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Abstract: Effective load balancing is tougher in grid computing compared to other 

conventional distributed computing platforms due to its heterogeneity, autonomy, 

scalability, and adaptability characteristics, resource selection and distribution 

mechanisms, and data separation. Hence, it is necessary to identify and handle the 

uncertainty of the tasks and grid resources before making load balancing decisions. 

Using two potential forms of Hidden Markov Models (HMM), i.e., Profile Hidden 

Markov Model (PF_HMM) and Pair Hidden Markov Model (PR_HMM), the 

uncertainties in the task and system parameters are identified. Load balancing is then 

carried out using our novel Fuzzy Neutrosophic Soft Set theory (FNSS) based transfer 

Q-learning with pre-trained knowledge. The transfer Q-learning enabled with FNSS 

solves large scale load balancing problems efficiently as the models are already 

trained and do not need pre-training. Our expected value analysis and simulation 

results confirm that the proposed scheme is 90 percent better than three of the recent 

load balancing schemes.  

Keywords: Transfer-Q-learning, load balancing, Grid, Performance, Fuzzy 

Neutrosophic Soft Set, Uncertainty. 

1. Introduction 

The grid-computing environment is composed of several clusters of computing 

devices dispersed over a large geographical area and operates in a coordinated 

manner as a virtual supercomputing machine to perform computationally intensive 

tasks [1, 2]. Some of the potential challenges in grid computation include 

heterogeneity of hardware and software resources, multiple administration of 

resources, inefficient load balancing, different protocols at different layers, lack of 

trust in grid data models, poor stability, huge data handling by a single platform, large 

scale data manipulation, improper pooling of resources, etc., [3, 4]. Among the 

challenges faced by the grid-computing environment, load balancing is one that 

affects the effective performance. The main objectives of the paper is to address load 

balancing issue in the grid computing environment in following steps: 
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• Handling  uncertainty in grid resources and tasks.  

• Developing a transfer Q-learning scheme for load balancing. 

• Formulating high quality load balancing policies by implementing the 

proposed scheme using SimGrid software. 

• Results obtained are evaluated against performance metrics like Execution 

time, Response time, Learning rate and Throughput.  

Load balancing is tougher in grids compared to other conventional distributed 

computing platforms due to several factors that include heterogeneity, autonomy, 

scalability, adaptability, resource selection, resource distribution, data separation, etc, 

[5, 6]. The uncertainty in this dynamic computing environment also affects the 

performance. The main sources of uncertainty include variety of incoming data, 

virtualization of resources, frequent migration of computing tasks, high consumption 

of energy, dynamic pricing of computation models, grids distributed among wide 

geographical area, elastic provisioning of grid resources, frequent variation in the task 

processing time, etc. This uncertainty affects several performance parameters of the 

grid which include bandwidth consumption, task processing time, memory 

utilization, capacity of the resources and network, number of computing devices 

involved in the computation, vulnerable to attacks, computational complexity, etc. 

Hence, it is necessary to identify and handle the uncertainty of the tasks and grid 

resources before making load balancing decisions.  

The Profile Hidden Markov Model (PF_HMM) and Pair Hidden Markov Model 

(PR_HMM) are potential forms of Hidden Markov Models (HMM) used in 

identification of the uncertainty in the system parameters by measuring both visible 

states and partial observable state parameters of the system model [7, 8]. Some of the 

potential applications of HMM include speech recognition, digital communication, 

spicing signal prediction, convergence of multiple user activities, vehicle trajectory 

projection, stock market prediction, protein family profiling, gene finding and so on 

[9, 10].  

Neutrosophic Soft Set theory (NSS) is a mathematical framework, which solves 

decision-making problems under uncertainties and imprecision environments. It 

considers the truth, falsity, and indeterminacy membership functions to solve real 

world problems. The “neutrosophic” is originated from “neutrosophy” which means 

neutral. Every component of NSS is explained by considering three contrast estimates 

of data: inaccurate, absurd, and condensed form [11-13]. Fuzzy Neutrosophic Soft 

Set theory (FNSS) is one of the parameterized families of neutrosophic soft set 

theories in the universe that effectively handles parameter uncertainty in distributed 

computing environment through approximation of the parameters. FNSS handles the 

uncertainty in measured parameters using three approximation metrics: truth, false 

and indeterminate values. The FNSS is being widely used in several applications in 

engineering, economics, medical science, smart framing, and many more as it makes 

effective decisions by reducing the uncertain parameters to choose the optimal set of 

parameters [14, 15]. 

Q-learning is a value-based reinforcement learning algorithm that computes 

optimal action using Q-function. Once it is enabled with transfer learning it basically 

stores the optimal actions performed while solving the problem and makes use of 
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those actions in solving similar kinds of problems [16, 17]. The transfer Q-learning 

is suitable for solving large scale problems since the models used are already trained 

and pre-training is not required. Exascale computation is carried out with less 

computational power and models learn with small amounts of data. The learning rate 

achieved is very high as uncertainty is handled using Q-function enriched with FNSS 

[18-20]. In this paper, uncertainties in the tasks and resources are identified using  

PF-HMM and PR-HMM. FNSS theory handles the identified uncertainties and on 

top of which we design the transfer Q-learning scheme to perform uncertainty aware 

load balancing in the grid [21]. 

The novelty of the contributions made in the paper are as follows. 

• Precise identification of uncertainties in the grid resources and tasks using 

PF_HMM and PR_HMM and FNSS theory. This leads to efficient handling of the 

parameter uncertainties in dynamic computing setup.  

• Possibility of convergence towards suboptimal load balancing solutions is 

less due to reduction in Bellman error function and efficient smoothing of system 

parameters. 

• The Q states are not overloaded due to efficient utilization of learnt 

knowledge and reduced error in transferred target Q-function.  

• A novel FNSS based transfer Q-learning scheme is designed for load 

balancing in grid supported by algorithms and mathematical definitions. The use of 

FNSS theory improves the decision-making ability of the proposed scheme and 

prevents underutilization and overutilization of resources.  

• Expected value analysis of the proposed FNSS based transfer Q-learning 

scheme for various performance metrics has been done.  

• The proposed FNSS based transfer Q-learning scheme is tested against other 

recent works using SimGrid simulator considering uncertainty of tasks and resources. 

The paper is organized as follows. Section 2 discusses related works. Section 3 

discusses the system model considered. Section 4 provides definitions for the 

performance metrics considered for evaluation purposes and high-level view of grid 

resource and task models. Section 5 presents the proposed architecture for load 

balancing. Section 6 presents the results and discussion, and finally Section 7 draws 

the conclusion.  

2. Related work 

K h a n  et al. [22] provide a survey of the load balancing strategies for grid computing 

environments. During static load balancing, distribution of incoming tasks among the 

available grid resources is done through a fixed schema. During dynamic load 

balancing the allocation and reallocation of tasks, are done dynamically during 

execution time. The strategies reported either support or does not support task 

migration and involve flat and hierarchical topologies. For formulating load 

balancing policies four types of policies are involved: information, location, transfer, 

and selection. Some of the important factors influencing the load balancing solutions 

are scalability, fine grained tasks, hierarchical topology, heterogeneity of resources, 

dependencies over the tasks, fault tolerance, and resource processing. Performance 
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metrics include response time, communication overhead, resource utilization, 

communication delay, and throughput. 

W e n j i e  et al. [23] discuss the work-stealing algorithm to balance the load in 

grid computing environment. This algorithm works in two main stages: resource 

discovery and scheduling of the workflow tasks. In resource discovery stage, 

identification of available resources in the grid systems is done by continuously 

collecting the information on registered grid resources from grid information centre. 

During scheduling of the workflows, distribution of incoming tasks among the 

resources is done by comparing the resource requirement and resource availability 

ratio. Here the main structure used in load balancing is Directed Acyclic Graph 

(DAG) that depicts the requirements of the tasks. The main drawback of this strategy 

is mapping of tasks onto the resources without considering the uncertainty factor. The 

latency incurred in task propagation is also very high due to the use of DAG task 

representation model.  

W u  et al. [24] discuss load balancing using intelligent agents across the grid. 

Scalable scheduling of the tasks onto the resources in the grid environment demands 

the use of artificial intelligence techniques. Here the multiple-agents approach is used 

for load balancing with six types of agents i.e., worker agent, load balancing agent, 

resource agent, migration agent, cluster agent and grid agent. During the load 

imbalance situation, the cluster agent is responsible for setting up the equilibrium 

threshold by gathering the resource information from each of the resource agents 

using a knowledge algorithm. The migration agents transfer the worker agent from 

underloaded grid resources to the overloaded grid resources. Finally, the grid agents 

are responsible for transferring the tasks onto the grid resources. Multiple agents are 

very well coordinated and proper synchronization is established among them. Each 

agent learns independently by considering local state and reward without explicit 

communication among one another. This method can explore the large state and 

action pair and solves the convergence problem under non-stationary environment of 

grid. Even though the approach is found to be good in handling load imbalance 

situations while dealing with the computationally intensive problems, the execution 

time efficiency is poor. 

H a j o u i  et al. [25] use Q-learning to address the problem of task scheduling 

on heterogeneous architectures that deals with complicated applications that demand 

computationally intensive operation. By designing a three-layered framework for 

scheduling of tasks efficiency are achieved utilizing producer agents in Layer 1, 

scheduling and load balancing agents in Layer 2 and worker agents in Layer 3. The 

load balancer uses Q-learning algorithm to handle the load imbalance situation by 

making use of the knowledge gained during the previous scheduling problem. Load 

balancing decisions are taken using Q-algorithm. Optimal actions are selected using 

Markov decision process and maximize the entire reward collection policy. The  

Q-function is updated by performing each action with optimal value for the discount 

factor. The core idea of the algorithm is using a simple formula for the reward 

calculation and computing the threshold value to determine overloaded and 

underloaded nodes. The learning process involves dynamism of grid structure and 

service requirement of applications. The approach is good in reducing the tardiness 
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of tasks distribution and scheduling but often ends up in suboptimal solution due to 

premature convergence [25].  

G a r c i a-G a l a n, P r a d o  and E x p ó s i t o  [26] present load balancing based 

on fuzzy scheduling and use swarm intelligence for gaining the knowledge of the 

distributed grid environment. The Fuzzy rule-based system is designed to act as the 

grid middleware system. The grid dynamism is handled in two ways where in that 

are grid states are characterized using fuzzy notations and learning mechanism is 

automatically adopted for changing conditions. The main advantage of combining 

fuzzy rule system with swarm intelligence is its ability to handle vagueness in the 

computing environment and its easy adaptation to the dynamic changes in the grid 

conditions. The basic structure of the scheduler consists of three main components 

that are fuzzification, inference, and defuzzification. The probability of determining 

good rules keeps increasing with the increase in the number of features in the grid 

search space. However, the use of fuzzy rule-based system leads to limited 

acquisition of knowledge due to the predefined fixed number of rules. The stopping 

condition to arrive at the termination results are completely based on the statistical 

analysis results. Hence, the ability to self-improve the quality of scheduling policies 

is totally less [26].  

T a n g  et al. [27] deal with the task scheduling and load balancing policy in grid 

computing using a memory-based algorithm. The task scheduling plays a very 

important role in load balancing as it directly affects the response time incurred by 

the computing system. The dynamic scalability and scheduling of tasks are dependent 

on the behaviour statistics of the computing nodes. The behaviour and unique 

characteristics of the heterogeneous tasks are handled through continuous monitoring 

approach. The distributed Particle Swarm Optimization (PSO) algorithm with the 

memory function generates dynamic and scalable scheduling policies for 

heterogeneous computing environment. The PSO algorithm outperforms the 

stochastic algorithm in producing high quality scheduling policies due to its easily 

adaptable nature and requires only few parameter adjustments at the time of learning. 

However, the algorithm ends up in local optimum solution in high dimensional 

computing space like grid and the convergence rate is slow due to the number of 

iterations of training and testing.  

P a t n i  [28] presents a centralized strategy for load balancing across 

homogeneous form of grid computing environment. A load balancing solution based 

on typical client and server architecture is proposed to improve the system 

performance with maximum utilization of grid resources. A node is designated as 

monitored node, which gathers information from neighbouring computing nodes and 

sends it to the resource allocation node that does the load-balancing task. Higher level 

of optimization is achieved by transferring the tasks from overloaded nodes to 

underloaded nodes during load imbalance situation. The transferring of tasks happens 

at high-speed using Gridftp service which offers faster and reliable transfer. The 

complexity of task transferring is less as the overload and error problems are reduced. 

However, the approach depends on centralized server for load balancing decisions, 

which becomes susceptible to single point failures.  
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A l i  and B o u a k k a z  [29] discuss an agent-based mechanism for load 

balancing in grid. The self-adaptive and self-sustaining capability of autonomous 

agents is used to handle load imbalance situations. The agent cluster gathers current 

load information from the resource agent. The load information gathering happens at 

several stages, which involve arrival of new resources, withdrawal of resources, 

termination of load agent, start of local worker agent, receiving incoming agent, 

departure of mobile agent, and assignment of workload to agent workers. A balance 

threshold is setup based on the collected information to handle load imbalance 

situations. The capacity of the agent is determined by assigning credit value for each 

of the worker agents. The worker agent, which has the highest credit value, will be 

provided more opportunity for storing the current location. By gathering the global 

state of each of cluster, the overloaded cluster will transfer the worker agents to 

underloaded clusters. However, they fail to handle failed entities recognition, and 

synchronization between multiple agents is not achieved.  

In summary, the limitations identified in the existing works are as follows. 

• Hidden uncertainties in the tasks and resources parameters go unidentified.  

• Most of the load balancing policies produced for large dimensional space like 

grid end up in local optimum solution and the rate of convergence is too slow, due to 

high training requirements.  

• Delay and latency incurred in mapping of the tasks onto the grid resources 

are high due to the use of poor representation models.  

• The solutions proposed suffer scalability issues due to the formulation of load 

balancing policies based on the limited knowledge gained over the application 

requirements.  

• The load balancing decisions without considering the uncertainty, leads to 

low quality of decisions causing over and underutilization of resources. 

• Wastage of previously gained knowledge of the load balancer may result if 

such knowledge is not reused in similar situations. 

• Most of the algorithms lead to premature convergence as a result the chances 

of picking global optimal solution are less. 

• Underutilization and overutilization of the resources occur due to 

inappropriate load balancing decisions, as most of the algorithms are reactive in 

approach and shift the load only in the case of load imbalance situations.  

3. System model 

A typical Grid Computing Platform (GCP) is a widely distributed computing domain 

composed of several regions, 

(1)   GCP = {𝑅𝑖}𝑖=0
𝑖=𝑘. 

A Region (𝑅𝑖) is a collection of several groups. Each group consists of infinite 

amount of grid resources,  

(2)   𝑅𝑖 = {𝐺𝑖}𝑖=0
𝑖=∞. 

A Group (𝐺𝑖) is collection of several computing devices and each computing 

device has infinite amount of grid resources,  
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(3)   𝐺𝑖 = {CD𝑖}𝑖=0
𝑖=∞. 

The load imbalance can occur at two levels, one is at intra-region level, and the 

other is at inter-region level. At first the transfer Q-learning agents are deployed 

within the regions which are referred to as Intra Transfer Q-Learning Agents 

(IT_TQLAs) to balance the load within the region, 

(4)   𝑅 = {𝑅𝑖 ← IT_TQLA𝑖, 𝑅𝑗 ← IT_TQLA2,…, 𝑅𝑘 ← IT_TQLA𝑘}. 

Then the transfer Q-learning agents are deployed between the regions which are 

referred to as inter transfer Q-learning agents (IR_TQLAs) to balance the load 

between the regions, 

(5)   (𝑅𝑖, 𝑅𝑗) ← IR_TQLA𝑖,   (𝑅𝑗, 𝑅𝑘) ← IR_TQLA𝑗 , … ,   (𝑅𝑘 , 𝑅𝑙) ← IR_TQLA𝑘. 

The intra transfer Q-learning agents store the optimal set of actions performed 

for load balancing within the region and replay it whenever similar load imbalance 

situation is encountered within the region. Suppose if the load imbalance situation of 

𝑅𝑖 and 𝑅𝑗 are same then the optimal set of actions performed in 𝑅𝑖 get replayed in 𝑅𝑗,  

(6)   𝑅𝑖 ← IT_TQLA𝑖 ← Store{𝑂(𝐴𝑖), … , 𝑂(𝐴𝑖)}, 

(7)   𝑅𝑗 ← IT_TQLA𝑖 ← Replay{𝑂(𝐴𝑖), … , 𝑂(𝐴𝑖)}. 

Similarly inter transfer Q-learning agents store the optimal actions performed 

for load balancing between the regions and replay it whenever similar load imbalance 

situations occur. Suppose if the load imbalance situation between  (𝑅𝑖, 𝑅𝑗) is same as 

 (𝑅𝑗, 𝑅𝑘) then the optimal set of actions performed in (𝑅𝑖, 𝑅𝑗)is replayed in  (𝑅𝑗, 𝑅𝑘), 

(8)   (𝑅𝑖 , 𝑅𝑗) ← IR_TQLA𝑖 ← Store{𝑂(𝐴𝑖), … , 𝑂(𝐴𝑖)}, 

(9)    (𝑅𝑖 , 𝑅𝑗) ← IR_TQLA𝑖 ← Replay{𝑂(𝐴𝑖), … , 𝑂(𝐴𝑖)}. 

4. Definitions 

This section provides the definition for the performance metrics used in the paper.  

Execution time. Execution Time (ET) of the Transfer Q-learning Agent 

ET(TQA, GCE) is the summation of the time taken by the transfer Q-learning agent 

in processing the incoming tasks 𝑇TP(𝑡𝑖) with varying QoS requirements onto the 

appropriate grid resources for successful completion of the tasks 𝑇SC(𝑡𝑖→gr𝑗), 

(10)   ET(TQA, GCE) = ∑  
𝑖,𝑗=𝑛
𝑖=1,𝑗=1  [𝑇𝑃(𝑡𝑖) + 𝑇SC(𝑡𝑖→gr𝑗)]. 

Response time. Response Time (RT) of the transfer Q-learning agent 

RT(TQA, GCE) is the time difference between the arrival time of the incoming tasks 

𝑇𝐴(𝑡𝑖) and successful completion time of the tasks 𝑇SC(𝑡𝑖→gr𝑗), 

(11)   RT(TQA, GCE) = ∑  [𝑇𝐴(𝑡𝑖) − 𝑇SC(𝑡𝑖→gr𝑗)]
𝑖,𝑗=𝑛
𝑖=1,𝑗=1 . 

Learning rate. Learning Rate (LR) of the transfer Q-learning agent 

LR(TQA, GCE) is the speed at which mapping of the incoming tasks onto the 

appropriate grid resources happen, 

(12)   LR(TQA, GCE) = ∑
𝑁

SC(𝑡𝑖→gr𝑗)

ET(TQA,GCE)

𝑖,𝑗=𝑛
𝑖=1,𝑗=1 . 
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Throughput. Throughput achieved by the transfer Q-learning agent 

TH(TQA, GCE)is the measure of number of successfully completed tasks 𝑁SC(𝑡𝑖→gr𝑗) 

by the transfer Q-learning agent out of the total number of tasks allocated 𝑇𝐴(𝑡𝑖→gr𝑗). 

(13)   TH(TQA, GCE) = ∑
𝑁

SC(𝑡𝑖→gr𝑗)

𝑇
𝐴(𝑡𝑖→gr𝑗)

𝑖,𝑗=𝑛
𝑖=1,𝑗=1 . 

4.1. Grid resource model 

The availability and capability of the grid resources is modelled using the Profile 

Hidden Markov Model (PF_HMM) which vary dynamically since the grid is a large 

scalable computing environment. The uncertainty in grid resources is of various kind 

including execution failures, overutilization of CPU, variation in the availability of 

processors, rise and drop in the processor speed, lack of resource integration models 

and many more [30].  

The PF_HMM is a statistical uncertainty-handling model that converts the data 

obtained from multiple sequence alignments into collection of probability values that 

is helpful in early identification of the variation levels in the measured grid resource 

parameters. Some of the potential functions performed by PF_HMM towards 

uncertainty handling include approximation of missing parameters in the measured 

data, removal of deleted parameter states, identification of variation in parameters 

states, alignment of parameter sequence without losing the precision, unbiased 

investigation of position specific parameter errors and many more. PF_HMM helps 

in identification and isolation of the uncertainties in the grid resources.  

The PF_HMM applied over the grid resource consists of six attributes, 

(14)   PFHMM = gr𝑖, 𝑄(gr𝑖), 𝑃t(gr𝑖), 𝑃d(gr𝑖), 𝑃e(gr𝑖), 𝜋0(gr𝑖), 𝜋f(gr𝑖), 
gr𝑖 ∈ GR, 

where: 

𝑄(gr𝑖) = Set of states of the grid resource; 

𝑃t(gr𝑖) = Set of state transition probabilities, i.e., 𝑃t(gr𝑖) = 𝑄(gr𝑖) ∗ 𝑄(gr𝑖) →
𝑅, R stands for real; 

𝑃d(gr𝑖) = Set of duration probabilities, i.e., 𝑃d(gr𝑖) =  𝑁 ∗ 𝑄(gr𝑖) → 𝑅, N 

stands for non-negative integer; 

𝑃e(gr𝑖) = Set of emission probabilities, i.e., 𝑃e(gr𝑖) =𝛼∗ ∗ 𝑁 ∗ 𝑄(gr𝑖) → 𝑅, 𝛼∗ 

stands for strings over 𝛼; 

𝜋0(gr𝑖) = Starting state runof PF_HMM; 

𝜋f(gr𝑖) = Final state run of PF_HMM. 

The final PF_HMM refined grid resource parameters are as follows, 

(15)   𝜃∗ = argmax
𝜃

(∑
∏ 𝑃e(gr𝑖)𝑃t(gr𝑖)𝑃d(gr𝑖)𝑖=𝑛

𝑖=1

𝑃(𝑆|𝜃)
). 

The Truth, false and indeterminate values of FNSS, i.e., FNSS(GR) are as 

follows:  

(16)  FNSS(HMM(GR)) = {gr𝑖, 𝑇FNSS(gr𝑖), 𝐼FNSS(gr𝑖), 𝐹FNSS(gr𝑖), gr𝑖 ∈ GR}. 

The truth, false and indeterminate values of FNSS based grid resources fall 

within the closed interval of zero and one:  

𝑇FNSS(gr𝑖), 𝐼FNSS(gr𝑖), 𝐹FNSS(gr𝑖) → [0, 1]. 
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4.2. Task model 

The Quality of Service (QoS) requirement of the tasks varies dynamically over time 

that demands for constant evaluation of the requirements for readjustment of the load 

balancing policies [31]. It is modelled using Pair Hidden Markov Model (PR_HMM). 

The uncertainty in incoming task model is due to sudden variation in the task 

demands, increasingly demanding applications, poor correlation between the tasks 

and resources, lack of customizable resource requirement policies, elasticity of the 

task demands, unpredictable spike in the incoming task traffic, etc.  

The PR_HMM is a kind of HMM which provides probability-based distribution 

over the specific pairs of observations made over the task parameters. The PR_HMM 

is an extension of PF_HMM in which inferences are drawn based on the two 

observation sequences of the input parameters instead of one. Some of the potential 

functions performed by PR_HMM towards uncertainty handling include pair wise 

alignment of the parameters, making multiple observations to track the mobility of 

the incoming parameters, liner interpolation of high variability parameters, 

identification of structural variability, achieving fine-grained control over the linear 

flow of parameters, etc. The PR_HMM handles uncertainties in the incoming tasks.  

The PR_HMM over the task consists of six attributes, 

(17)   PR_HMM = 𝑡, 𝑄(𝑡𝑖), 𝑃t(𝑡𝑖), 𝜑d(𝑡𝑖), 𝜑e(𝑡𝑖), 𝜋0(𝑡𝑖), 𝜋f(𝑡𝑖), 𝑡𝑖 ∈ 𝑇, 

where: 

𝑄(𝑡𝑖) = Set of states of the grid resource; 

𝑃t(𝑡𝑖) = Set of state transition probabilities, i.e., 𝑃t(gr𝑖) =  𝑄(gr𝑖) ∗ 𝑄(gr𝑖) →
𝑅, R stands for real; 

𝜑d(𝑡𝑖) = Joint distribution of paired duration, i.e., 𝑃d(gr𝑖) =  𝑁 ∗ 𝑁 ∗ 𝑄(gr𝑖) →
𝑅, N stands for non-negative integer; 

𝜑e(𝑡𝑖) = Joint distribution of paired emission, i.e.,  

𝑃e(gr𝑖) =𝛼∗ ∗ 𝛼∗ ∗ 𝑁 ∗ 𝑄(gr𝑖) → 𝑅, 𝛼∗ 

stands for strings over 𝛼; 

𝜋0(𝑡𝑖) = Starting state run of PR_HMM; 

𝜋f(gr𝑖) = Final state run of PR_HMM. 

The final PR_HMM refined grid resource parameters are as follows: 

(18)   𝜃∗ = argmax
𝜃

(∑
∏ 𝜑e(𝑡𝑖)𝑃t(𝑡𝑖)𝜑d(𝑡𝑖)𝑖=𝑛

𝑖=1

𝑃(𝑆|𝜃)
). 

FNSS handles the uncertainty in the incoming tasks using true, false, and 

indeterminate values, i.e.,  

(19)   FNSS(PR_HMM(𝑇)) = {𝑡𝑖, 𝑇FNSS(𝑡𝑖), 𝐼FNSS(𝑡𝑖), 𝐹FNSS(𝑡𝑖), 𝑡𝑖 ∈ 𝑇}. 

The true, false, and indeterminate values of FNSS based incoming tasks falls 

within the closed interval of zero and one 𝑇FNSS(𝑡𝑖), 𝐼FNSS(𝑡𝑖), 𝐹FNSS(𝑡𝑖) → [0, 1]. 

5. Proposed work 

Fig. 1 gives the high-level architecture of the FNSS based transfer Q-learning scheme 

for load balancing. The architecture is composed of three functional components, i.e., 

Fuzzy Neutrosophic Soft Set Task Uncertainty Handler (FNSS-TUH), Fuzzy 

Neutrosophic Soft Set Resource Uncertainty Handler (FNSS-RUH) and Inter/Intra 
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Transfer Q-Learning Agent (I/I_TQLA). The FNSS-TUH handles the uncertainty in 

the task parameters; FNSS-RUH handles the uncertainty in the grid resource 

parameters. The I/I_TQLA formulate load-balancing policies within the region and 

between the regions using TQLA. Fig. 2 shows the flow of the proposed scheme. 
 

 
 

Fig. 1. High-level architecture of the FNSS based transfer Q-learning scheme for load balancing  

 

 
Fig. 2. Flowchart of the proposed FNSS based transfer Q-learning scheme for load balancing 

5.1. Fuzzy Neutrosophic Soft Set Task Uncertainty Handler (FNSS-TUH) 

The FNS-TUH inputs the PF_HMM enabled tasks to generate reduced PF_HMM 

enabled tasks by using FNSS theory. The main goal is to use Discernibility matrix 

and weighted average of discernibility matrix to remove uncertainty in the tasks and 

normalize it. By performing weighted Average Square over standard minimum of 

discernibility matrix, the uncertainty free task parameters are obtained. The task 
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parameters are transferred into set of subsets of task attributes by considering each of 

the elements of the task matrix. The operation begins by considering partial set of 

subsets of tasks and through absorption operation, the superset of task parameters is 

removed. Through absorption and grouping operations the partial subset of tasks is 

deleted, this modified representation of tasks is repeated in loop until final reluctant 

of reduced task set is produced. Algorithm 1 gives the working of FNSS-TUH. 

Algorithm 1. Working of FNSS-TUH 

Step 1. Begin 

Step 2. Input: PF_HMM(𝑡𝑖) = (𝑄(𝑡𝑖), 𝑃t(𝑡𝑖), 𝜑d(𝑡𝑖), 𝜑e(𝑡𝑖), 𝜋0(𝑡𝑖), 𝜋f(𝑡𝑖)) 

Step 3. Output:  

PF_HMM(𝑡𝑖)rd(𝑄(𝑡𝑖)rd, 𝑃t(𝑡𝑖)rd, 𝜑d(𝑡𝑖)rd, 𝜑e(𝑡𝑖)rd, 𝜋0(𝑡𝑖)rd, 𝜋f(𝑡𝑖)rd) 

Step 4. for every 𝑡𝑖 ∈ 𝑇 do 

Step 5.      Form FNSS of PF_HMM (𝑡𝑖)
 

Step 6.     PF_HMM (𝑡𝑖) = (𝑡𝑖, 𝑇FNSS(𝑡𝑖), 𝐼FNSS(𝑡𝑖), 𝐹FNSS(𝑡𝑖)) 

Step 7.     Calculate discernibility matrix D (FNSS-PF_HMM (𝑡𝑖, 𝑡𝑗)), i.e., 

Step 8.     D (FNSS-PF_HMM (𝑡𝑖 , 𝑡𝑗)) ={𝜇(𝑎) ∈ 𝐴|𝑔(𝑡𝑖, 𝜇(𝑎)) ≠ 𝑔(𝑡𝑗, 𝜇(𝑎))} 

Step 9.     Compute fuzzy weighted average of discernibility matrix, i.e., 

                FWA = ∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1 , where 𝑤𝑖 is the assigned weight. 

Step 10.     D (FNSS-PF_HMM (𝑡𝑖, 𝑡𝑗)) = 

Φ {a1/FWA} {a1/FWA, a4/FWA} 

.... .... ..... 

{a1/FWA, a3/FWA, a4/FWA} ... Φ 

Step 11. Calculate the standard minimum ∆∗D (FNSS-PF_HMM (𝑡𝑖, 𝑡𝑗)) = 

∆∗ 𝐷(FNSS − PF_HMM(𝑡𝑖, 𝑡𝑗)) =  (𝜇(𝑎𝑖) ∧ 𝜇(𝑎𝑗))⋁(𝜇(𝑎𝑘) ∧ 𝜇(𝑎𝑙)) 

{a1
*

, a6
*} {a1

*} {a1
*, a6

*} 

.... .... ..... 

{a6
*} ... {a4

*
, a7

*} 

Step 12.     Calculate the fuzzy weighted average square over standard 

minimum of discernibility matrix, i.e., FWA2=∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1

2, i.e., 

Step 13.    D (FNSS-PF_HMM (𝑡𝑖 , 𝑡𝑗)) = 

{𝑎1 
∗ /FWA2, 𝑎6 

∗ /FWA2} {𝑎3 
∗ /FWA2} {𝛷∗ /FWA2} 

.... .... ..... 

{𝑎6 
∗ /FWA2} ... {𝑎4 

∗ /FWA2, 𝑎7 
∗ /FWA2} 

Step 14. End for 

Step 15. Output all reduced tasks in PF_HMM(𝑡𝑖) to form PF_HMM(𝑡𝑖)rd 

Step 16. End 

5.2. Fuzzy Neutrosophic Soft Set Resource Uncertainty Handler (FNSS-RUH) 

The FNSS-RUH inputs the PF_HMM enabled grid resources to generate 

reduced PF_HMM enabled grid resoures by using FNSS theory. By using 

Discernibility matrix and weighted average of discernibility matrix the uncertainty in 

the grid resources is normalized. By performing weighted Average Square over 

standard minimum of discernibility matrix, the uncertainty free grid resource 
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parameters are obtained. The grid resource parameters are transferred into set of 

subsets of grid resource attributes by considering each of the elements of the grid 

resource matrix. The operation begins by considering partial set of subsets of grid 

resources and through absorption operation, the superset of grid resource parameters 

is removed. Through absorption and grouping operations the partial subset of grid 

resources gets deleted, this modified representation of grid resources gets repeated in 

loop until final reluctant of reduced grid resource set is produced. Algorithm 2 gives 

the working of FNSS-RUH. 

Algorithm 2. Working of FNSS-RUH 

Step 1.  Begin 

Step 2.  Input:PF_HMM(gr𝑖) =
(𝑄(gr𝑖), 𝑃t(gr𝑖), 𝜑d(gr𝑖), 𝜑e(gr𝑖), 𝜋0(gr𝑖), 𝜋f(gr𝑖)) 

Step 3. Output: PF_HMM(gr𝑖)rd =
(𝑄(gr𝑖)rd, 𝑃t(gr𝑖)rd, 𝜑d(gr𝑖)rd, 𝜑e(gr𝑖)rd, 𝜋0(gr𝑖)rd, 𝜋f(gr𝑖)rd) 

Step 4.  for every gr𝑖𝑖
∈ GR do 

Step 5.        Form FNSS of PR_HMM (gr𝑖)
 

Step 6.         PR_HMM (gr𝑖)=(gr𝑖 , 𝑇FNSS(gr𝑖), 𝐼FNSS(gr𝑖), 𝐹FNSS(gr𝑖)) 

Step 7.         Calculate discernibility matrix D (FNSS-PF_HMM (gr𝑖 , gr𝑗)), 

i.e., 

Step 8.   

D(FNSS-PR_HMM (gr𝑖 , gr𝑗)) = {𝜇(𝑎) ∈ 𝐴|𝑔(gr𝑖, 𝜇(𝑎)) ≠ 𝑔(gr𝑗, 𝜇(𝑎))} 

Step 9.        Compute fuzzy weighted average of discernibility matrix, i.e.,  

              FWA = ∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1 , where 𝑤𝑖is the assigned weight. 

Step 10.            D (FNSS-PR_HMM (gr𝑖, gr𝑗)) = 

Φ {a1/FWA} {a1/FWA, a4/FWA} 

.... .... ..... 

{a1/FWA, a3/FWA, a4/FWA} ... Φ 

Step 11.     Calculate the standard minimum ∆∗D (FNSS-PR_HMM (gr𝑖, gr𝑗)) 

= ∆∗ 𝐷(FNSS − PR_HMM(gr𝑖, gr𝑗)) =  (𝜇(𝑎𝑖) ∧ 𝜇(𝑎𝑗))⋁(𝜇(𝑎𝑘) ∧ 𝜇(𝑎𝑙)) 

{a1
*

, a6
*} {a1

*} {a1
*, a6

*} 

.... .... ..... 

{a6
*} ... {a4

*
, a7

*} 

Step 12.           Calculate the fuzzy weighted average square over standard 

minimum of discernibility matrix, i.e., FWA2=∑ (𝑤𝑖 ∗ 𝜇(𝑎))𝑖=𝑛
𝑖=1

2, i.e., 

Step 13.        D (FNSS-PR_HMM (𝑡𝑖, 𝑡𝑗)) = 

{𝑎1 
∗ /FWA2, 𝑎6 

∗ /FWA2} {𝑎3 
∗ /FWA2} {𝛷∗ /FWA2} 

.... .... ..... 

{𝑎6 
∗ /FWA2} ... {𝑎4 

∗ /FWA2, 𝑎7 
∗ /FWA2} 

Step 14. End for 

Step 15. Output all reduced tasks in PR_HMM(𝑡𝑖) to form PR_HMM(𝑡𝑖)rd 

Step 16. End 
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5.3. Inter/Intra Transfer Q-Learning Agent (I/I_TQLA) 

This module generates load-balancing policies AΠ by accepting uncertainty free tasks 

and grid resource parameters in reduced form PF_HMM(𝑡𝑖)rd, PF_HMM(gr𝑖)rd. This 

component generates high quality policies by updating the Q-value twice in both 

learning stage and applying stage using state value function. It mainly consists of two 

sub-stages one to learn Inter/Intra TQLA and the other to apply Inter/Intra TQLA. 

During learning stage, a random action is performed to obtain the reward and the 

learning state Q-value is computed for each state of the agent. During apply stage the 

Q-value is updated by considering the best matching Q-value state in the leaning 

stage. Finally, the applied resource provisioning policies are formulated by keeping 

the basis of the learned resource provisioning policies. Algorithm 3 provides the 

working of IT_TQLA/IR_TQLA. 

Algorithm 3. Working of the Inter/Intra Transfer-Q-Learning Agent  

Step 1. Start 

Step 2. Input: PF_HMM(𝑡𝑖)rd =

(𝑄(𝑡𝑖)rd, 𝑃t(𝑡𝑖)rd, 𝜑d(𝑡𝑖)rd, 𝜑e(𝑡𝑖)rd, 𝜋0(𝑡𝑖)rd, 𝜋f(𝑡𝑖)rd),  

         PF_HMM(gr𝑖)rd

= (𝑄(gr𝑖)rd, 𝑃t(gr𝑖)rd, 𝜑d(gr𝑖)rd, 𝜑e(gr𝑖)rd, 𝜋0(gr𝑖)rd, 𝜋f(gr𝑖)rd) 

Step 3. Output: Set of applied load balancing policies  
AΠ = {AΠ1, AΠ2, AΠ3, … , AΠp} 

Step 4.  Model to learn: Inter/Intra TQLA 

Step 5.  for every PF_HMM(𝑡𝑖)rd and PF_HMM(gr𝑖)rd do 

Step 6.      Initialize the learning stage Q-value with the random state and action 

LQ(𝑆, 𝐴) = ∅ 

Step 7.      for every action 𝐴𝑖 ∈ 𝐴 do 

Step 8.       Perform an action in random to get the reward in the state 

Step 9.       Update the learning stage Q-state 

LQ(𝑆, 𝐴) = LQ(𝑆, 𝐴) + 𝛿𝑅(𝑆, 𝐴) + 𝛿LQ(arg max LQ(𝑆, 𝐴)) − LQ(𝑆, 𝐴) 

Step 10.      Calculate the Learning stage Q-state, i.e., LQ-state value function 

                LV(𝑆, 𝐴) = 𝐸(𝜋), Include the reward given for each state 

Step 11.      Formulate the resource provisioning learned policy 

Lπ𝑖 = 𝜋𝑟2 = 𝛿 + 𝛿LQ(arg max(LQ(𝑆, 𝐴)) 

Step 12.    End for  

Step 13.  End for 

Step 14.  Generate the Learning stage policies. 

LΠ ∷= LΠ ∪ Lπ𝑖 

Step 15.  Output learned Load-balancing policies  

LΠ = {LΠ1, LΠ2, LΠ3, … , LΠ𝑝} 

Step 16.  Model to Apply: Inter/Intra TQLA 

Step 17.  Input the learned policies from the model  

LΠ = {LΠ1, LΠ2, LΠ3, … , LΠ𝑝} 

Step 18.  for every PF_HMM(𝑡𝑖)rd and PF_HMM(gr𝑖)rd do 
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Step 19.  Initialize the applying stage Q-value with the random state and action 

AQ(𝑆, 𝐴) = ∅ 

Step 20.      for every action 𝐴𝑖 ∈ 𝐴 do 

Step 21.            Perform an action in random to get the reward in the state 

Step 22.          Update the applying stage Q-state by keeping the best matching 

learning Q-state value 

AQ(𝑆, 𝐴) = AQ(𝑆, 𝐴) + δR(𝑆, 𝐴) + 𝛿 arg max(AQ(𝑆, 𝐴), LQ(𝑆, 𝐴)) 

Step 23.          Calculate the applying Q-state AQ state value function 

AV(𝑆, 𝐴) = 𝐸(𝜋), Include the reward given for each state. 

Step 24.        Formulate the resource provisioning applied policy 

Aπ = 𝛿 + δAQ(arg max(AQ(𝑆, 𝐴)) 

Step 25.    End for  

Step 26.  End for 

Step 27.   Generate the applying stage policies. 

𝐴Π ∷= 𝐴Π ∪ Aπ𝑖 

Step 28.  Output applicable load balancing policies 

AΠ = {AΠ1, AΠ2, AΠ3, … , AΠ𝑝} 

Step 29.  Stop 

6. Results and discussion 

This section provides the experimental setup for comparison of the Proposed Work 

(PW) with three of the recent Existing Works (EW1 [24], EW2 [25], EW3 [26]) based 

on Execution time, Response time, Learning rate and Throughput using SimGrid 

open-source simulation software. The SimGrid software allows simulation of grid 

computing environment by modelling heterogeneous grid resources under 

uncertainty of tasks and grid resources. The topology of the grid-computing 

environment, content present in the computing nodes, and status of resource 

availability in grid resources is detailed inside configuration file. The task and 

resource configuration file includes the distributed data files content. Application, 

containing benchmark dataset is considered for simulation purpose and initialization 

of the parameters are as follows: grid dimension=28*19*5; active cells=1761; cell 

dimension=40*40*40; control steps=5; volume=1 PV; simulation time=5 min; 

packet size=80 Bytes; packet interval=20 ms, number of computing nodes=1500, 

InitEng=4.0 J; grid size=100 m; distance between the neighbours=10 m; routing 

protocol=AODV; MAC protocol=MAC/802_15_4; system loss=1.0; gain transmitter 

antenna=1.0; gain receiver antenna=1.0; transmitter height = 1.5 m; radio 

model=TwoRayGround; and Antenna type=Omni antenna [32, 33]. The grid 

topology considered for evaluation contains three computing clusters composed of 

27 nodes in which 13 nodes contain both computing elements and storage elements. 

Remaining nodes are network nodes that do not contain computing elements and 

storage elements.  
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6.1. Uncertainty of tasks 

The incoming tasks in grid computing environment exhibit highly dynamic 

behaviours due to several factors, which cause uncertainty. These factors include 

inefficient distribution of tasks, uneven arrival rate of tasks, heterogeneous real-time 

tasks, uncertain duration for task offloading, frequent suspension of tasks 

computation, and proper trajectory positions of the tasks [34].  

Execution time. Fig. 2 depicts the execution time incurred over the varying 

uncertainty of tasks. The execution time of the PW is very low throughout with the 

increase in the uncertainty of the tasks as the transfer Q-learning uses the already 

learnt knowledge about previous similar load imbalance situations. The execution 

time of the EW1 is higher during lower uncertainty of tasks and remained to be higher 

even with the increase in the uncertainty of the tasks as the conventional Q-learning 

takes longer time to arrive at optimal load balancing policies with overloaded  

Q-states. The execution time of the EW2 kept increasing with the increase in the 

uncertainty of the tasks due to the combination of swarm intelligence and limited 

number of fuzzy rules. The execution time of the EW3 is very high during lower 

uncertainty of tasks and even during higher uncertainty of tasks as the PSO Algorithm 

easily ends up into suboptimal solution when exposed to high dimensional grid 

computing environment.  
 

 
Fig. 2. Execution time incurred over the varying uncertainty of tasks 

Response time. Fig. 3 shows the response time incurred over the varying 

uncertainty of tasks.  

 
Fig. 3. Response time incurred over the varying uncertainty of tasks 
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The response time of the PW is found to decrease gradually with the increase in 

the uncertainty of the tasks as the uncertainties in the tasks and grid resources are 

handled properly using FNSS theory before formulating load balancing policies using 

transfer Q-learning. The response time of the EW1 and EW2 is higher throughout 

even during lower uncertainty of tasks and higher uncertainty of tasks as the 

techniques suffer from scattering problem when exposed to high dimensional grid 

computing environment. The response time of EW3 is moderate during lower 

uncertainty level of tasks and remained lower during higher uncertainty of tasks due 

to poor local and global search ability of the technique.  

Learning rate. Fig. 4 shows the learning rates observed over the varying 

uncertainty of tasks. The learning rate of the PW remained very high during lower 

and higher uncertainty of tasks as the speed of operation of the transfer Q-learning is 

very high since the initial and target load imbalance situations are very much same in 

the grid environment. The learning rate of the EW1 and EW3 remained average 

during lower and higher uncertainty of tasks as the learning speed slows down due to 

frequent visiting of the state-action pairs of the agent and poor parameter optimization 

procedure. The learning rate of the EW2 is higher during lower and higher uncertainty 

of tasks as the technique fail to readily deal with the uncertainty in the tasks and grid 

resource parameters.  
 

 
Fig. 4. Learning rate observed over the varying uncertainty of tasks 

Throughput. Fig. 5 provides a graph of throughputs achieved over the varying 

uncertainty of tasks. The throughput achieved by the PW is very high during lower 

and higher uncertainty of tasks as the uncertainty in the tasks, grid resources get 

identified using PF_HMM, and PR_HMM after that high quality load balancing 

policies are formulated using transfer learning. The throughput achieved by the EW1 

is very low during lower and higher uncertainty of tasks as the quality of load 

balancing policies formulated are poor due to trial-and-error approach. The 

throughput achieved by EW2 is moderate during lower uncertainty of tasks and 

remained lower during higher uncertainty of tasks due to the sequence of random 

decisions taken at runtime and being highly sensitive to noisy parameters. The 

throughput achieved by the EW3 is moderate during lower uncertainty of tasks, 
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reduced still more with the increase in the uncertainty of tasks due to poor 

generalization performance, and suffers from over-fitting problem.   

 
Fig. 5. Throughput achieved over the varying uncertainty of tasks 

6.2. Uncertainty of grid resources 

The resources in grid computing environment also involve huge number of 

uncertainties that arise from several factors that include large number of distributed 

resources, loosely coupled grid resources, inherent variability of grid resources, poor 

ensemble of grid resources, uneven scaling of resources, distributed ownership 

problem, and poor stability of resources due to the launch of cyber-attacks [35].  

Execution time. Fig. 6 gives a graph of execution times incurred over the 

varying uncertainty of grid resources. The execution time of the PW is lower during 

lower and higher uncertainty of grid resources as the transfer Q-learning is capable 

enough of making high quality load balancing policies through fast iterations with 

the grid environment.  The execution time of the EW1, EW2 and EW3 remained to 

very high during lower uncertainty and higher uncertainty level of grid resources as 

the models used exhibit higher probability of converging to suboptimal solutions and 

demands significant effort for fine-tuning of the sensitive outlier parameters.  
 

 
Fig. 6. Execution time incurred over the varying uncertainty of grid resources 

Response time. Fig. 7 gives a graph of response time incurred over the varying 

uncertainty of grid resources. The response time of the PW is found to be moderate 

initially during lower uncertainty of grid resources and found to be lower even with 
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the increase in the uncertainty of the grid resources as the transfer Q-learning model 

is capable enough choosing actions with high expected utility without the need to 

exactly model the uncertain grid computing environment. The response time of the 

EW1 and EW2 is very much higher during lower and higher uncertainties of grid 

resources as the loads balancing decisions taken lacks rational thinking and are often 

mistaken because of likelihood hypothesis. The response time of the EW3 is 

moderate during lower and higher uncertainty of grid resources as the approach 

suffers from sizing problem and produces diverging value for mean square 

displacement and infinite value for particle velocity.  

 
Fig. 7. Response time incurred over the varying uncertainty of grid resources 

Learning rate. Fig. 8 gives a graph of learning rates observed over the varying 

uncertainty of tasks.  

 
Fig. 8. Learning rate observed over the varying uncertainty of grid resources 

The learning rate of the PW is moderate during lower uncertainty of grid 

resources and keeps increasing with the increase in the uncertainty of the grid 

resources due to proper transfer of learnt knowledge composed of weights and 

features from trained model to training model to tackle newer problems with few 

training data. The learning rate of the EW1 is lower with lower uncertainty of grid 

resources and remains lower during higher uncertainty of grid resources as the as the 

Q-learning behaves poorly in stochastic environment. The learning rate of EW2 is 

lower during lowered uncertainty of grid resources and remains moderate with the 

increase in the uncertainty of grid resources due to poor uncertainty handling using 

fuzzy membership function. The learning rate of the EW3 is higher during lower 
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uncertainty of grid resources but starts to decline with the increase in the uncertainty 

of grid resources as the convergence speed is low due to the approach being highly 

sensitive to velocity parameters.  

Throughput. Fig. 9 gives a graph of throughput achieved over the varying 

uncertainty of grid resources. The throughput of the PW remains higher during lower 

and higher uncertainty of grid resources as the transfer Q-learning algorithm is more 

goal oriented and predictions of the Q-function after gaining knowledge through 

transfer learning is highly accurate. The throughput of EW1 is moderate during lower 

and higher uncertainty of grid resources as the approach suffers from high instability 

due to correlated updating of sequential training data and parameters affects the 

estimator target and causes high divergence between them. The throughput of EW2 

and EW3 are found to be higher during lower uncertainty of grid resources but start 

to decline with the increase in the uncertainty of grid resources as both the approaches 

lack wider exploration capability and fail to achieve proper trade-off between 

exploration and exploitation phases for performance enhancement. 
 

 
Fig. 9. Throughput achieved over the varying uncertainty of grid resources 

7. Conclusion 

This paper presents a novel FNSS based Transfer-Q-Learning scheme for load 

balancing in uncertain grid computing environments. The hidden uncertainties in the 

tasks and grid resource parameters are identified precisely using PF_HMM and 

PR_HMM. FNSS handles the identified uncertainty of the tasks and grid resource 

parameters using FNSS theory. The transfer Q-learning agent with pre-trained 

knowledge solves the large-scale load-balancing problem. The transfer Q-learning 

agents can automatically learn with small amounts of data by efficiently handling the 

uncertainty in the system parameters using FNSS. The error encountered while 

computing target transfer Q-function value is negligible as it reduces possible harm 

to the incoming task and resource parameters. From the results obtained it is inferred 

that the proposed work outperforms three of the existing recent works by about 90 

percent with respect total execution time, response time, learning rate and throughput. 

We plan to extend the proposed work to develop secure and robust load balancing 

scheme for other high-performance computing domains like cloud and fog. 
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However the proposed FNSS based Transfer-Q-Learning scheme for load 

balancing include several limitations, which need to be handled efficiently. Some of 

the potential challenges encountered are as follows: Practical implementation of 

FNSS in real-world applications becomes difficult as the fuzzy neutrosophic 

components exhibit nonstandard intervals. The PF_HMM and PR_HMM 

frameworks used to identify parameter uncertainties often suffer evaluation and 

decoding problems.  
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