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Abstract: Convolutional Neural Networks (CNN) have been widely utilized for 

Automatic Target Recognition (ATR) in Synthetic Aperture Radar (SAR) images. 

However, a large number of parameters and a huge training data requirements limit 

CNN’s use in SAR ATR. While previous works have primarily focused on model 

compression and structural modification of CNN, this paper employs the One-Vs-All 

(OVA) technique on CNN to address these issues. OVA-CNN comprises several 

Binary classifying CNNs (BCNNs) that act as an expert in correctly recognizing a 

single target. The BCNN that predicts the highest probability for a given target 

determines the class to which the target belongs. The evaluation of the model using 

various metrics on the Moving and Stationary Target Acquisition and Recognition 

(MSTAR) benchmark dataset illustrates that the OVA-CNN has fewer weight 

parameters and training sample requirements while exhibiting a high recognition 

rate. 

Keywords: Automatic target recognition, synthetic aperture radar, convolutional 

neural network, deep learning, computer vision. 

1. Introduction 

Synthetic Aperture Radar (SAR) is widely used in the military for surveillance and 

reconnaissance due to its all-weather, day-and-night working capability. Despite the 

all-time working capability of SAR, the presence of speckle noise in SAR images has 

imposed a difficulty for domain experts to interpret the image. This paved the way 

for designing an Automatic Target Recognition (ATR) system for analyzing SAR 

images [1]. In the beginning, Lincoln laboratories have depicted the SAR ATR 

system as a three-stage sequential architecture that consists of detection, 

discrimination, and classification [2]. The accuracy in classifying the SAR images 

becomes crucial in determining the quality of the SAR ATR system. As a result, 

enhancing the recognition rate of the SAR ATR classification stage has become a 

research focus. 

Image classification is a two-stage process that consists of feature extraction and 

classification based on the extracted features. The accuracy of such systems mainly 
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rely on the quality of the features used for classification. Therefore, the majority of 

researchers have focused on the development of novel feature extraction techniques. 

With the development of Convolutional Neural Networks (CNNs), the traditional 

two-stage classification approach has been replaced by a single CNN unit capable of 

feature extraction and classification. CNN has been successfully applied to several 

computer vision tasks such as image denoising, object detection, and classification 

[3-5]. The availability of a vast labelled dataset, especially the ImageNet dataset and 

the high computational GPUs, have fuelled the growth of deeper CNN architectures 

[6]. 

Recently, the breakthrough results in ImageNet classification competitions have 

drawn CNN’s attention to the SAR community. The adoption of CNN has produced 

a ground-breaking result in SAR ATRs with minimum or no pre-processing 

requirements [7]. The significant improvement of SAR ATR’s classification 

accuracy has attracted more researchers in this field to use CNN. For instance, G a o  

et al. [8] propose an enhanced deep CNN to extract features and use an SVM classifier 

to map the features to output labels. T i a n  et al. [9] achieve above 99% classification 

accuracy by integrating weighted kernels into the CNN architecture to improve the 

feature extraction capability of the model. Z h a n g, X i n g  and X i e  [10] achieve 

good target recognition in various operating conditions by combining the CNN 

extracted features with the attributed scattering centre features. Furthermore, G u o  

et al. [11] have achieved state-of-the-art results in SAR ATR by modifying Hinton’s 

capsule network. 

While CNN produces impressive results, two significant issues impede the 

growing interest in CNN’s application to SAR ATR. The first issue is that deep 

CNNs, particularly Alexnet, VGG-16, GoogLeNet, and ResNet-50, are memory-

intensive models [12-15]. These models have 61M, 138M, 6.9M, and 12.2M weight 

parameters, which resembles the amount of memory required to deploy them. As a 

result, it is critical to minimize the number of weight parameters when using CNN in 

a memory-limited environment. The second issue is that deep CNNs require a large 

amount of labelled data to avoid overfitting. However, labelling SAR images is a 

time-consuming and expensive process. 

Numerous techniques have been used in recent works to reduce CNN weight 

parameters. These techniques can be classified into two categories: structural 

modification and model compression [16]. While structural modification reduces 

parameters by reshaping the CNN’s architecture, model compression enables the 

deployment of more sophisticated CNN models on low-power and resource-

constrained devices through techniques such as pruning, quantization, low-rank 

factorization, and knowledge distillation. Recently, researchers have investigated the 

effect of structural modification of CNN in SAR ATR. The structural  

re-parameterization of CNN improves the performance by replacing convolutional 

layers of trained networks with FC layers, such as in the works [17, 18]. Likewise, 

C h e n  et al. [19] have conducted experiments in SAR ATR using a modified  

A-convnet in which the convolutional layer replaces the Fully Connected (FC) layers. 

Similarly, Wagner demonstrates that replacing FC layers with Support Vector 

Machines (SVMs) could reduce the weight parameters of the CNN model [20]. 
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However, the structural modification method, such as in [19], have an adverse effect 

on the computational complexity of the resulting CNN. 

In CNN model compression, pruning removes the redundant parameters in CNN 

layers, and quantization reduces the number of bits required to represent the weight 

parameters. Z h o n g  et al. [21] apply pruning and quantization techniques for the 

first time in the SAR ATR domain. L i u  et al. [22] apply structured pruning to reduce 

parameter space of convolutional neural network for multitask target recognition in 

SAR. Similarly, C h e n  et al. [23] apply network pruning to yield a compact CNN 

model. To overcome the performance decline caused by network pruning, the author 

applies the knowledge distillation technique. Although pruning compresses CNN, the 

model’s accuracy degrades when the connections are wrongly pruned [24]. Similarly, 

quantization is sensitive to the loss of the precision of the model. Y u  et al. [25] note 

that the low-rank factorization decomposes CNN kernels into sparse. However,  

low-rank factorization requires a unique hardware setup to deploy on an embedded 

platform. M i n  et al. [26] recently use the knowledge distillation method to create a 

micro-CNN with only two layers, a compressed form of a CNN with eighteen layers. 

In another study, Z h a n g  et al. [27] apply the knowledge distillation technique and 

achieve about 65 times the compression rate than A-convnets. On the other hand, the 

knowledge distillation technique only supports training the CNN model from scratch 

and needs a master network trained with a bulk quantity of data samples. 

In recent years, SAR ATR have adopted transfer learning and data augmentation 

techniques to address the overfitting issues of CNN. Data augmentation simulates the 

data by applying image transformation techniques. Several studies have revealed that 

the CNN model better represents the targets while being trained with the simulated 

images. P e n g  et al. [28] simulate various targets such as tanks and aircraft and 

generated targets with various backgrounds to produce a CNN with more robustness. 

D i n g  et al. [29] have demonstrated the effectiveness of using augmented training 

data to reduce overfitting and improve the model’s robustness. P e i  et al. [30] 

propose a Multiview deep convolutional neural network trained on Multiview SAR 

data generated using augmentation techniques. The proposed framework has 

achieved superior performance and requires a small number of raw SAR images for 

network training. Y a n  [31] have enhanced the robustness of CNN to various 

operating conditions by using noisy samples at different signal-to-noise ratios, 

multiresolution representations, and partially occluded images. Furthermore, 

researchers have studied the effects of transfer learning on addressing the overfitting 

issues of CNN. Transfer learning utilizes CNN models pre-trained on a huge dataset 

and fine-tune the final layers using the target data. Z h o n g  et al. [21] have trained a 

CNN by applying transfer learning on the ImageNet data set and then apply model 

compression techniques to reduce the weight parameters. W a n g, Z h a n g  and 

L e u n g  [32] have trained a CNN model with sufficient simulated data and few real 

SAR data. Similarly, M a l m g r e n-H a n s e n  et al. [33] have pre-trained a CNN 

model using simulated data and have applied transfer learning to fine-tune the model 

with real SAR data. Furthermore, W a n g  et al. [34] apply the sub-aperture 

decomposition technique to convert a single-channel SAR image to three-channel 

SAR data to fine-tune a CNN model pre-trained on ImageNet data. It appears from 
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the investigations mentioned above that the idea of fine-tuning a pre-trained CNN 

model and the inclusion of augmented SAR images for training has a great potential 

to create a better-generalized CNN model. However, transfer learning requires a 

larger network trained with a large dataset and a source task similar to target 

recognition [35-36]. Therefore, such pre-trained models are not suitable for 

embedded applications like SAR ATR. 

More recent attention has focused on the provision of using convolutional neural 

network ensembles for multiclass image classification. Combining several classifiers 

can enlarge the effective hypothesis [37]. In [38], the author proposes a lightweight 

CNN architecture with multiple streams that extract local and global features of the 

SAR target and achieves a high recognition accuracy. H a f i z  and H a s s a b a l l a h  

[39] explore the potential of the One-Vs-All (OVA) ensemble technique and 

improves the performance of digit classification. P o l a t  and K o c  [40] apply the 

OVA technique on CNN for skin disease classification. Although there are few 

researches on ensemble CNN, no attempt has been made to investigate the effects of 

an ensemble of CNN on weight parameter reduction and overfitting of a CNN-based 

SAR ATR. This paper exhibits the strength of the OVA ensemble technique on 

reducing CNN’s parameters and overfitting issues. To demonstrate the potential of 

this approach and its suitability for the SAR ATR application, OVA-CNN is 

investigated on the MSTAR dataset. The main contributions of this paper are 

specified below:  

 The SAR ATR classifier is designed as an OVA ensemble of CNNs, which 

is the first work of its kind in this domain to our knowledge. 

 The proposed OVA-CNN architecture consists of minimum weight 

parameters. 

 The overfitting problem of CNN is reduced by using OVA technique. 

The rest of this paper is organized as follows. Section 2 introduces the 

preliminary concepts of CNN. Section 3 describes the theory, architecture, and 

training algorithm of OVA-CNN. Section 4 presents the experimental results and 

compares the OVA-CNN with state-of-the-art SAR image classification methods. 

Finally, Section 5 concludes this paper. 

2. Preliminaries 

This section provides a brief overview of synthetic aperture radar based automatic 

target recognition system and the theoretical foundations of convolutional neural 

network. 

2.1. Synthetic aperture radar-automatic target recognition system 

SAR ATR is a computer processing system that predicts the target classes of SAR 

data without the need for human participation. ATR technology is widely employed 

in both military and civilian purposes. SAR ATR is traditionally divided into three 

stages: detection, discrimination, and classification. The first two stages of SAR ATR 

are combinedly known as the Focus-Of-Attention (FOA) module. The FOA module 

performs intensive computer processing on the SAR images. The FOA module serves 
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as an interface between the input SAR image and a group of targets, effectively 

processing the input SAR image to identify potential targets. 

The detection stage in FOA removes visible clutters by employing a simple 

computational technique that filters out regions with an area smaller than a certain 

threshold. The discriminating unit in FOA is a binary classifier that selects only 

potential targets. A multiclass classifier is used as the final stage of a SAR ATR 

system. The potential targets from the preceding discrimination stage are fed into the 

classification stage. Based on the implementation method, the classification stage of 

a SAR ATR is divided into three categories: template matching based, model-based, 

and machine learning methods. 

In template matching methods, the template-based systems store the SAR 

images under different conditions, such as different view angles and backgrounds, to 

describe the characteristics of the targets. In contrast, the model-based methods use 

the physical or conceptual models to describe the targets, such as CAD models or 3D 

scattering centre models. In a machine learning-based method, the target’s features 

are extracted using feature extraction methods, and a classifier is trained based on 

these extracted features. The template matching-based method needs a huge storage 

requirement to store each template. Similarly, the model-based method requires 

separate mathematical modeling for each new target. However, huge storage 

requirements and mathematical modeling are not required in the machine learning-

based method. Moreover, the advent of deep learning techniques such as 

convolutional neural networks unified the feature extraction unit and the classifier 

into a single unit to produce state-of-the-art results. 

2.2. Convolutional neural network 

The convolutional neural network proposed by LeCun is a modified feed-forward 

neural network with neurons in the initial layers are convolution operations [41]. 

CNN comprises a two-stage architecture that includes a feature extractor and a 

classifier, combinedly provides automatic feature extraction and end-to-end training 

with minimum pre-processing requirements. 

Conventionally, CNN is composed of three layers viz. convolutional layer, 

pooling layer, and Fully Connected (FC) layer. The main component of the 

convolutional layer is a convolution operation in which a two-dimensional kernel 𝐾 

of size 𝑘 × 𝑘 convolved over a two-dimensional input data 𝐼 of size 𝑁 × 𝑁 with a 

stride 𝑆 to produce a feature map 𝐹𝑙 of size ((𝑁 − 𝑘)/𝑠) + 1 on each axis and the 

computation in one neuron is expressed as 

(1)  
0 0

( , )
N k N k

l l

i j

F I i j K b
 

 

   

where ‘⊙’ denotes the convolution operation, which is a pixel-wise dot product and 

addition process, and 𝑏𝑙 is the bias vector of the l-th layer. 

The addition of a non-linear activation function, such as ReLu placed after the 

convolution operation enhances the network’s ability to represent highly complex 

data and speeds up training [34]. The ReLu activation function on a feature map 𝐹𝑙 is 

defined as 

(2)  new max(0, ),l lF F   
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where 𝐹𝑙
new is the non-linear feature map. The max() function returns the highest 

non-zero pixel value in the convolution window. 

Batch normalization is a technique used to standardize the training input and 

stabilize the learning process of deep neural networks [43]. By applying to a small 

batch of training data, batch normalization reduces the number of training iterations 

significantly. This layer is composed of two weight parameters learned during the 

training process: mean and standard deviation. 

The pooling layer adds translational invariance to feature maps and reduces their 

dimension. Pooling reduces the feature map of size 𝑁 × 𝑁 into (𝑁/𝑘) × (𝑁/𝑘) over 

a 𝑘 × 𝑘 size window. Maxpooling is a pooling operation that determines the 

maximum value contained within each patch of a feature map. 

After an arbitrary number of convolution and pooling layers, the feature maps 

are transformed into a one-dimensional vector and stacked with one or more FC 

layers. The FC layers are similar to the layers in a multi-layer perceptron. The number 

of neurons in the final FC layer is the same as the number of classes to be predicted. 

In the final layer of CNN, a softmax function is used which is computed as 

(3)  

0
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
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

,  

where 𝑃(𝑋𝑖) is the probability of a target to be in the i-th class. 

An optimization algorithm is used to minimize a loss function during the 

training of a CNN. Some of the most frequently used loss functions in deep neural 

networks are binary cross entropy, categorical cross entropy, and hinge loss. The 

cross-entropy function quantifies the dissimilarity of the actual and predicted 

probabilities and it is formulated as 

(4)  ( , ) log( ),i ii
L y P y P     

where 𝐿(⋅) is the loss function, 𝑦𝑖 is the actual label of i-th sample, and 𝑃𝑖 is the 

predicted probability of i-th sample. 

The optimization function such as Adam, optimizes the weight parameters and 

bias variable using gradient descent principle [44]. The total number of parameters 

in CNN equals the sum of all weights and biases in convolutional layers and fully 

connected layers. The number of parameters in the convolution layer is determined 

as 

(5)  2 2

c 1

1

( ) ,
L

l l l

l

W F N k N



     

where 𝑊c denotes the total number of parameters in convolutional layers, 𝐹𝑙−1 

denotes the feature map size of previous layer, 𝐹𝑙 denotes the feature map of the 

current layer, 𝑁𝑙−1 and 𝑁𝑙 represent the number of neurons in previous layer and 

current layer, respectively. Similarly, the number of parameters in fully connected 

layers is calculated as 

(6)  
f 1

1

,
L

l l

l

W N N



    

where 𝑊f denotes the number of parameters in fully connected layers. The total 

number of parameters in CNN is formulated as 
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(7)  
c f batch(2* ),W W W N     

where 𝑊 denotes the total number of CNN parameters and 𝑁batch denotes the number 

of batch normalization layers. Due to the weight sharing mechanism, the number of 

weight parameters in convolutional layers are fewer when compared to the number 

of parameters in fully connected layers, i.e., 𝑊f ≫ 𝑊c. The conventional CNN has an 

excessive amount of weight parameters and is therefore prone to overfitting. It is 

inapplicable to the SAR ATR domain due to the application’s low memory 

requirements and limited availability of labelled images. 

3. Proposed methodology 

To overcome the issues of conventional CNN, this paper proposes a novel  

OVA-CNN for SAR ATR of ground military vehicles. This section will first 

introduce the theoretical aspects of the OVA technique. The architecture of OVA-

CNN is then described, followed by the OVA-CNN training algorithm. 

3.1. Theoretical aspects of OVA-CNN 

While optimizing a single error function in a multiclass classification problem, the 

training algorithm gets stuck at the local minima. Hence, finding an optimal 

hypothesis using a single classifier is difficult for applications with limited data 

availability. 

In a multiclass classification problem, a CNN classifier 𝐶 trained on the samples 

𝑆 = (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛 , 𝑦𝑛) where 𝑛 is the number of the training samples, 𝑥𝑖 
belongs to a 𝑑 -dimensional vector, and 𝑦𝑖 is the label from 𝑌 = 1,… , 𝑘, maps an 

unknown sample 𝑋 to 𝑌𝑗 where 1 ≤ 𝑗 ≤ 𝑘. In OVA-CNN, the multiclass 

classification problem is split into multiple binary classification subproblems. Each 

subproblem 𝑠 is solved using the binary classifier BCNN, that maps an unknown 

sample 𝑋 to 𝑌 = {−1, 1}. 
Vapnik-Chervonenkis (VC) dimension measures the capacity of a set of 

functions that a classification algorithm can learn [45]. It is defined as the largest set 

of points that the algorithm can shatter. The generalization ability of a classifier is 

often related to its VC dimension. A model with a higher VC dimension can identify 

more complex relationships in the data but requires more training data. The 

relationship between the error rate 𝜀 and the VC dimension VCdim of a classifier is 

given in [46] as 

(8)  
2 | |

1,
VCdim 1

e S



   

where |𝑆|is the number of training samples, and 𝑒 denotes the base of the natural 

logarithm. That is, for a fixed value of |𝑆|, 𝜀 is in proportion to VCdim. Hence, for a 

constant number of training samples, the classifier’s error rate can be reduced by 

reducing the VC dimension of the classifier. Moreover, the VCdim of a classifier is 

directly proportional to the model complexity 𝑃. The relationship between the 

number of classes 𝐾 and the model complexity 𝑃 is defined in [45] as 

(9)  /2 ,P dK     
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where 𝑑 is the dimension of the input data. Equation (9) can be rearranged as 
(10)  

2log * .P K d   

According to (10), the classifier’s complexity is directly proportional to the 

number of classes to be predicted for a fixed dimension of training samples. As a 

result, by reducing the VC dimension of the classifier, a classifier with reduced model 

complexity can be designed without compromising the error rate for classifying a 

smaller number of classes. The VC dimension can be reduced in two ways: by 

reducing the depth of the CNN or by reducing the width of each layer in the CNN. 

As CNN depth has a greater impact on classification accuracy, we designed BCNNs 

with fewer parameters by reducing the width of each layer in the CNN given in [31]. 

3.2. Architecture of OVA-CNN 

The architecture of the OVA-CNN illustrated in Fig. 1 is composed of two major 

components: an ensemble of binary classifying CNNs (BCNNs) and a maximum-

value selector. The ensemble module consists of ten BCNNs. Although the 

architecture of every BCNN is similar, each BCNN gives a different probability for 

the same target. The BCNNs in OVA-CNN act as an expert in classifying a single 

target correctly. That is, the BCNN, which is designed to recognize the target “T72”; 

could not recognize any other targets correctly. Each BCNN predicts a probability 

for an input SAR image during the testing phase. The max-value selector determines 

the final class based on the BCNN with the highest predicted probability. 

 

 
Fig. 1. OVA-CNN architecture 

The BCNN’s structure is depicted in Fig. 2. The structure of BCNN is analogous 

to the conventional CNN described in [31]. The term “CONV” in Fig. 2 refers to the 

convolution layers with 5×5 kernels. “Pooling” is a two-by-two maxpooling 

operation. Batch normalization layer, non-linear activation function, fully connected 

layer, and softmax layer are denoted by BN, ReLU, FC, and softmax, respectively. 
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After the first “CONV” and “Pooling” layer, 16 feature map of size 10×10 is 

produced. Similarly, after the second “CONV” and “Pooling” layer, 32 feature maps 

of size 3×3 are produced, which is flattened into a 1×288 sized feature vector. The 

feature vector is then fed into the classifier part of the BCNN that consists of multiple 

FC layers. The final FC layer consists of two neurons, and each produces a probability 

for the target into the positive class and in the negative class. 

 

 

Fig. 2. Structure of BCNN 

 

The number of neurons in each layer of BCNN is reduced by reducing the  

VC dimension of the model presented in [31]. While the CNN in [31] has  

{64, 64, 384, 192, 10} neurons in each of its layers from one to five, the BCNN has 
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{16, 32, 64, 32, 2} neurons in its respective layers. BCNN’s weight parameters and 

VC dimension have been significantly reduced as a result of this modification to the 

design. Thus, even when training with fewer training samples, the design of BCNN 

avoids overfitting. 

3.3. Training of OVA-CNN Training Algorithm 

The OVA-CNN Training Algorithm depicted in Table 1. has three major sections: a 

method to split the dataset, a method to train each BCNN, and a method to combine 

the BCNNs’ predictions. Theoretical and experimental studies have demonstrated 

that improved generalization can be achieved by combining the output of negatively 

correlated classifiers. In OVA-CNN, each BCNN is trained using a different training 

set and produces uncorrelated classifiers. Steps 1-3 in the training algorithm define 

the OVA splitting process to create distinct subsets to train the BCNNs. Each of these 

subsets contains one target as a positive class and the rest of the targets as a negative 

class. For instance, the subset used to train the BCNN for classifying the “T72” target 

contains the “T72” target with positive labels and the remaining targets with negative 

labels. 

Table 1. Pseudocode of OVA-CNN Training Algorithm 

 

The training of BCNNs in OVA-CNN is defined in Step 4 in Table 1. Each 

BCNN is designed as described in Section 3.2. BCNNs are trained by optimizing the 

weight parameters and bias values using the Adam optimization algorithm. Although 

each BCNN is designed similarly, they are trained using distinct sets of training data. 

As a result, the weight parameters and bias values of each BCNN are unique. 

During test phase, the results of the BCNNs are combined to predict the final 

class of an unknown sample. The combining strategy used in OVA-CNN is 

formulated as 

(11) class = argmax𝑖=0,...,𝐾𝑐𝑖 ,  

Input: Training dataset 𝐷train, augmentation techniques, 𝐿, and the 

number of classes 𝑘 

Output: An ensemble 𝐶 

Step 1. Split 𝐷train to {𝐷1, 𝐷2, . . . , 𝐷𝑘} such that 𝐷𝑖 ≠ 𝐷𝑗 where  

0 ≤ 𝑖, 𝑗 ≤ 𝑘 

Step 2. for each augmentation 𝜏 in 𝐿 

Step 3. for each sample 𝑠 in 𝐷𝑖 
a) 𝑆aug ← augmentation(𝑠, 𝜏) 

b) 𝐷𝑖modified
← 𝐷𝑖 ∪ 𝑆aug 

c) 𝑖 ← 𝑖 + 1 

Step 4. While 𝑖 ≤ 𝑘  
a) BCNN𝑖 ← train(𝐷𝑖modified

) 

b) 𝑖 ← 𝑖 + 1 

Step 5. return 𝐶 = ⋃ BCNN𝑖
𝑘
𝑖=1  
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where 𝑐𝑖 is the i-th classifier’s probability. The final class predicted by OVA-CNN is 

the output class of the classifier that gives the largest positive value for a given SAR 

image. 

4. Result and discussion 

In this section, we firstly introduce the dataset and the relevant experimental settings 

followed by the findings and outcomes of the experiment. 

4.1. Dataset and experimental setup 

The effectiveness of OVA-CNN has been validated using the MSTAR dataset, 

collected as part of the MSTAR program [47]. This dataset consists of publicly 

available ten types of military vehicles captured as X-band spotlight SAR images with 

128×128-pixel size, 0.3 m resolution, and measured over entire azimuth angles. The 

military vehicles in this dataset are armoured personnel carriers: BMP-2, BRDM-2, 

BTR-60, and BTR-70; rocket launcher 2S1; truck ZIL-131; tank T-62 and T-72; air 

defence unit ZSU-234; and bulldozer D7. 

In the MSTAR dataset, the experiments have been carried out in two different 

scenarios. The algorithm is tested under Standard Operating Conditions (SOC) and 

Extended Operating Conditions (EOC) to evaluate the performance effectiveness. 

SOC refers to the fact that the serial numbers and target configuration is similar to 

the training set but with varying aspect angles and depression angles. There are 

significant differences in depression angle, target articulation, and version variants 

between the training and test sets in EOC test scenarios. 

The experiments have been conducted on a laptop with the Windows 10 Pro 

operating system, 2.2 GHz Intel i3-3210 CPU, and 4 GB RAM. The program codes 

are written in Python, and the Keras API is used to develop the BCNN models. Each 

BCNN is trained for 100 epochs using the Adam optimization algorithm with a fixed 

learning rate of 0.01. 

4.2. Results under SOC 

The training and test data for experiments under SOC is listed in Table 2. The data 

measured at a 17-degree depression angle constitutes the training set, and a 15-degree 

depression angle is used as the test set. 

Table 2. Distribution of training set and test set 

Class Serial No Training images Test images 

BMP2 9563 233 195 

BTR70 C71 233 196 

T72 132 232 196 

T62 A51 299 273 

BRDM2 E71 298 274 

BTR60 K10yt7532 256 195 

ZSU23/4 D08 299 274 

D7 92v13015 299 274 

ZIL131 E12 299 274 

2S1 B01 299 274 
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Table 3 presents the confusion matrix of the ten-class classification problem in 

SAR- ATR. The rows of the confusion matrix correspond to the target’s actual class, 

and the columns indicate the classifier’s prediction. It can be seen from Table 3 that 

OVA-CNN has a recognition rate of more than 97% for all the targets. Furthermore, 

the overall classification accuracy of OVA-CNN under SOC is 98.81 percent, which 

indicates the strength of the OVA technique. 

Table 3. Confusion matrix and PCC of ten class classification 

Class BMP 2 BTR70 T72 T62 BRDM2 BTR60 ZSU23/4 D7 ZIL131 2S1 PCC (%) 

BMP 2 193 0 1 0 1 0 0 0 0 0 98.97 

BTR70 0 194 0 0 0 2 0 0 0 0 98.97 

T72 0 0 196 0 0 0 0 0 0 0 100 

T62 0 0 0 267 0 1 1 1 3 0 97.80 

BRDM2 0 0 1 0 271 1 0 0 1 0 98.90 

BTR60 0 2 1 0 0 191 0 0 1 0 97.94 

ZSU23/4 1 0 0 0 0 0 272 1 0 0 99.27 

D7 0 0 0 0 2 0 0 272 0 0 99.27 

ZIL131 0 0 0 0 0 0 1 0 273 0 99.63 

2S1 0 0 0 1 1 2 1 0 2 267 97.44 

Avgerage 98.81 

 

Next, we evaluate the OVA-CNN using the error rate, number of weight 

parameters, and training samples. The error rate measures the defectiveness of the 

model on the classification task and gives the overall percentage of wrongly classified 

targets. The number of weight parameters directly implies the size of the CNN model. 

A smaller CNN model can train faster and store on-chip directly while deploying. 

The number of training samples used to train the CNN indicates the amount of data 

required to converge the model during training. Training a CNN model with fewer 

images is essential in SAR ATR, where the availability of labeled data is limited. 

Table 4 compares the results of OVA-CNN with state-of-the-art SAR ATR models. 

Table 4.  Comparison of OVA-CNN and other CNN models under SOC 

CNN Error rate No of parameters No of training samples 

In [31] 1.94 1.06 247231 

In [19] 0.87 0.30 4620464 

In [26] 1.8 0.06 46699 

In [21] 1.61 0.22 4620464 

In [11] 0.21 6.01 175808 

OVA-CNN 1.19 0.34 24723 
 

In addition to CNN in [19] and [11], OVA-CNN has the lowest error rate, as 

shown in Table 4. It is to be noted that CNN in [19] needs 188 times more training 

data than OVA-CNN and both models contain almost the same number of weight 

parameters. Similarly, when compared to CNN in [11], OVA-CNN has 17 times 

fewer weight parameters. From the data given in Table 4, it can be seen that  

OVA-CNN needs fewer training samples than other networks under comparison, and 

hence proves that OVA-CNN is superior to most CNNs. The results from Table 4 

reaffirms that the ensemble of multiple binary-classifying CNNs has more impact on 

the recognition rate than a single multi-class CNN. 
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4.3. Results under EOC 

SAR images are highly vulnerable to variations in depression angles. Hence, 

evaluating the robustness of a SAR ATR system with respect to the difference in the 

depression angle is crucial for specific applications. Table 5 provides an overview of 

training and test images for experiments based on the depression angle variation 

(EOC-1).  

As shown in Table 5, the EOC-1 experiment consists of four target categories: 

2S1, BRDM-2, T-72, and ZSU23/4. The images with a depression angle of 17 

degrees have been used as training samples, while the images with a depression angle 

of 30 degrees have been used as test samples. The confusion matrix for EOC-1 is 

given in Table 6. 

Table 5. EOC-1 data distribution 

Class Serial No Training images Test images 

2S1 b01 299 288 

T72 A64 232 288 

BDRM2 E71 298 287 

ZSU23/4 D08 299 288 

Table 6. Confusion matrix of EOC-1 

Class 2S1 T72 BRDM2 ZSU23/4 Accuracy (%) 

2S1 288 0 0 0 100 

T72 8 279 1 0 96.87 

BRDM2 5 2 280 0 97.56 

ZSU23/4 4 0 0 284 98.61 

Average 98.26% 

It can be seen from Table 6 that all targets are classified with high accuracy, 

which implies the robustness of the model to variation of depression angle. However, 

the targets T72, BRDM2, and ZSU23/4 are occasionally misclassified as 2S1. All 

these target vehicles consist of a turret mounted above the fighting compartment. This 

might be the cause for the misclassification of these targets. We also assess the 

robustness of the proposed method for various target configurations and versions. 

The training set in this experimental setup consists of four targets (BMP2, BRDM2, 

BTR70, and T72) at a 17-degree depression angle, as shown in Table 7. The test set 

comprises two groups, as given in Table 8 (EOC-2) and Table 9 (EOC-3). 

Table 7. Training data of EOC-2 and EOC-3 

Class Serial No Depression No of samples 

T72 132 17 232 

BMP2 9563 17 233 

BRDM2 E71 17 298 

BTR70 C71 17 233 

Table 8. Test data of EOC-2 
Class Serial No Depression No of samples 
T72 S7 15 and 17 419 

A32 15 and 17 572 
A62 15 and 17 573 
A63 15 and 17 573 
A64 15 and 17 573 
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Table 9. Test data of EOC-3 

Class Serial No Depression No of samples 

T72 S7 15 and 17 419 

A32 15 and 17 572 

A62 15 and 17 573 

A63 15 and 17 573 

A64 15 and 17 573 

BMP2 9566 15 and 17 428 

C21 15 and 17 429 
 

As listed in Table 8, the EOC-2 test set contains five configuration variants of 

the target T72 that are not included in the training set. Similarly, the EOC-3 test set 

in Table 9 contains two BMP2 version variants and five T72 version variants. The 

targets at depression angle 15 degrees and 17 degrees are included in the EOC-2 and 

EOC-3 test sets.  

The confusion matrices for EOC-2 and EOC-3 are provided in Table 10 and 

Table 11, respectively. From Table 10, it can be seen that the proposed network 

achieves a recognition rate of 98.62%. Table 11 shows that the recognition rate for 

EOC-3 test data is 98.33%. The results presented in these tables illustrate that the 

proposed network has an excellent performance in recognizing the targets with 

different versions and configurations. According to the results in Table 10 and  

Table 11, BMP2 and T72 are frequently confused. It seems possible that these results 

are due to the geometrical similarities between these two targets. 

Table 10. Confusion matrix of EOC-2 

Class BMP2 BRDM2 BTR70 T72 Accuracy (%) 

A32 7 0 0 565 98.77 

A62 3 0 0 570 99.47 

A63 7 0 0 566 98.77 

A64 10 0 0 563 98.25 

S7 9 0 0 409 97.84 

Avgerage 98.62   

Table 11. Confusion matrix of EOC-3 

Class Serial No BMP2 BRDM2 BTR70 T72 Accuracy (%) 

BMP2 9566 411 1 2 14 96.02 

C21 422 1 0 6 98.36 

T72 A04 6 2 0 565 98.60 

A05 1 0 0 572 99.82 

A07 3 0 0 570 99.48 

A10 1 0 0 566 99.82 

812 15 1 0 410 96.24 

Avgerage 98.33   

 

Next, we compare the performance of OVA-CNN with the recently proposed 

CNN models in the literature. The average classification accuracies of these 

algorithms are provided in Table 12.  While comparing OVA-CNN with CNN in [11] 

and [19], it can be seen that the OVA-CNN has a competitive result in SOC and EOC 

experiments. The results indicate that the OVA ensemble of CNN has a good 

recognition capability, fewer weight parameters and training samples. 

 



 193 

Table 12. Comparison of OVA-CNN with other CNN models 

Model SOC (%) EOC-1 (%) EOC-2 (%) EOC-3 (%) 

CNN [31] 98.06 - - - 

CNN [19] 99.14 9.12 99.83 98.60 

CNN [26] 98.20 95.7 - - 

CNN [21] 98.39 - - - 

CNN [11] 99.79 98.78 99.80 99.35 

OVA-CNN 98.81 98.26 98.62 98.33 

4.4. Visualization of OVA-CNN 

Although CNN gives promising results, the working mechanism of CNN remains a 

black box. Hence, visually interpreting CNN has drawn wide attention [48, 49]. In 

this section, the feature maps of the first and second convolutional layers of  

OVA-CNN are visualized and interpreted for SAR images. Eight feature maps of the 

first and second convolutional layers of OVA-CNN are depicted in Figs 3 and 4, 

respectively. The analysis of the feature maps gives insight into the transformations 

of the target image at classified objectives.  
 

 

Fig. 3. Feature map of first convolutional layer of OVA-CNN 

From Fig. 3, we analyze that the filters in the first layer of OVA-CNN extract 

generic features of the target. In contrast, the second layer of convolutional filters 

extracts more abstract features, as illustrated in Fig. 4. Although the BCNN for each 

target has a similar architecture, the features learned by these filters differ, as one 

BCNN’s training is independent of the other. Hence, the features extracted by one 

feature map for a particular target differ from a similar feature map of another target. 

This is more evident in Fig. 3. While feature map three of BMP2 and BTR70 consists 

of a few pixels, feature map three of other targets contain more information about the 

target. Moreover, the dissimilarity between the feature maps of a target exhibits that 

the redundant feature maps are not produced during the training phase. Similarly, the 

feature map of one target varies from all other targets, which shows the effectiveness 
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of the combination of classifiers to predict the final class. Instead of the generic 

features, the feature maps of the second convolutional layer extract more abstract 

features specific to each target. The filter corresponding to feature map three of  

Fig. 4 extracts the lower-right features of the target, while the filter of feature map 

eight extracts the lower-left features of the target. 

 

 

Fig. 4. Feature map of second convolutional layer of OVA-CNN 

To analyze the effect of spatial parameters of the SAR target based on the 

augmentation techniques applied, the feature maps corresponding to each 

augmentation technique of the target T72 is visualized in Fig. 5. 
 

 
Fig. 5. Feature map of T72 target after applying various augmented techniques. 

From Fig. 5, it can be seen that the feature maps of the target T72 slightly varies 

based on the augmentation technique applied to the target. When the blurring effect 

is applied on the target T72, a few of the original image features disappear in the 

blurred target’s feature map. Similarly, the feature map of the edge-enhanced version 

of T72 extracts more information compared to the original image. Hence, we interpret 

that the usage of augmented images for training improves the robustness of the CNN 

model and causes an improvement in the generalization of the model. 

5. Conclusion 

CNN has been widely used in SAR ATR to produce state-of-the-art results, but it is 

challenging to train CNN with limited labeled images. Moreover, the huge number 
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of weight parameters in CNN impedes its deployment on embedded platforms. This 

paper explains the effects of the one-vs-all ensemble technique on reducing 

parameters and the training samples of a CNN classifier. Specifically, the OVA-CNN 

splits the multiclass classification problem among multiple binary classifying CNNs. 

The OVA- CNN predicts the label by choosing the class corresponding to the binary 

classifier that gives the highest probability for any unknown target. The extensive 

studies on the benchmark MSTAR dataset illustrate the effectiveness of the  

OVA-CNN. Based on our experimental results, we conclude that applying the OVA 

technique on CNN can improve the model’s accuracy while reducing the number of 

parameters and training sample requirements. The findings in this work are subject 

to at least two limitations. First, the current study is a rough approach that has only 

examined on MSTAR dataset. Second, the study does not evaluate the effects of the 

OVA technique on the computational complexity of the model, and cannot guarantee 

the quality of recognition close to optical image-based SAR ATR. 
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