrics: truth, false

and indeterminate values. The FNSS is being widely used in several applications in

engineering, economics, medical science, smart framing, and many more as it makes

effective decisions by reducing the uncertain parameters to choose the optimal set of

parameters [14, 15].

Q-learning is a value-based reinforcement learning algorithm that computes

optimal action using Q-function. Once it is enabled with transfer learning it basically

stores the optimal actions performed while solving the problem and makes use of

 37

those actions in solving similar kinds of problems [16, 17]. The transfer Q-learning

is suitable for solving large scale problems since the models used are already trained

and pre-training is not required. Exascale computation is carried out with less

computational power and models learn with small amounts of data. The learning rate

achieved is very high as uncertainty is handled using Q-function enriched with FNSS

[18-20]. In this paper, uncertainties in the tasks and resources are identified using

PF-HMM and PR-HMM. FNSS theory handles the identified uncertainties and on

top of which we design the transfer Q-learning scheme to perform uncertainty aware

load balancing in the grid [21].

The novelty of the contributions made in the paper are as follows.

• Precise identification of uncertainties in the grid resources and tasks using

PF_HMM and PR_HMM and FNSS theory. This leads to efficient handling of the

parameter uncertainties in dynamic computing setup.

• Possibility of convergence towards suboptimal load balancing solutions is

less due to reduction in Bellman error function and efficient smoothing of system

parameters.

• The Q states are not overloaded due to efficient utilization of learnt

knowledge and reduced error in transferred target Q-function.

• A novel FNSS based transfer Q-learning scheme is designed for load

balancing in grid supported by algorithms and mathematical definitions. The use of

FNSS theory improves the decision-making ability of the proposed scheme and

prevents underutilization and overutilization of resources.

• Expected value analysis of the proposed FNSS based transfer Q-learning

scheme for various performance metrics has been done.

• The proposed FNSS based transfer Q-learning scheme is tested against other

recent works using SimGrid simulator considering uncertainty of tasks and resources.

The paper is organized as follows. Section 2 discusses related works. Section 3

discusses the system model considered. Section 4 provides definitions for the

performance metrics considered for evaluation purposes and high-level view of grid

resource and task models. Section 5 presents the proposed architecture for load

balancing. Section 6 presents the results and discussion, and finally Section 7 draws

the conclusion.

2. Related work

K h a n et al. [22] provide a survey of the load balancing strategies for grid computing

environments. During static load balancing, distribution of incoming tasks among the

available grid resources is done through a fixed schema. During dynamic load

balancing the allocation and reallocation of tasks, are done dynamically during

execution time. The strategies reported either support or does not support task

migration and involve flat and hierarchical topologies. For formulating load

balancing policies four types of policies are involved: information, location, transfer,

and selection. Some of the important factors influencing the load balancing solutions

are scalability, fine grained tasks, hierarchical topology, heterogeneity of resources,

dependencies over the tasks, fault tolerance, and resource processing. Performance

 38

metrics include response time, communication overhead, resource utilization,

communication delay, and throughput.

W e n j i e et al. [23] discuss the work-stealing algorithm to balance the load in

grid computing environment. This algorithm works in two main stages: resource

discovery and scheduling of the workflow tasks. In resource discovery stage,

identification of available resources in the grid systems is done by continuously

collecting the information on registered grid resources from grid information centre.

During scheduling of the workflows, distribution of incoming tasks among the

resources is done by comparing the resource requirement and resource availability

ratio. Here the main structure used in load balancing is Directed Acyclic Graph

(DAG) that depicts the requirements of the tasks. The main drawback of this strategy

is mapping of tasks onto the resources without considering the uncertainty factor. The

latency incurred in task propagation is also very high due to the use of DAG task

representation model.

W u et al. [24] discuss load balancing using intelligent agents across the grid.

Scalable scheduling of the tasks onto the resources in the grid environment demands

the use of artificial intelligence techniques. Here the multiple-agents approach is used

for load balancing with six types of agents i.e., worker agent, load balancing agent,

resource agent, migration agent, cluster agent and grid agent. During the load

imbalance situation, the cluster agent is responsible for setting up the equilibrium

threshold by gathering the resource information from each of the resource agents

using a knowledge algorithm. The migration agents transfer the worker agent from

underloaded grid resources to the overloaded grid resources. Finally, the grid agents

are responsible for transferring the tasks onto the grid resources. Multiple agents are

very well coordinated and proper synchronization is established among them. Each

agent learns independently by considering local state and reward without explicit

communication among one another. This method can explore the large state and

action pair and solves the convergence problem under non-stationary environment of

grid. Even though the approach is found to be good in handling load imbalance

situations while dealing with the computationally intensive problems, the execution

time efficiency is poor.

H a j o u i et al. [25] use Q-learning to address the problem of task scheduling

on heterogeneous architectures that deals with complicated applications that demand

computationally intensive operation. By designing a three-layered framework for

scheduling of tasks efficiency are achieved utilizing producer agents in Layer 1,

scheduling and load balancing agents in Layer 2 and worker agents in Layer 3. The

load balancer uses Q-learning algorithm to handle the load imbalance situation by

making use of the knowledge gained during the previous scheduling problem. Load

balancing decisions are taken using Q-algorithm. Optimal actions are selected using

Markov decision process and maximize the entire reward collection policy. The

Q-function is updated by performing each action with optimal value for the discount

factor. The core idea of the algorithm is using a simple formula for the reward

calculation and computing the threshold value to determine overloaded and

underloaded nodes. The learning process involves dynamism of grid structure and

service requirement of applications. The approach is good in reducing the tardiness

 39

of tasks distribution and scheduling but often ends up in suboptimal solution due to

premature convergence [25].

G a r c i a-G a l a n, P r a d o and E x p ó s i t o [26] present load balancing based

on fuzzy scheduling and use swarm intelligence for gaining the knowledge of the

distributed grid environment. The Fuzzy rule-based system is designed to act as the

grid middleware system. The grid dynamism is handled in two ways where in that

are grid states are characterized using fuzzy notations and learning mechanism is

automatically adopted for changing conditions. The main advantage of combining

fuzzy rule system with swarm intelligence is its ability to handle vagueness in the

computing environment and its easy adaptation to the dynamic changes in the grid

conditions. The basic structure of the scheduler consists of three main components

that are fuzzification, inference, and defuzzification. The probability of determining

good rules keeps increasing with the increase in the number of features in the grid

search space. However, the use of fuzzy rule-based system leads to limited

acquisition of knowledge due to the predefined fixed number of rules. The stopping

condition to arrive at the termination results are completely based on the statistical

analysis results. Hence, the ability to self-improve the quality of scheduling policies

is totally less [26].

T a n g et al. [27] deal with the task scheduling and load balancing policy in grid

computing using a memory-based algorithm. The task scheduling plays a very

important role in load balancing as it directly affects the response time incurred by

the computing system. The dynamic scalability and scheduling of tasks are dependent

on the behaviour statistics of the computing nodes. The behaviour and unique

characteristics of the heterogeneous tasks are handled through continuous monitoring

approach. The distributed Particle Swarm Optimization (PSO) algorithm with the

memory function generates dynamic and scalable scheduling policies for

heterogeneous computing environment. The PSO algorithm outperforms the

stochastic algorithm in producing high quality scheduling policies due to its easily

adaptable nature and requires only few parameter adjustments at the time of learning.

However, the algorithm ends up in local optimum solution in high dimensional

computing space like grid and the convergence rate is slow due to the number of

iterations of training and testing.

P a t n i [28] presents a centralized strategy for load balancing across

homogeneous form of grid computing environment. A load balancing solution based

on typical client and server architecture is proposed to improve the system

performance with maximum utilization of grid resources. A node is designated as

monitored node, which gathers information from neighbouring computing nodes and

sends it to the resource allocation node that does the load-balancing task. Higher level

of optimization is achieved by transferring the tasks from overloaded nodes to

underloaded nodes during load imbalance situation. The transferring of tasks happens

at high-speed using Gridftp service which offers faster and reliable transfer. The

complexity of task transferring is less as the overload and error problems are reduced.

However, the approach depends on centralized server for load balancing decisions,

which becomes susceptible to single point failures.

 40

A l i and B o u a k k a z [29] discuss an agent-based mechanism for load

balancing in grid. The self-adaptive and self-sustaining capability of autonomous

agents is used to handle load imbalance situations. The agent cluster gathers current

load information from the resource agent. The load information gathering happens at

several stages, which involve arrival of new resources, withdrawal of resources,

termination of load agent, start of local worker agent, receiving incoming agent,

departure of mobile agent, and assignment of workload to agent workers. A balance

threshold is setup based on the collected information to handle load imbalance

situations. The capacity of the agent is determined by assigning credit value for each

of the worker agents. The worker agent, which has the highest credit value, will be

provided more opportunity for storing the current location. By gathering the global

state of each of cluster, the overloaded cluster will transfer the worker agents to

underloaded clusters. However, they fail to handle failed entities recognition, and

synchronization between multiple agents is not achieved.

In summary, the limitations identified in the existing works are as follows.

• Hidden uncertainties in the tasks and resources parameters go unidentified.

• Most of the load balancing policies produced for large dimensional space like

grid end up in local optimum solution and the rate of convergence is too slow, due to

high training requirements.

• Delay and latency incurred in mapping of the tasks onto the grid resources

are high due to the use of poor representation models.

• The solutions proposed suffer scalability issues due to the formulation of load

balancing policies based on the limited knowledge gained over the application

requirements.

• The load balancing decisions without considering the uncertainty, leads to

low quality of decisions causing over and underutilization of resources.

• Wastage of previously gained knowledge of the load balancer may result if

such knowledge is not reused in similar situations.

• Most of the algorithms lead to premature convergence as a result the chances

of picking global optimal solution are less.

• Underutilization and overutilization of the resources occur due to

inappropriate load balancing decisions, as most of the algorithms are reactive in

approach and shift the load only in the case of load imbalance situations.

3. System model

A typical Grid Computing Platform (GCP) is a widely distributed computing domain

composed of several regions,

(1) GCP = {𝑅𝑖}𝑖=0
𝑖=𝑘.

A Region (𝑅𝑖) is a collection of several groups. Each group consists of infinite

amount of grid resources,

(2) 𝑅𝑖 = {𝐺𝑖}𝑖=0
𝑖=∞.

A Group (𝐺𝑖) is collection of several computing devices and each computing

device has infinite amount of grid resources,

 41

(3) 𝐺𝑖 = {CD𝑖}𝑖=0
𝑖=∞.

The load imbalance can occur at two levels, one is at intra-region level, and the

other is at inter-region level. At first the transfer Q-learning agents are deployed

within the regions which are referred to as Intra Transfer Q-Learning Agents

(IT_TQLAs) to balance the load within the region,

(4) 𝑅 = {𝑅𝑖 ← IT_TQLA𝑖, 𝑅𝑗 ← IT_TQLA2,…, 𝑅𝑘 ← IT_TQLA𝑘}.

Then the transfer Q-learning agents are deployed between the regions which are

referred to as inter transfer Q-learning agents (IR_TQLAs) to balance the load

between the regions,

(5) (𝑅𝑖, 𝑅𝑗) ← IR_TQLA𝑖, (𝑅𝑗, 𝑅𝑘) ← IR_TQLA𝑗 , … , (𝑅𝑘 , 𝑅𝑙) ← IR_TQLA𝑘.

The intra transfer Q-learning agents store the optimal set of actions performed

for load balancing within the region and replay it whenever similar load imbalance

situation is encountered within the region. Suppose if the load imbalance situation of

𝑅𝑖 and 𝑅𝑗 are same then the optimal set of actions performed in 𝑅𝑖 get replayed in 𝑅𝑗,

(6) 𝑅𝑖 ← IT_TQLA𝑖 ← Store{𝑂(𝐴𝑖), … , 𝑂(𝐴𝑖)},

(7) 𝑅𝑗 ← IT_TQLA𝑖 ← Replay{𝑂(𝐴𝑖), … , 𝑂(𝐴𝑖)}.

Similarly inter transfer Q-learning agents store the optimal actions performed

for load balancing between the regions and replay it whenever similar load imbalance

situations occur. Suppose if the load imbalance situation between (𝑅𝑖, 𝑅𝑗) is same as

 (𝑅𝑗, 𝑅𝑘) then the optimal set of actions performed in (𝑅𝑖, 𝑅𝑗)is replayed in (𝑅𝑗, 𝑅𝑘),

(8) (𝑅𝑖 , 𝑅𝑗) ← IR_TQLA𝑖 ← Store{𝑂(𝐴𝑖), … , 𝑂(𝐴𝑖)},

(9) (𝑅𝑖 , 𝑅𝑗) ← IR_TQLA𝑖 ← Replay{𝑂(𝐴𝑖), … , 𝑂(𝐴𝑖)}.

4. Definitions

This section provides the definition for the performance metrics used in the paper.

Execution time. Execution Time (ET) of the Transfer Q-learning Agent

ET(TQA, GCE) is the summation of the time taken by the transfer Q-learning agent

in processing the incoming tasks 𝑇TP(𝑡𝑖) with varying QoS requirements onto the

appropriate grid resources for successful completion of the tasks 𝑇SC(𝑡𝑖→gr𝑗),

(10) ET(TQA, GCE) = ∑
𝑖,𝑗=𝑛
𝑖=1,𝑗=1 [𝑇𝑃(𝑡𝑖) + 𝑇SC(𝑡𝑖→gr𝑗)].

Response time. Response Time (RT) of the transfer Q-learning agent

RT(TQA, GCE) is the time difference between the arrival time of the incoming tasks

𝑇𝐴(𝑡𝑖) and successful completion time of the tasks 𝑇SC(𝑡𝑖→gr𝑗),

(11) RT(TQA, GCE) = ∑ [𝑇𝐴(𝑡𝑖) − 𝑇SC(𝑡𝑖→gr𝑗)]
𝑖,𝑗=𝑛
𝑖=1,𝑗=1 .

Learning rate. Learning Rate (LR) of the transfer Q-learning agent

LR(TQA, GCE) is the speed at which mapping of the incoming tasks onto the

appropriate grid resources happen,

(12) LR(TQA, GCE) = ∑
𝑁

SC(𝑡𝑖→gr𝑗)

ET(TQA,GCE)

𝑖,𝑗=𝑛
𝑖=1,𝑗=1 .

 42

Throughput. Throughput achieved by the transfer Q-learning agent

TH(TQA, GCE)is the measure of number of successfully completed tasks 𝑁SC(𝑡𝑖→gr𝑗)

by the transfer Q-learning agent out of the total number of tasks allocated 𝑇𝐴(𝑡𝑖→gr𝑗).

(13) TH(TQA, GCE) = ∑
𝑁

SC(𝑡𝑖→gr𝑗)

𝑇
𝐴(𝑡𝑖→gr𝑗)

𝑖,𝑗=𝑛
𝑖=1,𝑗=1 .

4.1. Grid resource model

The availability and capability of the grid resources is modelled using the Profile

Hidden Markov Model (PF_HMM) which vary dynamically since the grid is a large

scalable computing environment. The uncertainty in grid resources is of various kind

including execution failures, overutilization of CPU, variation in the availability of

processors, rise and drop in the processor speed, lack of resource integration models

and many more [30].

The PF_HMM is a statistical uncertainty-handling model that converts the data

obtained from multiple sequence alignments into collection of probability values that

is helpful in early identification of the variation levels in the measured grid resource

parameters. Some of the potential functions performed by PF_HMM towards

uncertainty handling include approximation of missing parameters in the measured

data, removal of deleted parameter states, identification of variation in parameters

states, alignment of parameter sequence without losing the precision, unbiased

investigation of position specific parameter errors and many more. PF_HMM helps

in identification and isolation of the uncertainties in the grid resources.

The PF_HMM applied over the grid resource consists of six attributes,

(14) PFHMM = gr𝑖, 𝑄(gr𝑖), 𝑃t(gr𝑖), 𝑃d(gr𝑖), 𝑃e(gr𝑖), 𝜋0(gr𝑖), 𝜋f(gr𝑖),
gr𝑖 ∈ GR,

where:

𝑄(gr𝑖) = Set of states of the grid resource;

𝑃t(gr𝑖) = Set of state transition probabilities, i.e., 𝑃t(gr𝑖) = 𝑄(gr𝑖) ∗ 𝑄(gr𝑖) →
𝑅, R stands for real;

𝑃d(gr𝑖) = Set of duration probabilities, i.e., 𝑃d(gr𝑖) = 𝑁 ∗ 𝑄(gr𝑖) → 𝑅, N

stands for non-negative integer;

𝑃e(gr𝑖) = Set of emission probabilities, i.e., 𝑃e(gr𝑖) =𝛼∗ ∗ 𝑁 ∗ 𝑄(gr𝑖) → 𝑅, 𝛼∗

stands for strings over 𝛼;

𝜋0(gr𝑖) = Starting state runof PF_HMM;

𝜋f(gr𝑖) = Final state run of PF_HMM.

The final PF_HMM refined grid resource parameters are as follows,

(15) 𝜃∗ = argmax
𝜃

(∑
∏ 𝑃e(gr𝑖)𝑃t(gr𝑖)𝑃d(gr𝑖)𝑖=𝑛

𝑖=1

𝑃(𝑆|𝜃)
).

The Truth, false and indeterminate values of FNSS, i.e., FNSS(GR) are as

follows:

(16) FNSS(HMM(GR)) = {gr𝑖, 𝑇FNSS(gr𝑖), 𝐼FNSS(gr𝑖), 𝐹FNSS(gr𝑖), gr𝑖 ∈ GR}.

The truth, false and indeterminate values of FNSS based grid resources fall

within the closed interval of zero and one:

𝑇FNSS(gr𝑖), 𝐼FNSS(gr𝑖), 𝐹FNSS(gr𝑖) → [0, 1].

 43

4.2. Task model

The Quality of Service (QoS) requirement of the tasks varies dynamically over time

that demands for constant evaluation of the requirements for readjustment of the load

balancing policies [31]. It is modelled using Pair Hidden Markov Model (PR_HMM).

The uncertainty in incoming task model is due to sudden variation in the task

demands, increasingly demanding applications, poor correlation between the tasks

and resources, lack of customizable resource requirement policies, elasticity of the

task demands, unpredictable spike in the incoming task traffic, etc.

The PR_HMM is a kind of HMM which provides probability-based distribution

over the specific pairs of observations made over the task parameters. The PR_HMM

is an extension of PF_HMM in which inferences are drawn based on the two

observation sequences of the input parameters instead of one. Some of the potential

functions performed by PR_HMM towards uncertainty handling include pair wise

alignment of the parameters, making multiple observations to track the mobility of

the incoming parameters, liner interpolation of high variability parameters,

identification of structural variability, achieving fine-grained control over the linear

flow of parameters, etc. The PR_HMM handles uncertainties in the incoming tasks.

The PR_HMM over the task consists of six attributes,

(17) PR_HMM = 𝑡, 𝑄(𝑡𝑖), 𝑃t(𝑡𝑖), 𝜑d(𝑡𝑖), 𝜑e(𝑡𝑖), 𝜋0(𝑡𝑖), 𝜋f(𝑡𝑖), 𝑡𝑖 ∈ 𝑇,

where:

𝑄(𝑡𝑖) = Set of states of the grid resource;

𝑃t(𝑡𝑖) = Set of state transition probabilities, i.e., 𝑃t(gr𝑖) = 𝑄(gr𝑖) ∗ 𝑄(gr𝑖) →
𝑅, R stands for real;

𝜑d(𝑡𝑖) = Joint distribution of paired duration, i.e., 𝑃d(gr𝑖) = 𝑁 ∗ 𝑁 ∗ 𝑄(gr𝑖) →
𝑅, N stands for non-negative integer;

𝜑e(𝑡𝑖) = Joint distribution of paired emission, i.e.,

𝑃e(gr𝑖) =𝛼∗ ∗ 𝛼∗ ∗ 𝑁 ∗ 𝑄(gr𝑖) → 𝑅, 𝛼∗

stands for strings over 𝛼;

𝜋0(𝑡𝑖) = Starting state run of PR_HMM;

𝜋f(gr𝑖) = Final state run of PR_HMM.

The final PR_HMM refined grid resource parameters are as follows:

(18) 𝜃∗ = argmax
𝜃

(∑
∏ 𝜑e(𝑡𝑖)𝑃t(𝑡𝑖)𝜑d(𝑡𝑖)𝑖=𝑛

𝑖=1

𝑃(𝑆|𝜃)
).

FNSS handles the uncertainty in the incoming tasks using true, false, and

indeterminate values, i.e.,

(19) FNSS(PR_HMM(𝑇)) = {𝑡𝑖, 𝑇FNSS(𝑡𝑖), 𝐼FNSS(𝑡𝑖), 𝐹FNSS(𝑡𝑖), 𝑡𝑖 ∈ 𝑇}.

The true, false, and indeterminate values of FNSS based incoming tasks falls

within the closed interval of zero and one 𝑇FNSS(𝑡𝑖), 𝐼FNSS(𝑡𝑖), 𝐹FNSS(𝑡𝑖) → [0, 1].

5. Proposed work

Fig. 1 gives the high-level architecture of the FNSS based transfer Q-learning scheme

for load balancing. The architecture is composed of three functional components, i.e.,

Fuzzy Neutrosophic Soft Set Task Uncertainty Handler (FNSS-TUH), Fuzzy

Neutrosophic Soft Set Resource Uncertainty Handler (FNSS-RUH) and Inter/Intra

 44

Transfer Q-Learning Agent (I/I_TQLA). The FNSS-TUH handles the uncertainty in

the task parameters; FNSS-RUH handles the uncertainty in the grid resource

parameters. The I/I_TQLA formulate load-balancing policies within the region and

between the regions using TQLA. Fig. 2 shows the flow of the proposed scheme.

Fig. 1. High-level architecture of the FNSS based transfer Q-learning scheme for load balancing

Fig. 2. Flowchart of the proposed FNSS based transfer Q-learning scheme for load balancing

5.1. Fuzzy Neutrosophic Soft Set Task Uncertainty Handler (FNSS-TUH)

The FNS-TUH inputs the PF_HMM enabled tasks to generate reduced PF_HMM

enabled tasks by using FNSS theory. The main goal is to use Discernibility matrix

and weighted average of discernibility matrix to remove uncertainty in the tasks and

normalize it. By performing weighted Average Square over standard minimum of

discernibility matrix, the uncertainty free task parameters are obtained. The task

 45

parameters are transferred into set of subsets of task attributes by considering each of

the elements of the task matrix. The operation begins by considering partial set of

subsets of tasks and through absorption operation, the superset of task parameters is

removed. Through absorption and grouping operations the partial subset of tasks is

deleted, this modified representation of tasks is repeated in loop until final reluctant

of reduced task set is produced. Algorithm 1 gives the working of FNSS-TUH.

Algorithm 1. Working of FNSS-TUH

Step 1. Begin

Step 2. Input: PF_HMM(𝑡𝑖) = (𝑄(𝑡𝑖), 𝑃t(𝑡𝑖), 𝜑d(𝑡𝑖), 𝜑e(𝑡𝑖), 𝜋0(𝑡𝑖), 𝜋f(𝑡𝑖))

Step 3. Output:

PF_HMM(𝑡𝑖)rd(𝑄(𝑡𝑖)rd, 𝑃t(𝑡𝑖)rd, 𝜑d(𝑡𝑖)rd, 𝜑e(𝑡𝑖)rd, 𝜋0(𝑡𝑖)rd, 𝜋f(𝑡𝑖)rd)

Step 4. for every 𝑡𝑖 ∈ 𝑇 do

Step 5. Form FNSS of PF_HMM (𝑡𝑖)

Step 6. PF_HMM (𝑡𝑖) = (𝑡𝑖, 𝑇FNSS(𝑡𝑖), 𝐼FNSS(𝑡𝑖), 𝐹FNSS(𝑡𝑖))

Step 7. Calculate discernibility matrix D (FNSS-PF_HMM (𝑡𝑖, 𝑡𝑗)), i.e.,

Step 8. D (FNSS-PF_HMM (𝑡𝑖 , 𝑡𝑗)) ={𝜇(𝑎) ∈ 𝐴|𝑔(𝑡𝑖, 𝜇(𝑎)) ≠ 𝑔(𝑡𝑗, 𝜇(𝑎))}

Step 9. Compute fuzzy weighted average of discernibility matrix, i.e.,

 FWA = ∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1 , where 𝑤𝑖 is the assigned weight.

Step 10. D (FNSS-PF_HMM (𝑡𝑖, 𝑡𝑗)) =

Φ {a1/FWA} {a1/FWA, a4/FWA}

....

{a1/FWA, a3/FWA, a4/FWA} ... Φ

Step 11. Calculate the standard minimum ∆∗D (FNSS-PF_HMM (𝑡𝑖, 𝑡𝑗)) =

∆∗ 𝐷(FNSS − PF_HMM(𝑡𝑖, 𝑡𝑗)) = (𝜇(𝑎𝑖) ∧ 𝜇(𝑎𝑗))⋁(𝜇(𝑎𝑘) ∧ 𝜇(𝑎𝑙))

{a1
*

, a6
*} {a1

*} {a1
*, a6

*}

....

{a6
*} ... {a4

*
, a7

*}

Step 12. Calculate the fuzzy weighted average square over standard

minimum of discernibility matrix, i.e., FWA2=∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1

2, i.e.,

Step 13. D (FNSS-PF_HMM (𝑡𝑖 , 𝑡𝑗)) =

{𝑎1
∗ /FWA2, 𝑎6

∗ /FWA2} {𝑎3
∗ /FWA2} {𝛷∗ /FWA2}

....

{𝑎6
∗ /FWA2} ... {𝑎4

∗ /FWA2, 𝑎7
∗ /FWA2}

Step 14. End for

Step 15. Output all reduced tasks in PF_HMM(𝑡𝑖) to form PF_HMM(𝑡𝑖)rd

Step 16. End

5.2. Fuzzy Neutrosophic Soft Set Resource Uncertainty Handler (FNSS-RUH)

The FNSS-RUH inputs the PF_HMM enabled grid resources to generate

reduced PF_HMM enabled grid resoures by using FNSS theory. By using

Discernibility matrix and weighted average of discernibility matrix the uncertainty in

the grid resources is normalized. By performing weighted Average Square over

standard minimum of discernibility matrix, the uncertainty free grid resource

 46

parameters are obtained. The grid resource parameters are transferred into set of

subsets of grid resource attributes by considering each of the elements of the grid

resource matrix. The operation begins by considering partial set of subsets of grid

resources and through absorption operation, the superset of grid resource parameters

is removed. Through absorption and grouping operations the partial subset of grid

resources gets deleted, this modified representation of grid resources gets repeated in

loop until final reluctant of reduced grid resource set is produced. Algorithm 2 gives

the working of FNSS-RUH.

Algorithm 2. Working of FNSS-RUH

Step 1. Begin

Step 2. Input:PF_HMM(gr𝑖) =
(𝑄(gr𝑖), 𝑃t(gr𝑖), 𝜑d(gr𝑖), 𝜑e(gr𝑖), 𝜋0(gr𝑖), 𝜋f(gr𝑖))

Step 3. Output: PF_HMM(gr𝑖)rd =
(𝑄(gr𝑖)rd, 𝑃t(gr𝑖)rd, 𝜑d(gr𝑖)rd, 𝜑e(gr𝑖)rd, 𝜋0(gr𝑖)rd, 𝜋f(gr𝑖)rd)

Step 4. for every gr𝑖𝑖
∈ GR do

Step 5. Form FNSS of PR_HMM (gr𝑖)

Step 6. PR_HMM (gr𝑖)=(gr𝑖 , 𝑇FNSS(gr𝑖), 𝐼FNSS(gr𝑖), 𝐹FNSS(gr𝑖))

Step 7. Calculate discernibility matrix D (FNSS-PF_HMM (gr𝑖 , gr𝑗)),

i.e.,

Step 8.

D(FNSS-PR_HMM (gr𝑖 , gr𝑗)) = {𝜇(𝑎) ∈ 𝐴|𝑔(gr𝑖, 𝜇(𝑎)) ≠ 𝑔(gr𝑗, 𝜇(𝑎))}

Step 9. Compute fuzzy weighted average of discernibility matrix, i.e.,

 FWA = ∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1 , where 𝑤𝑖is the assigned weight.

Step 10. D (FNSS-PR_HMM (gr𝑖, gr𝑗)) =

Φ {a1/FWA} {a1/FWA, a4/FWA}

....

{a1/FWA, a3/FWA, a4/FWA} ... Φ

Step 11. Calculate the standard minimum ∆∗D (FNSS-PR_HMM (gr𝑖, gr𝑗))

= ∆∗ 𝐷(FNSS − PR_HMM(gr𝑖, gr𝑗)) = (𝜇(𝑎𝑖) ∧ 𝜇(𝑎𝑗))⋁(𝜇(𝑎𝑘) ∧ 𝜇(𝑎𝑙))

{a1
*

, a6
*} {a1

*} {a1
*, a6

*}

....

{a6
*} ... {a4

*
, a7

*}

Step 12. Calculate the fuzzy weighted average square over standard

minimum of discernibility matrix, i.e., FWA2=∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1

2, i.e.,

Step 13. D (FNSS-PR_HMM (𝑡𝑖, 𝑡𝑗)) =

{𝑎1
∗ /FWA2, 𝑎6

∗ /FWA2} {𝑎3
∗ /FWA2} {𝛷∗ /FWA2}

....

{𝑎6
∗ /FWA2} ... {𝑎4

∗ /FWA2, 𝑎7
∗ /FWA2}

Step 14. End for

Step 15. Output all reduced tasks in PR_HMM(𝑡𝑖) to form PR_HMM(𝑡𝑖)rd

Step 16. End

 47

5.3. Inter/Intra Transfer Q-Learning Agent (I/I_TQLA)

This module generates load-balancing policies AΠ by accepting uncertainty free tasks

and grid resource parameters in reduced form PF_HMM(𝑡𝑖)rd, PF_HMM(gr𝑖)rd. This

component generates high quality policies by updating the Q-value twice in both

learning stage and applying stage using state value function. It mainly consists of two

sub-stages one to learn Inter/Intra TQLA and the other to apply Inter/Intra TQLA.

During learning stage, a random action is performed to obtain the reward and the

learning state Q-value is computed for each state of the agent. During apply stage the

Q-value is updated by considering the best matching Q-value state in the leaning

stage. Finally, the applied resource provisioning policies are formulated by keeping

the basis of the learned resource provisioning policies. Algorithm 3 provides the

working of IT_TQLA/IR_TQLA.

Algorithm 3. Working of the Inter/Intra Transfer-Q-Learning Agent

Step 1. Start

Step 2. Input: PF_HMM(𝑡𝑖)rd =

(𝑄(𝑡𝑖)rd, 𝑃t(𝑡𝑖)rd, 𝜑d(𝑡𝑖)rd, 𝜑e(𝑡𝑖)rd, 𝜋0(𝑡𝑖)rd, 𝜋f(𝑡𝑖)rd),

 PF_HMM(gr𝑖)rd

= (𝑄(gr𝑖)rd, 𝑃t(gr𝑖)rd, 𝜑d(gr𝑖)rd, 𝜑e(gr𝑖)rd, 𝜋0(gr𝑖)rd, 𝜋f(gr𝑖)rd)

Step 3. Output: Set of applied load balancing policies
AΠ = {AΠ1, AΠ2, AΠ3, … , AΠp}

Step 4. Model to learn: Inter/Intra TQLA

Step 5. for every PF_HMM(𝑡𝑖)rd and PF_HMM(gr𝑖)rd do

Step 6. Initialize the learning stage Q-value with the random state and action

LQ(𝑆, 𝐴) = ∅

Step 7. for every action 𝐴𝑖 ∈ 𝐴 do

Step 8. Perform an action in random to get the reward in the state

Step 9. Update the learning stage Q-state

LQ(𝑆, 𝐴) = LQ(𝑆, 𝐴) + 𝛿𝑅(𝑆, 𝐴) + 𝛿LQ(arg max LQ(𝑆, 𝐴)) − LQ(𝑆, 𝐴)

Step 10. Calculate the Learning stage Q-state, i.e., LQ-state value function

 LV(𝑆, 𝐴) = 𝐸(𝜋), Include the reward given for each state

Step 11. Formulate the resource provisioning learned policy

Lπ𝑖 = 𝜋𝑟2 = 𝛿 + 𝛿LQ(arg max(LQ(𝑆, 𝐴))

Step 12. End for

Step 13. End for

Step 14. Generate the Learning stage policies.

LΠ ∷= LΠ ∪ Lπ𝑖

Step 15. Output learned Load-balancing policies

LΠ = {LΠ1, LΠ2, LΠ3, … , LΠ𝑝}

Step 16. Model to Apply: Inter/Intra TQLA

Step 17. Input the learned policies from the model

LΠ = {LΠ1, LΠ2, LΠ3, … , LΠ𝑝}

Step 18. for every PF_HMM(𝑡𝑖)rd and PF_HMM(gr𝑖)rd do

 48

Step 19. Initialize the applying stage Q-value with the random state and action

AQ(𝑆, 𝐴) = ∅

Step 20. for every action 𝐴𝑖 ∈ 𝐴 do

Step 21. Perform an action in random to get the reward in the state

Step 22. Update the applying stage Q-state by keeping the best matching

learning Q-state value

AQ(𝑆, 𝐴) = AQ(𝑆, 𝐴) + δR(𝑆, 𝐴) + 𝛿 arg max(AQ(𝑆, 𝐴), LQ(𝑆, 𝐴))

Step 23. Calculate the applying Q-state AQ state value function

AV(𝑆, 𝐴) = 𝐸(𝜋), Include the reward given for each state.

Step 24. Formulate the resource provisioning applied policy

Aπ = 𝛿 + δAQ(arg max(AQ(𝑆, 𝐴))

Step 25. End for

Step 26. End for

Step 27. Generate the applying stage policies.

𝐴Π ∷= 𝐴Π ∪ Aπ𝑖

Step 28. Output applicable load balancing policies

AΠ = {AΠ1, AΠ2, AΠ3, … , AΠ𝑝}

Step 29. Stop

6. Results and discussion

This section provides the experimental setup for comparison of the Proposed Work

(PW) with three of the recent Existing Works (EW1 [24], EW2 [25], EW3 [26]) based

on Execution time, Response time, Learning rate and Throughput using SimGrid

open-source simulation software. The SimGrid software allows simulation of grid

computing environment by modelling heterogeneous grid resources under

uncertainty of tasks and grid resources. The topology of the grid-computing

environment, content present in the computing nodes, and status of resource

availability in grid resources is detailed inside configuration file. The task and

resource configuration file includes the distributed data files content. Application,

containing benchmark dataset is considered for simulation purpose and initialization

of the parameters are as follows: grid dimension=28*19*5; active cells=1761; cell

dimension=40*40*40; control steps=5; volume=1 PV; simulation time=5 min;

packet size=80 Bytes; packet interval=20 ms, number of computing nodes=1500,

InitEng=4.0 J; grid size=100 m; distance between the neighbours=10 m; routing

protocol=AODV; MAC protocol=MAC/802_15_4; system loss=1.0; gain transmitter

antenna=1.0; gain receiver antenna=1.0; transmitter height = 1.5 m; radio

model=TwoRayGround; and Antenna type=Omni antenna [32, 33]. The grid

topology considered for evaluation contains three computing clusters composed of

27 nodes in which 13 nodes contain both computing elements and storage elements.

Remaining nodes are network nodes that do not contain computing elements and

storage elements.

 49

6.1. Uncertainty of tasks

The incoming tasks in grid computing environment exhibit highly dynamic

behaviours due to several factors, which cause uncertainty. These factors include

inefficient distribution of tasks, uneven arrival rate of tasks, heterogeneous real-time

tasks, uncertain duration for task offloading, frequent suspension of tasks

computation, and proper trajectory positions of the tasks [34].

Execution time. Fig. 2 depicts the execution time incurred over the varying

uncertainty of tasks. The execution time of the PW is very low throughout with the

increase in the uncertainty of the tasks as the transfer Q-learning uses the already

learnt knowledge about previous similar load imbalance situations. The execution

time of the EW1 is higher during lower uncertainty of tasks and remained to be higher

even with the increase in the uncertainty of the tasks as the conventional Q-learning

takes longer time to arrive at optimal load balancing policies with overloaded

Q-states. The execution time of the EW2 kept increasing with the increase in the

uncertainty of the tasks due to the combination of swarm intelligence and limited

number of fuzzy rules. The execution time of the EW3 is very high during lower

uncertainty of tasks and even during higher uncertainty of tasks as the PSO Algorithm

easily ends up into suboptimal solution when exposed to high dimensional grid

computing environment.

Fig. 2. Execution time incurred over the varying uncertainty of tasks

Response time. Fig. 3 shows the response time incurred over the varying

uncertainty of tasks.

Fig. 3. Response time incurred over the varying uncertainty of tasks

 50

The response time of the PW is found to decrease gradually with the increase in

the uncertainty of the tasks as the uncertainties in the tasks and grid resources are

handled properly using FNSS theory before formulating load balancing policies using

transfer Q-learning. The response time of the EW1 and EW2 is higher throughout

even during lower uncertainty of tasks and higher uncertainty of tasks as the

techniques suffer from scattering problem when exposed to high dimensional grid

computing environment. The response time of EW3 is moderate during lower

uncertainty level of tasks and remained lower during higher uncertainty of tasks due

to poor local and global search ability of the technique.

Learning rate. Fig. 4 shows the learning rates observed over the varying

uncertainty of tasks. The learning rate of the PW remained very high during lower

and higher uncertainty of tasks as the speed of operation of the transfer Q-learning is

very high since the initial and target load imbalance situations are very much same in

the grid environment. The learning rate of the EW1 and EW3 remained average

during lower and higher uncertainty of tasks as the learning speed slows down due to

frequent visiting of the state-action pairs of the agent and poor parameter optimization

procedure. The learning rate of the EW2 is higher during lower and higher uncertainty

of tasks as the technique fail to readily deal with the uncertainty in the tasks and grid

resource parameters.

Fig. 4. Learning rate observed over the varying uncertainty of tasks

Throughput. Fig. 5 provides a graph of throughputs achieved over the varying

uncertainty of tasks. The throughput achieved by the PW is very high during lower

and higher uncertainty of tasks as the uncertainty in the tasks, grid resources get

identified using PF_HMM, and PR_HMM after that high quality load balancing

policies are formulated using transfer learning. The throughput achieved by the EW1

is very low during lower and higher uncertainty of tasks as the quality of load

balancing policies formulated are poor due to trial-and-error approach. The

throughput achieved by EW2 is moderate during lower uncertainty of tasks and

remained lower during higher uncertainty of tasks due to the sequence of random

decisions taken at runtime and being highly sensitive to noisy parameters. The

throughput achieved by the EW3 is moderate during lower uncertainty of tasks,

 51

reduced still more with the increase in the uncertainty of tasks due to poor

generalization performance, and suffers from over-fitting problem.

Fig. 5. Throughput achieved over the varying uncertainty of tasks

6.2. Uncertainty of grid resources

The resources in grid computing environment also involve huge number of

uncertainties that arise from several factors that include large number of distributed

resources, loosely coupled grid resources, inherent variability of grid resources, poor

ensemble of grid resources, uneven scaling of resources, distributed ownership

problem, and poor stability of resources due to the launch of cyber-attacks [35].

Execution time. Fig. 6 gives a graph of execution times incurred over the

varying uncertainty of grid resources. The execution time of the PW is lower during

lower and higher uncertainty of grid resources as the transfer Q-learning is capable

enough of making high quality load balancing policies through fast iterations with

the grid environment. The execution time of the EW1, EW2 and EW3 remained to

very high during lower uncertainty and higher uncertainty level of grid resources as

the models used exhibit higher probability of converging to suboptimal solutions and

demands significant effort for fine-tuning of the sensitive outlier parameters.

Fig. 6. Execution time incurred over the varying uncertainty of grid resources

Response time. Fig. 7 gives a graph of response time incurred over the varying

uncertainty of grid resources. The response time of the PW is found to be moderate

initially during lower uncertainty of grid resources and found to be lower even with

 52

the increase in the uncertainty of the grid resources as the transfer Q-learning model

is capable enough choosing actions with high expected utility without the need to

exactly model the uncertain grid computing environment. The response time of the

EW1 and EW2 is very much higher during lower and higher uncertainties of grid

resources as the loads balancing decisions taken lacks rational thinking and are often

mistaken because of likelihood hypothesis. The response time of the EW3 is

moderate during lower and higher uncertainty of grid resources as the approach

suffers from sizing problem and produces diverging value for mean square

displacement and infinite value for particle velocity.

Fig. 7. Response time incurred over the varying uncertainty of grid resources

Learning rate. Fig. 8 gives a graph of learning rates observed over the varying

uncertainty of tasks.

Fig. 8. Learning rate observed over the varying uncertainty of grid resources

The learning rate of the PW is moderate during lower uncertainty of grid

resources and keeps increasing with the increase in the uncertainty of the grid

resources due to proper transfer of learnt knowledge composed of weights and

features from trained model to training model to tackle newer problems with few

training data. The learning rate of the EW1 is lower with lower uncertainty of grid

resources and remains lower during higher uncertainty of grid resources as the as the

Q-learning behaves poorly in stochastic environment. The learning rate of EW2 is

lower during lowered uncertainty of grid resources and remains moderate with the

increase in the uncertainty of grid resources due to poor uncertainty handling using

fuzzy membership function. The learning rate of the EW3 is higher during lower

 53

uncertainty of grid resources but starts to decline with the increase in the uncertainty

of grid resources as the convergence speed is low due to the approach being highly

sensitive to velocity parameters.

Throughput. Fig. 9 gives a graph of throughput achieved over the varying

uncertainty of grid resources. The throughput of the PW remains higher during lower

and higher uncertainty of grid resources as the transfer Q-learning algorithm is more

goal oriented and predictions of the Q-function after gaining knowledge through

transfer learning is highly accurate. The throughput of EW1 is moderate during lower

and higher uncertainty of grid resources as the approach suffers from high instability

due to correlated updating of sequential training data and parameters affects the

estimator target and causes high divergence between them. The throughput of EW2

and EW3 are found to be higher during lower uncertainty of grid resources but start

to decline with the increase in the uncertainty of grid resources as both the approaches

lack wider exploration capability and fail to achieve proper trade-off between

exploration and exploitation phases for performance enhancement.

Fig. 9. Throughput achieved over the varying uncertainty of grid resources

7. Conclusion

This paper presents a novel FNSS based Transfer-Q-Learning scheme for load

balancing in uncertain grid computing environments. The hidden uncertainties in the

tasks and grid resource parameters are identified precisely using PF_HMM and

PR_HMM. FNSS handles the identified uncertainty of the tasks and grid resource

parameters using FNSS theory. The transfer Q-learning agent with pre-trained

knowledge solves the large-scale load-balancing problem. The transfer Q-learning

agents can automatically learn with small amounts of data by efficiently handling the

uncertainty in the system parameters using FNSS. The error encountered while

computing target transfer Q-function value is negligible as it reduces possible harm

to the incoming task and resource parameters. From the results obtained it is inferred

that the proposed work outperforms three of the existing recent works by about 90

percent with respect total execution time, response time, learning rate and throughput.

We plan to extend the proposed work to develop secure and robust load balancing

scheme for other high-performance computing domains like cloud and fog.

 54

However the proposed FNSS based Transfer-Q-Learning scheme for load

balancing include several limitations, which need to be handled efficiently. Some of

the potential challenges encountered are as follows: Practical implementation of

FNSS in real-world applications becomes difficult as the fuzzy neutrosophic

components exhibit nonstandard intervals. The PF_HMM and PR_HMM

frameworks used to identify parameter uncertainties often suffer evaluation and

decoding problems.

R e f e r e n c e s

1. S i n g h, M. An Overview of Grid Computing. – In: Proc. of International Conference on Computing,

Communication, and Intelligent Systems (ICCCIS’19), 2019.

2. S u n g k a r, A., T. K o g o y a. A Review of Grid Computing. – Computer Science & IT Research

Journal, Vol. 1, 2020.

3. D a k k a k, O., S. A. N o r, S. A r i f, Y. F a z e a. Improving QoS for Non-Trivial Applications in Grid

Computing. – In: Proc. of International Conference of Reliable Information and

Communication Technology, 2019.

4. F o s t e r, I., C. K e s s e l m a n. Translating the Grid: How a Translational Approach Shaped the

Development of Grid Computing. – Journal of Computational Science, Vol. 52, 2021.

5. A s w a l, M. S. VM Consolidation Plan for Improving the Energy Efficiency of Cloud. – Cybernetics

and Information Technologies, Vol. 21, 2021, No 3, pp. 145-159.

6. D h i n g r a, S., P. B a n s a l. Employing Divergent Machine Learning Classifiers to Upgrade the

Preciseness of Image Retrieval Systems. – Cybernetics and Information Technologies,

Vol. 20, 2020, No 3.

7. K a r a, N., H. G. K o c k e n. A Fuzzy Approach to Multi-Objective Solid Transportation Problem

with Mixed Constraints Using Hyperbolic Membership Function. – Cybernetics and

Information Technologies, Vol. 21, 2021, No 4, pp. 158-167.

8. K o u a d r i, A., M. H a j j i, M. F. H a r k a t, K. A b o d a y e h, M. M a n s o u r i, H. N o u n o u,

M. N o u n o u. Hidden Markov Model Based Principal Component Analysis for Intelligent

Fault Diagnosis of Wind Energy Converter Systems. – Renewable Energy, Vol. 150, 2020.

9. G o h, C. Y., J. D a u w e l s, N. M i t r o v i c, M. T. A s i f, A. O r a n, P. J a i l l e t. Online

Map-Matching Based on Hidden Markov Model for Real-Time Traffic Sensing Applications.

– In: Proc. of 15th International IEEE Conference on Intelligent Transportation Systems, 2012.

10. M o r, B., S. G a r h w a l, A. K u m a r. A Systematic Review of Hidden Markov Models and Their

Applications. – Archives of Computational Methods in Engineering, Vol. 28, 2021.

11. D e l i, I., S. B r o u m i. Neutrosophic Soft Matrices and NSM-Decision Making. – Journal of

Intelligent & Fuzzy Systems, Vol. 28, 2015.

12. K o k o ç, M., S. E r s o z. New Ranking Functions for Interval-Valued Intuitionistic Fuzzy Sets and

Their Application to Multi-Criteria Decision-Making Problem. – Cybernetics and Information

Technologies, Vol. 21, 2021, No 1, pp. 3-18.

13. D e l i, I., S. E r a s l a n, N. Ç a g m a n. IVNPIV-Neutrosophic Soft Sets and Their Decision Making

Based on Similarity Measure. – Neural Computing and Applications, Vol. 29, 2018.

14. A l i, M., L. H. S o n, I. D e l i, N. D. T i e n. Bipolar Neutrosophic Soft Sets and Applications in

Decision Making. – Journal of Intelligent & Fuzzy Systems, Vol. 33, 2017.

15. D e l i, I., S. B r o u m i. Neutrosophic Soft Relations and Some Properties. – Annals of Fuzzy

Mathematics and Informatics, Vol. 9, 2015.

16. S i n g h, S., S. L a l o t r a, A. H. G a n i e. On Some Knowledge Measures of Intuitionistic Fuzzy

Sets of Type-Two with Application to MCDM. – Cybernetics and Information Technologies,

Vol. 20, 2020, No 1, pp. 3-20.

17. N a e e m, K., M. R i a z, D. A f z a l. Fuzzy Neutrosophic Soft σ-Algebra and Fuzzy Neutrosophic

Soft Measure with Applications. – Journal of Intelligent & Fuzzy Systems, Vol. 39, 2020.

18. F a n, J., Z. W a n g, Y. X i e, Z. Y a n g. A Theoretical Analysis of Deep Q-Learning. – In: Learning

for Dynamics and Control, 2020.

 55

19. S a m m a, H., J. M o h a m a d-S a l e h, S. A. S u a n d i, B. L a h a s a n. Q-Learning-Based

Simulated Annealing Algorithm for Constrained Engineering Design Problems. – Neural

Computing and Applications, Vol. 32, 2020, pp. 5147-5161.

20. W a n g, Y., Y. L i u, W. C h e n, Z. M. M a, T. Y. L i u. Target Transfer Q-Learning and Its

Convergence Analysis. – Neurocomputing, Vol. 392, 2020.

21. J e o n g, G., H. Y. K i m. Improving Financial Trading Decisions Using Deep Q-Learning:

Predicting the Number of Shares, Action Strategies, and Transfer Learning. – Expert Systems

with Applications, Vol. 117, 2019.

22. K h a n, S., B. N a z i r, I. A. K h a n, S. S h a m s h i r b a n d, A. T. C h r o n o p o u l o s. Load

Balancing in Grid Computing: Taxonomy, Trends and Opportunities. – Journal of Network

and Computer Applications, Vol. 88, 2017.

23. W e n j i e, T., Y. Y i p i n g, Z. F e n g, L. T i a n l i n, S. X i a o. A Work-Stealing Based Dynamic

Load Balancing Algorithm for Conservative Parallel Discrete Event Simulation. – In: Proc. of

Winter Simulation Conference (WSC’17), 2017.

24. W u, J., X. X u, P. Z h a n g, C. L i u. A Novel Multi-Agent Reinforcement Learning Approach for

Job Scheduling in Grid Computing. – Future Generation Computer Systems, Vol. 27, 2011.

25. H a j o u i, Y., O. B o u a t t a n e, M. Y o u s s f i, E. I l l o u s s a m e n. Q-Learning Applied to the

Problem of Scheduling on Heterogeneous Architectures. – International Journal of Computer

Science and Network Security, Vol. 18, 2018.

26. G a r c i a-G a l a n, S., R. P. P r a d o, J. M. E x p ó s i t o. Fuzzy Scheduling with Swarm

Intelligence-Based Knowledge Acquisition for Grid Computing. – Engineering Applications

of Artificial Intelligence, Vol. 25, 2012.

27. T a n g, K., W. J i a n g, R. C u i, Y. W u. A Memory-Based Task Scheduling Algorithm for Grid

Computing Based on Heterogeneous Platform and Homogeneous Tasks. – International

Journal of Web and Grid Services, Vol. 16, 2020.

28. P a t n i, J. C. Centralized Approach of Load Balancing in Homogenous Grid Computing

Environment. – In: Proc. of 3rd International Conference on Computers in Management and

Business, 2020, pp. 151-156.

29. A l i, W., F. B o u a k k a z. Agent Based Load Balancing in Grid Computing. – In: Proc. of

Multi-Agent Systems-Theory, Implementation and Applications. IntechOpen, 2020.

30. L i u, F., D. J a n s s e n s, J. C u i, G. W e t s , M. C o o l s. Characterizing Activity Sequences Using

Profile Hidden Markov Models. – Expert Systems with Applications, Vol. 42, 2015.

31. W a l k e r, C. R., A. S c a l l y, N. De M a i o, N. G o l d m a n. Short-Range Template Switching in

Great Ape Genomes Explored Using Pair Hidden Markov Models. – PloS Genetics, Vol. 17,

2021.

32. B r a u n, T. D., et al. A Comparison of Eleven Static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing Systems. – J. Parallel Distrib. Comput.,

Vol. 61, 2001, No 6, pp. 810-837.

33. L e b r e, A., A. L e g r a n d, F. S u t e r, P. V e y r e. Adding Storage Simulation Capacities to the

Simgrid Toolkit: Concepts, Models, and Api. – In: Proc. of 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, 2015, pp. 251-260.

34. C o r d e r y, J. L., D. M o r r i s o n, B. M. W r i g h t, T. D. W a l l. The Impact of Autonomy and

Task Uncertainty on Team Performance: A Longitudinal Field Study. – Journal of

Organizational Behavior, Vol. 31, 2010.

35. R e a l, R., A. Y a m i n, L. da S i l v a, G. F r a i n e r, I. A u g u s t i n, J. B a r b o s a, C. G e y e r.

Resource Scheduling on Grid: Handling Uncertainty. – In: Proc. of 1st Latin American Web

Congress, 2003.

Received: 25.03.2022; Second Version: 07.10.2022; Accepted: 12.10.2022

