
 3

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 22, No 4

Sofia • 2022 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2022-0036

A New Attribute-Based Access Control Model for RDBMS

Jaafer Al-Saraireh, Majid Hassan
Princess Sumaya University for Technology, Jordan
E-mails: J.saraireh@psut.edu.jo majidamto@gmail.com

Abstract: One of the challenges in Attribute-Based Access Control (ABAC)

implementation is acquiring sufficient metadata against entities and attributes.

Intelligent mining and extracting ABAC policies and attributes make ABAC

implementation more feasible and cost-effective. This research paper focuses on

attribute extraction from an existing enterprise relational database management

system – RDBMS. The proposed approach tends to first classify entities according to

some aspects of RDBMS systems. By reverse engineering, some metadata elements

and ranking values are calculated for each part. Then entities and attributes are

assigned a final rank that helps to decide what attribute subset is a candidate to be

an optimal input for ABAC implementation. The proposed approach has been tested

and implemented against an existing enterprise RDBMS, and the results are then

evaluated. The approach enables the choice to trade-off between accuracy and

overhead. The results score an accuracy of up to 80% with no overhead or 88% of

accuracy with 65% overhead.

Keywords: ABAC, Access control, Entity cardinality rank, Dominance level rank.

1. Introduction

Database management is considered an essential component of many information

systems to store data [1, 2]. Access control is a facility that determines the legitimacy

of every attempt by a user to access any resource of the system. There are, mainly,

four Access Control models: (1) Mandatory Access Control model (MAC);

(2) Discretionary Access Control model (DAC); (3) Role-Based Access Control

model (RBAC); (4) Attribute-Based Access Control (ABAC).

In security systems, three concepts are recognized: access control policies,

access control models, and access control mechanisms [3]. In ABAC, authorization

to access the objects is not directly granted to the users. It uses attributes of the users,

objects, requested operations, and environment to define access authorization on

objects. Users must prove that they possess the specified attributes they claim to own.

For this reason, ABAC access control relies on user authentication at the time of a

request. Fig. 1 illustrates the ABAC model.

https://www.techtarget.com/searchdatamanagement/definition/database

 4

Fig. 1. ABAC model [4]

ABAC permits or denies actors’ requests based on some attributes of the

participant entities and environmental conditions. ABAC controls access to resources

by evaluating rules against the attributes of entities relevant to a request [5]. This

flexibility enables addressing security policy rules without mapping explicit

relationships between subjects and objects. In the ABAC model, access requests are

evaluated by changing attribute values per request. Access decisions are always

evaluated the same way without looking for a specific subject/object relationship

each time requests are made. The typical ABAC model has different attribute

categories: User Attributes, Object Attributes, and Environmental Attributes.

The rest of the paper is organized as follows. We discuss related work in

Section 2, describe the methodology in Section 3, Section 4 presents the proposed

approach, Section 5 experiments, evaluation and shows the results of the experiments.

We present our conclusions and future work in Section 6.

2. Related work

One of the challenges in ABAC implementation is acquiring sufficient metadata on

entities and attributes. Some researchers, such as [6], have found that the absence of

a sufficient set of entities and attributes causes the ABAC system not to work

properly. They state that entities and their attributes must be established, maintained,

and made available before ABAC implementation. However, they do not point to the

issue of gathering and addressing the related system entities and their attributes that

will be involved in the ABAC system.

The combining MAC and ABAC have been presented by [7]. A model that

preserves the MAC Access control approach while enhancing access control

decisions with security attributes so that security clearance of a subject or object is

an attribute. Subjects, objects, and the environment are considered as entities with

finite attributes. Mandatory attributes are established and attached to each entity, and

any permission request mandatorily requires these attributes. The main focus of the

research is on combining the two models of MAC and ABAC, but the study's

attributed extracting and selection problems are still undiscussed. A new access

control model called Attribute-Rule ABAC (AR-ABAC was proposed by [8]; the

 5

suggested model recognizes the attribute rules concepts that address the correlation

between users and objects and the opportunity of accessing object entities based on

their security levels. The presented model specifies assumptions that specify the

appropriate attributes that should be used and the number of attributes token for

making access decisions. While the proposed model sets that policies are responsible

for attribute selection, the model does not answer how this could be achieved.

In [9], the focus is on how to extract and define a set of authorization attributes

for the ABAC system. Using natural language processing, they triy providing

algorithms to extract attributes from ABAC policy documents automatically. Their

research differs from this research by the extraction method and source of extraction.

Also, another research [10] has tried to utilize natural language processing to extract

and define the constraints of ABAC security policies. Both ABAC policies and

constraints imply the extraction of ABAC attributes too. The research focuses on

ABAC constraints rather than the attributes with which the rules are formulated.

The work of [11] offers ABAC policy mining from access request logs. Their

research reflects the importance of automated mining ABAC attributes and policies;

their algorithms rely on an existing working ABAC system. They do not consider

cases when no ABAC system exists. An efficient ABAC policy retrieval method

based on attribute and value levels in multimedia networks is presented by [12]. The

approach is based on retrieving policies that satisfy the request at the attribute level

by computing based on the binary identifier. The depth index is implemented in this

research to reconstruct the policy decision tree at the attribute value level. A new

access control model was presented by [13]. It is a model based on combined RBAC

and ABAC. ABAC with anonymous access has been introduced by [14]; the

proposed model inherits the features of the ABAC model, such as fine-grained

authorization, policy flexibility, and unlimited object types.

Reachability analysis for effective user attributes based on the direct attributes

assigned to the user or its member user groups is presented by [15]. This approach

uses the polynomial-time algorithm to solve special schemes’ instances under

restricted conditions. A multi-level security attribute-based access control scheme is

presented by [16]. The approach is based on static and dynamic user attributes

combined with the assigned security level that satisfies the requirements of NIST's

ABAC model. A new access control model for smart homes is presented by [17]. The

model captures different user, environment, operation, and device characteristics

based on a dynamic fine-grained ABAC approach.

The literature reviews explain that a poor selection of involved entities and

attributes could dramatically increase the complexity of the ABAC system, making

managing such a system very tough. Many kinds of literature suggested models and

approaches to either combine the features of two models or how to re-configure some

ABAC features to enhance ABAC functionality. Still, none have discussed how to

address a good attribute selection method to formulate ABAC permissions. This

proposed research introduces a mechanism that aims to choose the optimal subset of

attributes to be involved in ABAC permissions addressing keeping the ABAC model

at its least complexity with the minimum overhead and cost. This proposed research

contributes to existing knowledge by: (1) offering automated extraction of entities

 6

and attribute metadata from an existing RDBMS for ABAC implementation; (2)

enhance the ability to decide what attributes are likely candidates to play the input of

ABAC policy rules.

3. Methodology

Implementing ABAC security in existing enterprise RDBMS has a subset of

challenges. One challenge is collecting and extracting sufficient entities and attributes

metadata for use in the ABAC security policies rules design domain. It is hard to

establish entities and attributes metadata manually for an enterprise RDBMS due to

the nature of such large systems and environments. There is a strong need for

automated extraction of ABAC entities and attributes metadata before the ABAC

implementation.

3.1. Proposed approach model

We must address the system’s security policies to implement an ABAC model in an

enterprise system. Security policies of the typical ABAC model consist of conditional

expressions formulating the access permission or denial rules. Such expressions are

constructed using attributes of entities such as subjects, objects, and environment.

The first step of starting ABAC implementation is gaining the attributes

repository of entities. It requires gathering all system entities’ information, attributes,

attributes values, relationships, etc., and putting it together in a well-organized

repository to access later during implementation. This proposed research offers a

semi-fully automated approach to extracting entities and attributes for ABAC

implementation from an existing enterprise RDBMS. It makes it easier to implement

ABAC by automatic attribute extraction and selection. Offered entities and attributes

extraction approach relies on reverse-engineering scripts against RDBMS and some

ranking formulas for weighting the selectiveness of entities and attributes.

The second step categorizes entities into three major categories, subject, object,

and environmental entities. Also, when considering security policies as requested

processes and obligators for operations, it is trivial to relate the security policies to

the workflow processes of the enterprise. The third step separates classification

dimensions for the scope of entities. The scope of entities is defined as the scope of

visibility of an entity within a system where it is effective and applicable. Entities

within the widest scope are important in security policy design because they apply to

the whole system. We might use entities limited to the undergone scope for sub-

system security policies. The scope we work within determines what entities we

should involve in addressing security policies. Entities with larger scopes are the most

candidates in security policy design.

Fourth step, security policies and rules expressions should be designed to serve

as long as possible. Security policy rules should be valid and applicable all the time.

Expressions in access permissions should involve valid entities that represent

persistent and valid parts of the system. It is important to ensure that there is no

chance of causing the access model engine to interpret invalid access rule expressions

because this will lead to the breakdown of the security system. The fifth step is

 7

ranking each entity and its attributes; a rank is given to the entity and the attribute.

Entity type and scope are assigned manually from pre-specified values. Entity state

stability and lifetime ranks are given to each entity from 0 to 1. As the cardinality of

both entity and attributes and entity references count are reverse-engineered from

RDBMS, the cardinality rank and reference power are then calculated according to

specific formulas. The following are the ranking formulas used in our proposed

approach.

1. Reference Power Rank of an entity:

(1) Reference Power Rank = (
2𝑟

𝑁
× 100) + 1,

where N is the total count of entities, and r represents the number of references to the

entity.

2. Cardinality Rank of an entity:

(2) Cardinality Rank =
100

Ciel(
𝑘

50
)
.

The entity type rank of an entity is assigned a value as follows: The sub-module

level has the lowest value of 50, which is approximately a quarter of the highest

power reference rank. Global-level has the value of 201 as the highest power

reference rank. AC level has the value of 603 as 3 times the highest power reference

rank. Unique level entities are given a value of 10050, resulting by multiplying 50

(the lowest rank of entity types) by 201 (the highest power reference rank).

3. Entity State & Lifetime Ranks of an entity are manually assigned values

between 0 and 1 multiplied by 10.

4. Entity Dominance Level Rank: It is the result of multiplying all entity’s ranks

by each other as follows:

(3) Entity Dominance Level Rank = Scope Rank × State Stability Rank ×

 × ASL Rank × Cardinality Rank × Reference Power Rank.

5. Attribute Dominance Level Rank: it is the result of the following formula:

(4) Attribute Doinance Level Rank = Log (
Max(𝐸,1)×𝐾

𝑑+𝑛
),

where E represents the Entity Dominance Level, K represents entity cardinality rank,

d represents the number of distinct attributes among entity instances, and n represents

the number of null values of attributes among entity instances.

3.2. Evaluation metrics

In this work, the rules and classification approach are defined to extract and define

the attributes related to entities and the nature of the relationship between an entity

and its extracted attributes. To measure the efficiency of the selected subset of

attributes, we may rely on the following measures:

1. The percentage of selected attributes to the total number of attributes

available in the system. This percentage should be at its least value. The minimum

number of attributes in the attribute’s subset, the less complexity of the ABAC model,

the simpler management of the access control model, and the easier implementation

of ABAC.

2. The selected attributes cover the percentage of the organization’s security

policies. When choosing the efficient and optimal subset of attributes, all the access

 8

control policies will be implemented efficiently and adequately without needing to

add more attributes to the subset of the selected attributes. These attributes are

sufficient to implement all access roles when specifying the conditions and rules of

access security policies. It is the optimal case, but when this percentage increases, we

have covered more security policy scenarios and become closer to the optimal point.

A greater number of attributes leads to covering more security policy scenarios.

However, we do not want this to increase the complexity of our ABAC model; thus,

there is some point where we achieve better ABAC complexity with the least possible

number of attributes. ABAC performance and efficiency still increase with the

increase of the number of attributes until we add more attributes; this will decrease

the ABAC performance.

The suggested model results in an adequate ability to choose attributes and entity

candidates to be incorporated in access policy specifications. Some metrics are

followed in deciding what attributes are a candidate to be selected; some of these

metrics are summarized entity type, the scope of the entity, entity lifetime, attribute

relationships, and attribute acquisition.

Also, this research started by analyzing the characteristics of a typical enterprise

information system RDBMS. It addressed some concepts that may help more

understand entities’ relationships, roles, and influences among each other. Fig. 2

shows the scope of this research and its relationship with the ABAC model

components; the scope is shown in the blue area.

Fig. 2. General model for the proposed approach

The model will then be tested against some existing RDBMS enterprise

applications to prove the results achieved. The metrics will be applied and measured

to determine the presented model’s advantages in commercial and enterprise

applications.

4. Proposed Approach of attribute-Based Access Control (ABAC)

The proposed research first tries to provide some concepts that will lead us to a

specific categorization and classification of the entities and the attribute’s natures and

characteristics. These classifications are supposed to help in extracting and collecting

 9

entities and attribute metadata that will be a guide to designing the AC policies for

the ABAC system effectively.

4.1. Evaluation metrics

Entities in typical ABAC models are classified into main types object, actor,

operation, and environmental entities. We extend this classification into more types

for much better recognition of the nature of enterprise entities. The classification of

entity types in our proposed ABAC model is shown in Fig. 3. We classify the entities

according to their nature as follows:

1. Actors entities: define the actors of the enterprise application.

2. Session entities: distinguish every made session in the enterprise application.

3. Objects Entities: the object here refers to every subject that undergoes an

operation by an actor within the enterprise application.

4. Enterprise structure entities define an enterprise organizational unit’s

hierarchy. The enterprise structure entity is an extension of the object entity. They

are vital in determining other entities’ attributes during the enterprise’s workflow

processes. An actor must belong to a certain organizational unit, and most objects

must belong to a certain enterprise entity. Enterprise structure entities are sub-

classified into two major types: (a) Enterprise Organizational Structure determines

the enterprise organizational units and how they are related; (b) Enterprise Job roles

entities define job roles within the enterprise, such as CEO, general managers,

department heads, etc.

5. Workflow entities, such as activities, operations, and transactions, represent

the enterprise’s workflow. We address two types of workflow entities in terms of

complexity: (a) Operation entities define the basic activities against object entities;

(b) Transactions entities represent the complicated activities processing that consists

of operation sequences.

Fig. 3. Entity types classification in ABAC model

4.2. Entities scope

This research introduces entity scope, an important characteristic of candidate entity

selection for ABAC policies. Entity scope is where the entity is seen or effective

among the enterprise application modules. For example, the organizational units are

global among all the enterprise modules in any well-integrated RDBMS application

for an enterprise. Other entities may be related only to some functionalities within

 10

one module or more. Entities with wide scopes are the most candidates in selecting

entities for addressing ABAC role policies. Opposite entities with a narrower range

are not used widely in addressing ABAC role policies. The proposed approach

classifies the scopes of the entities into three types.

1. Global entities’ scope consists of all entities that are effective among all the

enterprise RDBMS applications and visible and effective within them. Global entities

are very useful when addressing any ABAC policies for the enterprise; most effective

ABAC model policies depend on them. Some entities always return one unique entity

instance wherever the entity is called to read its instances within any session in the

context of the enterprise application. We call any entity that satisfies this condition

Unique Instance Entity (UIE). If a UIE of E exists in a session, then the entity instance

E directly inherits all its attributes to every entity within the same session. UIE could

be classified as follows: (a) Absolute Unique Instance Entities – these entities have

one single instance (i.e., record), such as the working enterprise definition entity and

the global master application policy entity; (b) Session-level Unique Instance Entities

– these are unique instances relating to the current session. These instances are

specified by the environment resulting from the session initiated by an actor.

2. Access Control Module Scope consists of entities related to AC-specific

purposes, such as policy roles and permissions. Entities of this scope are very special

because ABAC roles often depend on attributes of actors having access to other

permission entities or role entities. It is very important for the separation of duty

feature enabling and unification of duties feature.

3. Sub-Modules Specific scope addresses the entities attached only to a specific

sub-module or sub-system. The benefits of entity scope classification help us

determine the best candidate entities to manage ABAC policy roles at a given scope.

Moreover, each scope inherits the entities from scopes that fall above, as represented

in Fig. 4.

Fig. 4. Entities scopes

4.3. Entities state stability

Entity instances in RDBMS enterprise applications undergo state transition during

processing. If we assumed that each entity instance initiation process transits it from

the start (initiating or starting) to state E0 “created” or “saved”, as shown in Fig. 5,

then every entity instance in the system has at least one state E0.

Fig. 5. Entity initiation operation

 11

Some entities take many states during workflow processing. For example, an

employment application may transit from the “initiated” state to the “submitted” state

and then to the “reviewed” state and then to the “short-listed” state, etc., till it

achieves the final state “admitted” or “rejected”. Because entity state transition

affects the attributes of entity E1 itself by changing the value of one or more of its

attributes, the entity will be a different entity E2. So, referring to entity E1 in ABAC

policies roles will no longer be valid when the entity converts to the state Linux

Libertine E2, as shown in Fig. 6. Entities vulnerable to changing their current state to

another state have less state stability. On the other side, entities that are not vulnerable

to change have high state stability. This distinction is very helpful in detecting more

stable entities because they are more likely to be involved in our proposed ABAC

model to address policy roles. Because entities that change their state are unstable,

they would be a poor choice in addressing ABAC policies.

Fig. 6. Entity transition due to changing its attributes by operations

4.4. Entity instances significance lifetime

It is the period the entity is still usable or referred to when processing its instances.

In some RDBMS enterprise applications, schema entities are used for some time only

for data partitioning purposes. Some enterprise RDBMS applications have a separate

database schema for the same module, often on time, for several purposes, such as

separating every working year in a separate database schema or separating each

working project in a separate database schema. In these cases, the Entity Significance

Lifetime lasts one working year or until an active project is closed. ABAC roles that

depend on entities with temporary or limited significance lifetime are still only

effective for that lifetime and are not usable anymore. Although we need to make

ABAC policies for them, in general, ABAC policy roles are not feasible; we should

redefine the entity by itself to include all its representing occurrences or duplicates.

Entity Instances Significance lifetime is the period from when the entity instance

has been created until it reaches the last final state of its business cycle. Each entity

instance undergoes a transition during the workflow processing, which transits it from

one state to another until it reaches its final state. For example: in the RDBMS HR

system, an employment application instance has reached its last final state when the

 12

employment application is either approved or rejected. The lifetime of any entity or

its instance has two stages following each other:

(a) Active Significance Lifetime (ASL). The period when the entity instance

i accept at least one operation “op” that transfers the entity instance i from its current

state to another.

(b) Not-Active Significance Lifetime (NASL). It is the period whenever the

entity instance i do not accept any attempt to transfer it from its current state to any

other state. But is still referred to by the current workflow or accessed by the working

flow processes, reports, or inquiries.

The above classification is important because it enables us to distinguish entities

with a permanent lifetime from entities with a limited lifetime. We suggest relying

on entity instances with a permanent significance lifetime in our proposed ABAC

model. Involving entities with a short significance lifetime for their instances makes

ABAC roles meaningless after losing their significance.

4.5. Instance cardinality

This refers to the number of instances the entity could have. The degree of the

cardinality of an entity instance is an important feature in our model, as entities with

a huge number of instances are less likely to be involved in our ABAC model. Entities

with small cardinality would be a smart choice for addressing ABAC policies.

Attributes values cardinality refers to the number of distinct values an attribute has

among entity instances. Entities with a large volume of instances (i.e., high

cardinality) might also have attributes with few distinct values. Such attributes can

be selected in addressing permission roles against their entities.

4.6. Referential power

It refers to how many references are made from other entities to that entity in the

enterprise RDBMS application. Some entities have a powerful referential level as

they have participated in defining many entities and being a fundamental attribute of

them. Entities with powerful referential levels play a vital role in defining many other

entities and accordingly pass their attributes to those entities, so they are most likely

to be involved in addressing ABAC roles and policies. On the other hand, entities

that are not referred to or have weak referential power are seldom engaged in

addressing ABAC’s general policies.

4.7. Putting all together

In our proposed model, we introduce important rules to decide which entities are the

candidates most to be involved in the ABAC model for an enterprise RDBMS

application. In terms of the above classifications, we introduce EDL, which defines

the importance degree of an entity in participating in addressing ABAC model

policies. The EDL is determined according to its scope, state stability, significance

lifetime, cardinality, and referential power. Entities could be categorized according

to their dominance level. They could be ranked from entities with strong dominance

levels to entities with weak dominance levels.

 13

In this proposed research, a measurement has been developed to measure the

dominance level of each entity. For each criteria of scope, state stability, active

significance lifetime, cardinality, and referential power, a value, or a formula, is given

to each criterion to measure each criterion’s degree. Below in Table 1, different

measures of entity ranks are followed in the test to calculate the EDL degree.

Table 1. Measuring entity ranks

Property The rank calculation for property Notes

Entity

Scope

rank

Session Unique Level 10050

(50) lowest scope rank multiplied

by (201) maximum reference

power

Absolute Unique Level 10050
(50) lowest scope rank multiplied

by (201) highest reference power

Access Control Level 603
Three times of highest reference

power

Global Level 201 As the highest reference power

Sub-Module Level 50
Approximately a quarter of the

highest reference power

Entity

State

Stability

rank

State Stability degree×10

Active

Significant

Lifetime

(ASL) rank

ASL degree×10

Entity

Cardinality

rank

Let k = cardinality,

IF k= 0 then rank =0

Else

Cardinality Rank =
100

Ciel (
𝑘

50
)

Assuming cardinalities 50 has

the most rank value.

Ciel(n) function returns the

smallest integer, which is greater

than or equal to the number n

Reference

Power rank

Let R = the number of references for the entity.

Let N = Total count of entities.

IF entity scope in (session unique

or absolute unique) then rank= 1

Else

Reference Power Rank = (
2𝑟

𝑁
× 100) + 1

Considering the ratio of the

number of references to the half-

count of entities

Unique level scopes have a

reference value of 1

Attribute

Dominance

Level

Rank

Let E = Entity Dominance Level rank, k= Entity

Cardinality, d= number of distinct attribute

values within entity instances, n= Number of

null values occurrences of attribute within entity

instances.
Attribute Dominance Level Rank =

= Log (
Max(𝐸, 1) × 𝐾

𝑑 + 𝑛
)

5. Experiments, results, and evaluation

The proposed concepts and measures presented have been tested against the RDBMS

enterprise application. The RDBMS type was Oracle 12c operating on the windows

16 server operating system. The system was hosted in an HP Blade server with

 14

8 Quad Cores, a 2.7 GHz CPU, and 128 GB RAM. The number of tested database

schemas was 6, consisting of over 2320 entity tables with over 69,150 attributes. The

tested RDBMS contains a total of 158 million records.

5.1. Experiment

Initially, target database entities were refined by running scripts to exclude non-used

entities. The final subset contained 877 effective entities and about 15,800 attributes

containing 128 million records. Scripts were written against a database to be

automatically reverse-engineered and analyzed to extract the properties and

classifications addressed above. The database has been studied for tables instances

cardinality, attributes cardinality, and references among database objects. Each

RDBMS table has an entity type, scope, and state stability value. Also, entity instance

active significance lifetime has been estimated for each database entity. For both

cardinality and references of each database entity, they were automatically reverse-

engineered and extracted from the database. For attributes cardinality, the reverse

engineering process also helped get the number of distinct values and no null values

for each attribute per entity. Below are sample scripts used to reverse-engineer the

database. View for reverse-engineering the referential cross entities is presented as

Algorithm 1.

Algorithm 1. Reverse Engineering the Referential Cross Entities

CREATE OR REPLACE FORCE VIEW V_FKS AS

 select c.OWNER, c.TABLE_NAME, f.COLUMN_NAME, c.R_OWNER,

f2.TABLE_NAME as R_TABLE_NAME,

 f2.COLUMN_NAME as R_COLUMN_NAME,

f.CONSTRAINT_NAME, c.CONSTRAINT_TYPE, c.DELETE_RULE,

 f.POSITION, c.INDEX_NAME

 from dba_constraints c, dba_cons_columns f, dba_cons_columns f2

 where c.OWNER = f.OWNER and c.CONSTRAINT_NAME =

f.CONSTRAINT_NAME and

 c.TABLE_NAME = f.TABLE_NAME and c.R_OWNER =

f2.OWNER and

 c.R_CONSTRAINT_NAME = f2.CONSTRAINT_NAME and

f.POSITION= f2.POSITION and

 c.CONSTRAINT_TYPE in ('R');

The script to reverse engineering the cardinality and referential cross entities are

presented as Algorithm 2.

Algorithm 2. Reverse Engineering Cardinality and Referential Cross

Entities

Declare

 v_cardinality number;

 v_FK_count number;

begin

 15

For rec in (select * from dba_tables where owner in ('schema1',' schema2',…,'

schema6'))

Loop

 Execute immediate

 ‘Select count(0) from :owner.:tbl_nm ‘ into v_cardinality using

rec.owner, rec. table_name;

 Execute immediate

 ‘Select count(0) from v_fks where R_owner=:tbl_ownr and

R_table_name = :tbl_nm ‘

 into v_FK_count using rec.owner, rec. table_name;

 Update my_entities

 set cardinality = v_cardinality, FK_count = v_fk_count

 where owner = rec.owner and entity_name = rec.table_name;

End loop;

Script to reverse-engineering attributes distinct values and null values within

entities instances:

Algorithm 3. Reverse-engineering attributes distinct values and null values

within entities instances

Declare

 v_distinct_vals number;

 v_null_vals number;

begin

For rec in (select * from dba_tab_columns where the owner in

(‘schema1’,’schema2’,…,’schema6’))

Loop

 Execute immediate

 ‘select count(0) from (Select :column_name from :owner.:tbl_nm

where :column_name is not null group by

 :column_name) ‘ into v_distinct_vals using rec.column_name,

rec.owner, rec. table_name, rec._column_name;

 Execute immediate

 ‘Select count(0) from :owner.:tbl_nm where :column_name is null) ‘

into v_nulls_vals using rec.owner, rec.

 table_name, rec._column_name;

 Update my_attributes

 set distinct_vals = v_distinct_vals, nulls_count = v_null_vals

 where owner = rec.owner and entity_name = rec.table_name and

attribute_name = rec.column_name;

End loop;

After reverse-engineering and data classification, the equations in Section 3.5

were applied against entities and attributed to getting the different ranks of their

classifications. The test experiment was repeated 10 times using reverse engineering,

 16

reviewing classification, and applying the equations to calculate the ranks. The results

were taken as the average of the 10 results.

5.2. Results and discussion

Below in Figs 7 (a) and (b) are the charts of entity types and scopes classification,

respectively. 80% of entities have been classified as object entities, and 6.4%, 5.3%,

4.4%, and 3.5% were classified as session entities, organizational-unit entities,

workflow entities, and actor entities, respectively. Whereas 64.7% of entities were

categorized in sub-module scope, 22.2%, 7.2%, 4.1%, and 1.8% were classified into

the global scope, access control scope, unique session scope, and absolute unique

scope, respectively. Ranks of Entity State Stability are shown in Fig. 8, and Active

Significant Lifetime (ASL) ranks are shown in Fig. 9.

Fig. 7. Entities types and Scope classification

Fig. 8. Entity State Stability

63% of entities have an almost stable entity state of 10 degrees, whereas the

37% have a less stable entity state stability. 10% of entities have state stability less

than or equal to 2 degrees, indicating that they show very low state stability.

Fig. 9. Entity Active Significance Lifetime (ASL)

 17

47% of entities have the longest ASL of 10 degrees, whereas 53% have shorter

ASL degrees, varying from 1 to 8 degrees. 33% of entities have ASL degrees less

than or equal to 2 degrees, indicating that they have a very short ASL. A logarithmic

chart of entities’ cardinality ranks is shown in Fig. 10 (a), where 35% of entities have

a cardinality rank equal to 100. This means they contain very few instances, less than

or equal to 50. Whereas 37% of entities have a cardinality degree equal to 0,

indicating that they contain many instances, some of which include tens of millions

of instances. The reference Power rank of entities was reverse-engineered and set as

shown in Fig. 10 (b). 2.1% of entities have a Reference Power rank greater than or

equal to 10 degrees. It means that these entities have strong referential power among

other entities. 87% of entities have a very low Reference Power rank of 1 degree,

indicating that they are either not being referenced or referenced only once.

Fig. 10. Entities cardinality ranks and Reference Power ranks for entities

EDL ranks have been calculated, and the linear and logarithmic values charts

are shown in Figs 11 (a) and (b), respectively. Table 2 shows the percentages of

entities per different partitions of EDL ranks. The Logarithmic scale shows that

18.57% of entities have a Dominance Level rank greater than or equal to 2 degrees,

6.08% of entities have a Dominance Level rank greater than or equal to 4 degrees,

and 3.3% of entities have a Dominance Level rank greater than or equal to 6 degrees

which means that these entities are the most candidate to be effective in ABAC model

permission roles addressing. On the other hand, 74.34% of entities gained 1 degree

of Dominance Level rank, meaning that these entities have very little chance to play

roles as actor objects or session objects and seem to play roles as “objects” where

permissions might be addressed against them. Figs 12-14 show logarithmic charts of

Attributes Dominance Level (ADL) ranks for different entity types. Table 3 shows

the percentage of entities falling in different partitions of ADL ranks for each entity

type.

Fig. 11. Linear and Logarithmic Dominance Level ranks for entities

 18

Table 2. Entity Dominance Level ranks and partitions (%)

Rank

1 2 4 6 7

74.34% 18.57% 6.08% 3.3% 0.11%

Fig. 12. Attributes Dominance Level (ADL) for Actor entities and Session entities

Fig. 13. Attributes Dominance Level (ADL) for Workflow entities and Enterprise Structure entities

Fig. 14. Attributes Dominance Level (ADL) for Objects entities

Table 3. Different partitions (%) of Attributes Dominance Level ranks by entity type

Entity type Rank

 1 2 5 7 10 12 15

Actor Entities 17.85% 74.78% 42.8% 19.84% 5.33% 1.39% 0%

Session Entities 31.53% 60.28% 43.25% 10.58% 2.33% 1.05% 0%

Enterprise-Structure Entities 19.73% 71.68% 48.41% 16.01% 4.85% 0% 0%

Workflow Entities 19.25% 75.55% 23.05% 12.53% 0% 0% 0%

Object Entities 63.42% 30.56% 15.01% 8.58% 3.84% 2.46% 0.38%

 19

Fig. 15 shows the logarithmic scale of ADL ranks for all attributes of entities.

The tested RDBMS database consists of more than 15.8K attributes. Table 4 shows

the percentage of entities per different partitions of ADL ranks.

Fig. 15. Logarithmic scale of Attributes Dominance Level ranks

Table 4. Different partitions of Attributes Dominance Level ranks and partition (%)

Rank

 1 2 5 7 10 12 15

56.96% 34.82% 18.14% 8.8% 3.37% 1.96% 0.29%

The table above shows that 8.8% of attributes have a Dominance Level degree

greater than or equal to 7 degrees. Only 0.32% of entities obtain a Dominance Level

rank of 15 degrees or above. 56.96% of attributes have a very low Dominance Level

rank of 1 degree or below. The proposed research suggests considering an EDL rank

of 2 degrees from the test results, covering 18.57% of entities. It suggests considering

the Attribute Dominance Level rank of 7 degrees which covers 8.8% of attributes

belonging to 17.67% of entities.

5.3. Evaluation

Considering ADL rank equal to 7 degrees will populate 8.8% of all available

attributes. These attributes belong to only 17.67% of system entities. This small

number of attributes (which is, in our case, equal to 1389 attributes out of 15,800

attributes) makes the ABAC model much less complex and easier to maintain.

Reducing the selected ADL can lead to a much more complex ABAC model. ADL

rank of 5 populates 18.14% of available attributes, which belong to 32.5% of system

entities. The accuracy of ADL ranks is presented in Table 5.

Table 5. Accuracy table of Attributes Dominance Level ranks
Dominance level Accuracy, % Shortage, % Attributes used Attributes populated Complexity, % Overhead, %

1 98.62 1.38 1,713 7,120 10.85 309.90

2 97.12 2.88 1,787 5,504 10.69 216.87

3 95.62 4.38 1,661 4,707 10.52 170.98

4 91.71 8.29 1,593 3,529 10.09 103.17

5 88.49 11.51 1,537 2,873 9.74 65.40

6 85.72 14.28 1,489 2,214 9.43 27.46

7 79.97 20.03 1,389 1,389 8.80 –20.03

10 34.04 65.96 532 532 3.37 –69.37

12 19.83 80.17 310 310 1.96 –82.15

15 2.94 97.06 46 46 0.29 –97.35

 20

By reviewing actual security policies in the tested enterprise RDBMS

application, it was found that by choosing 5 degrees of ADL rank, about 11.51% of

security policies have not been covered by the subset of attributes selected above. So,

it can be said that around 88.49% of security policies are covered by the subset of the

attributes chosen by the proposed approach. There is an overhead of 65%, meaning

attributes populated with dominance level rank 5 are 65% more than actually needed

attributes. Table 5 shows the accuracy level, ABAC complexity impact, and the

overhead for different values of ADL ranks.

From Table 5, we find that decreasing the Dominance Level improves the

accuracy, but on the other side, the overhead increases. At a Dominance Level equal

to 7, the accuracy is about 80% with no positive overhead. However, with Dominance

Level 5, the accuracy is about 88.5%, with 65.4% overhead. If we can seek the best

accuracy percentage with the most acceptable overhead, a dominance level between

5 and 7 will be quite satisfactory. The results of the comparison between ABAC and

the proposed model are shown in Table 6.

Table 6. Comparison between ABAC and the Proposed approach

Characteristics ABAC Proposed model

Easy configurability No Yes

Fine-grained policies Yes Yes

Workflow control No Yes

Performance Medium High

Granularity Medium High

Simplicity Hard to establish all the policies Easy

5. Conclusion

Attribute governance in the ABAC system requires more analysis of attributes,

entities, and values domains. Classifying attributes and becoming aware of the

relationships among entities and attributes increases the ABAC system’s efficiency

and enhances the chance for entity federations in the ABAC system.

By automatically reverse-engineering an existing RDBMS enterprise

application and then applying some classifications, the proposed research found that

we can figure out the near-optimal subset of attributes that are most likely to be

involved in ABAC model permissions addressing. Cardinality rank of both entities

and attributes, Reference Power rank of entities, Entity Significance lifetime, and

Entity State Stability play an essential role in determining the dominance level of

both entities and attributes, which help in choosing the most candidate attributes for

the ABAC model. Relying on the calculated Dominance Level rank according to the

proposed formulas leads to an acceptable accuracy level in attribute selection. We

can achieve an accuracy level reaching 80% without any overhead. Accuracy can be

improved to 90%, with overhead impacts not exceeding 100%.

Involving the proposed reverse-engineering approach in the extraction and

analysis of attributes and entities of an existing RDBMS is very promising for

automated ABAC attribute extraction. One of the proposed approach’s main pros is

the attributes extraction process’s automation feature. The research also provides a

range of accuracy and overhead, enabling the implementing team to merely trade-off

 21

between accuracy and overhead according to the most appropriate for each situation.

It also categorizes the results of attribute extraction according to core ABAC

attributes categorization.

We recommend further work based on this research’s output to extend the model

to: consider the inherited relationships between different entities. More classification

criteria could be applied and tested against the reverse-engineered RDBMS database

to enhance the accuracy and minimize the overhead, such as considering the data type

and size of attributes and the purpose of each attribute.

R e f e r e n c e s

1. A l-S a r a i r e h, J. An Efficient Approach for Query Processing over Encrypted Database. –

J. Comput. Sci., Vol. 13, 2017, No 10, pp. 548-557. DOI: 10.3844/jcssp.2017.548.557.

2. A l-S a r a i r e h, J. A Novel Approach for Query over Encrypted Data in Database. – Int. J. Inf.

Comput. Secur., Vol. 11, 2019, No 6. DOI: 10.1504/IJICS.2019.103083.

3. M u l i m a n i, M., R. R a c h h. Analysis of Access Control Methods in Cloud Computing. – Int. J.

Educ. Manag. Eng., Vol. 7, May 2017, No 3, pp. 15-24. DOI: 10.5815/IJEME.2017.03.02.

4. F e r r a i o l o, D. F., R. C h a n d r a m o u l i, V. C. H u, D. R. R. K u h n. A Comparison of Attribute

Based Access Control (ABAC) Standards for Data Service Applications. – NIST Spec. Publ.,

October 2016. DOI: 10.6028/NIST.SP.800-178.

5. H u, V. C., D. R. K u h n, D. F. F e r r a i o l o. Attribute-Based Access Control. – Computer (Long.

Beach. Calif)., Vol. 48, February 2015, No 2, pp. 85-88. DOI: 10.1109/MC.2015.33.

6. H u, V., D. F. F e r r a i o l o, D. R. K u h n, R. N. K a c k e r, Y. L e i. Implementing and Managing

Policy Rules in Attribute Based Access Control. – In: Proc. of 16th IEEE Int. Conf. Inf. Reuse

Integr (IRI’15) October 2015, pp. 518-525. DOI: 10.1109/IRI.2015.98.

7. K e r r, L., J. Alves-Foss. Combining Mandatory and Attribute-Based Access Control. – In: Proc. of

Annu. Hawaii Int. Conf. Syst. Sci., Vol. 2016-March, March 2016, pp. 2616-2623.

DOI: 10.1109/HICSS.2016.328.

8. R i a d, K., Z. Y a n, H. H u, G. J. A h n. AR-ABAC: A New Attribute Based Access Control Model

Supporting Attribute-Rules for Cloud Computing. – In: Proc. of IEEE Conf. Collab. Internet

Comput (CIC’15), March 2016, pp. 28-35. DOI: 10.1109/CIC.2015.38.

9. A l o h a l y, M., H. T a k a b i, E. B l a n c o. Automated Extraction of Attributes from Natural

Language Attribute-Based Access Control (ABAC) Policies. – Cybersecurity, Vol. 2,

December 2019, No 1, pp. 1-25. DOI: 10.1186/S42400-018-0019-2/TABLES/8.

10. A l o h a l y, M., H. T a k a b i, E. B l a n c o. Towards an Automated Extraction of ABAC

Constraints from Natural Language Policies. – IFIP Adv. Inf. Commun. Technol., Vol. 562,

2019, pp. 105-119. DOI: 10.1007/978-3-030-22312-0_8.

11. N a r o u e i, M., H. T a k a b i. A Nature-Inspired Framework for Optimal Mining of Attribute-Based

Access Control Policies – In: Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng. LNICST.

Vol. 305. 2019, pp. 489-506. DOI: 10.1007/978-3-030-37231-6_29.

12. L i u, J. Y., B. B i n J i a. Combining One-vs-One Decomposition and Instance-Based Learning for

Multi-Class Classification. – IEEE Access, Vol. 8, 2020, pp. 197499-197507.

DOI: 10.1109/ACCESS.2020.3034448.

13. P e n e l o v a, M. Hybrid Role and Attribute Based Access Control Applied in Information Systems.

– Cybernetics and Information Technologies, Vol. 21, 2021, No 3, pp. 85-96.

14. Z h a n g, Z., K. Q i a n, B. W. S c h u l l e r, D. W o l l h e r r. An Online Robot Collision Detection

and Identification Scheme by Supervised Learning and Bayesian Decision Theory. – IEEE

Trans. Autom. Sci. Eng., Vol. 18, July 2021, No 3, pp. 1144-1156.

DOI: 10.1109/TASE.2020.2997094.

15. G u p t a, M., R. S a n d h u, T. M a w l a, J. B e n s o n. Reachability Analysis for Attributes in

ABAC with Group Hierarchy. – IEEE Trans. Dependable Secur. Comput., January 2022,

No 1, pp. 1-15. DOI: 10.1109/TDSC.2022.3145358.

 22

16. A g h i l i, S. F., M. S e d a g h a t, D. S i n g e l é e, M. G u p t a. MLS-ABAC: Efficient Multi-Level

Security Attribute-Based Access Control Scheme. – Futur. Gener. Comput. Syst., Vol. 131,

June 2022, pp. 75-90. DOI: 10.1016/J.FUTURE.2022.01.003.

17. A m e e r, S., J. B e n s o n, R. S a n d h u. An Attribute-Based Approach toward a Secured Smart-

Home IoT Access Control and a Comparison with a Role-Based Approach. – Information,

Vol. 13, 2022, No 2, pp. 1-33. DOI: 10.3390/info13020060.

Received: 28.06.2022; Second Version: 09.10.2022; Accepted: 14.10.2022

