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Abstract: Given the face spoofing attack, adequate protection of human identity 

through face has become a significant challenge globally. Face spoofing is an act of 

presenting a recaptured frame before the verification device to gain illegal access on 

behalf of a legitimate person with or without their concern. Several methods have 

been proposed to detect face spoofing attacks over the last decade. However, these 

methods only consider the luminance information, reflecting poor discrimination of 

spoofed face from the genuine face. This article proposes a practical approach 

combining Local Binary Patterns (LBP) and convolutional neural network-based 

transfer learning models to extract low-level and high-level features. This paper 

analyzes three color spaces (i.e., RGB, HSV, and YCrCb) to understand the impact 

of the color distribution on real and spoofed faces for the NUAA benchmark dataset. 

In-depth analysis of experimental results and comparison with other existing 

approaches show the superiority and effectiveness of our proposed models. 

Keywords: Presentation attack detection, biometrics, computer vision, deep learning, 

authentication, color-texture analysis. 

1. Introduction 

Nowadays, a face recognition system poses a significant challenge to authenticate the 

face identity of a legitimate user due to a face spoofing attack. Face spoofing attack 

(a.k.a. face presentation attack) is an illegal attempt performed by an imposter to get 

the face access of a legitimate user with or without their knowledge. However, face 

identity theft may also be possible if the legitimate users arrange the spoofed face 

under an agreeable condition. In both these cases, face spoofing can breach security 

mechanisms resulting in duplicity of face identity. Among other biometric traits, the 

human face preserves vital information to identify individuals; thus, a recent surge 

has been noticed in face biometric-based authentication applications worldwide  

[1, 2].  

On the other hand, spoofing a human face is a comparatively more 

straightforward task than other biometric traits as it requires only a legitimate user’s 

recaptured frame (i.e., photos or videos). These frames can be represented before the 
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biometric sensors to bypass the face evidence. However, this recapturing (gamut or 

reproduction) process generates a slightly distorted image compared to the original 

for various reasons such as different color distribution [3], lighting effects, camera 

focus, printing material (specular reflection), and display media such as digital photo, 

print photo, video display, and more. Therefore, the presented face suffers from 

medium-based color-dependent spoofing.  

1.1. Motivation 

The motivational factors that inspired us to do this research work are summarized 

below:   

  The chrominance information is more promising than luminance 

information to discriminate the recaptured image from the original image [4].  

 A combined dual-phase (i.e., handcrafted and deep) feature extraction 

approach at different levels for distinct color distributions has received scant attention 

in the literature. The absence of such analysis in the literature made the intention of 

this research work empirically focused, which this article efficiently accomplishes. 

 Grayscale images are not appropriate for analyzing the fine details of spoofed 

and genuine faces, particularly for low-resolution images.   

 The printed photo attack is a widely used, most convenient, low-cost face 

spoofing attempt for imposters.  

Conventional machine learning methods relying only on handcrafted features 

are no more effective in dealing with face spoofing problems because of color 

disparity found on various presentation attack instruments. To overcome this 

limitation, we propose a new approach combining the Color-based LBP and Transfer 

Learning-based methods such as VGG16, InceptionV3, and MobileNetV2 to achieve 

remarkable performance.  

1.2. Contribution 

Our significant contributions to this research work can be outlined as follows:  

 We explore three distinct color spaces (i.e., RGB, HSV, and YCrCb) 

involving luminance and chrominance information to analyze the intrinsic disparities 

between different color distributions on the recaptured images. 

 We offer a new face image preprocessing consisting of face detection, face 

alignment, normalization, and image enhancement.  

 We apply channel splitting on three different color spaces to effectively 

analyze the features of each component of the color space. 

 We propose a color-based LBP descriptor to extract the color-texture (local 

level) features channel-wise, as it considers luminance and chrominance information 

at different locality levels. However, the color-based LBP feature descriptor alone 

has been insufficient to provide extensive learning to the model as this paper 

considers various scenarios of face spoofing attacks aligned directly with real-life 

applications and problems. 

 We deploy a modified CNN architecture by utilizing the pretrained weights 

for the three different transfer learning models (i.e., VGG16, InceptionV3, and 
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MobileNetV2), with fine-tuning of hyperparameters to obtain more appropriate 

(deep) features in second-level feature extraction.  

 We have conducted extensive experiments on a public benchmark NUAA 

dataset, exploring the effect of various face spoofing scenarios, such as print attacks 

(handhold photos), display attacks (digital photos), wrapped photos, and blurry 

photos under predefined experiment criteria. 

 We provide a tabular comparative analysis with other state-of-the-art 

approaches to reveal that our proposed approach outperforms other countermeasure 

techniques. 

1.3. Organization 

This paper is organized into five sections. Section 1 delineates the rationale behind 

this work with solid motivations to detect face spoofing attacks. A list of 

abbreviations and their meanings used in this manuscript is shown in Table 1.  

Section 2 discusses the literature review for the state-of-the-art antispoofing 

techniques. Section 3 illustrates the proposed methodology given two novel 

techniques for feature extraction and subsequent classification using deep neural 

networks. Section 4 reports the experimental results with an appropriate analysis of 

the results. The complete work is summarized with future scope in Section 5. 

Table 1. List of abbreviations with their meaning 
Abbreviation Meaning Abbreviation Meaning 

PAIs Presentation Attack Instruments CLBP Color-based Local Binary Pattern 

LBP Local Binary Pattern LGS Local Graph Structure 

CNN Convolutional Neural Network NUAA 
Nanjing University of Aeronautics and 

Astronautics 

SVM Support Vector Machines VGG Visual Geometry Group 

EER Equal Error Rate 
CASIA 

FASD 

Chinese Academy of Science Face Anti-

Spoofing Database 

EDDTCP 
Extended Division Directional Ternary 

Co-relation Pattern 
MSU MFSD 

Michigan State University Mobile Face 

Presentation Attack 

LTP Local Ternary Pattern HSV Hue, Saturation, Value 

CNNTL 
Convolutional Neural Network-based 

Transfer Learning 
YCrCb 

Luminance, Chrominance red, 

Chrominance blue 

2. Literature review 

Given the fragility of authentication systems, the problem of detecting face spoofing 

has always attracted the attention of the biometric research community. However, 

published articles are limited in their scope. This section presents contemporary 

insight into state-of-the-art methods for distinguishing between genuine and spoofed 

faces. Here, we present the recently proposed machine learning and deep learning-

based approaches by analyzing the features of distinct color space and textures for 

different public benchmark face spoofing datasets such as NUAA, Replay-Attack, 

CASIA FASD, and MSU MFSD [2, 5]. The importance of selecting the best feature 

selection method to determine efficient results is reviewed in [6]. 
T h o m a s  and M a t h e w  [7] propose a face spoofing detection approach 

utilizing local binary patterns and support vector machines for feature extraction and 
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classification purposes, respectively. This work analyzes the color texture, image 

distortion, and image quality for HSV color space. A n a n d and V i s h w a k a r m a  

[8] proposed a constructive fusion approach to address the face spoofing problem 

involving LBP and CNN for feature extraction and the SVM method to classify the 

spoofed and real faces. The LBP-based method obtained an accuracy of 94.31 %, 

while the CNN-based VGG16 method yielded an accuracy of 98.15 % on the CASIA 

FASD dataset. C h e n  et al. [9] proposed a face spoof detection method utilizing a 

rotation-invariant LBP and ResNet-18 model for color texture feature extraction with 

SVM classification. The principal component analysis is used to reduce the 

dimension of the feature space. The NUAA, Replay-Attack, MSU-MFSD, and 

CASIA-FASD datasets are considered for the experiments. The best EER results for 

YCrCb and HSV are 0.37%, 3.2%, 5.9%, and 4.1% with NUAA, Replay Attack, 

CASIA-FASD, and MSU-MFSD datasets, respectively. B o u l k e n a f e t, 

K o m u l a l n e n  and H a d i d  [4] introduce the color-texture-based face spoofing 

detection method, which analyzes the extracted low-level features from different 

color spaces. E d m u n d s  and A l i c e  [10] propose a model able to retrieve the 

radiometric distortions from the images. The drawback is that it cannot detect 

distortion when variable illumination is present for enrolment and authentication. 

The state-of-the-art literature confirms that color texture is the essential factor 

primarily considered for detecting face spoofing attacks. Furthermore, the NUAA 

dataset is used mainly in state-of-the-art research due to many frames (i.e., 12600) 

consisting of various unconstrained scenarios such as the live face, handhold print 

photo, digital photo, blurred and over-exposed images. On the other hand, deep neural 

network solutions yield remarkable results for face spoofing detection. Thus, this 

paper primarily considers these facts to propose a new methodology. 

3. Proposed methodology   

Considering the findings of the literature section, we propose a new dual-stream 

feature extraction-based countermeasure technique for face spoofing detection by 

analyzing three distinct color spaces. The proposed architecture of face spoofing 

detection is depicted in Fig. 1.  

 
Fig. 1. Architecture of the proposed face spoofing detection approach 
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Our approach being proposed involves three distinct color spaces: RGB, HSV, 

and YCrCb. These three color spaces contain more intuitive information that can be 

retrieved through the channel-splitting process. Thus, each color space is segregated 

into its respective channels. The color-based LBP feature descriptors efficiently 

extract the knowledge from these disparate channels and concatenate it to generate a 

composite feature vector. Extensive learning has been provided to these composite 

features in the second stage of feature extraction, i.e., the convolutional neural 

network-based transfer learning. A detailed description of each module is elaborated 

in the following sub-sections.  

3.1. Image preprocessing module 

The image or a video frame received from the sensor device contains many 

impurities, irregularities, and noise due to various reasons such as changes in 

illumination conditions, camera viewpoints, low resolution, long focal distance, and 

more. The image preprocessing enhances these images, which includes face 

detection, segmentation, alignment, normalization, and image enhancement.  

3.1.1. Face detection and segmentation  

This task is the prerequisite for any face biometric-based application. We have 

deployed the most popular Voila-Jones method to implement face detection tasks, 

comprising Haar-like features, integral images, cascade classifier, and Adaboost 

algorithm. Haar-like features [11] are the grayscale templates that include line, 

center-surround, and edge features and are more similar to a human face’s geometry. 

Integral images are utilized on facial pixels for faster feature extraction. Cascaded 

representations of all extracted features are collected from facial and non-facial 

regions. The Adaboost method uses weak classifiers to attain different features and 

then increases the strength of each classifier by combining these weak classifiers into 

a single robust classifier. The features that obtain higher votes are accepted and 

concatenated, while the rest are rejected, as  
(1)    𝐹(𝑥) = 𝛼1𝑓(𝑥1) + 𝛼2𝑓(𝑥2) + 𝛼3𝑓(𝑥3) + ⋯ +𝛼𝑛𝑓(𝑥𝑛), 

(2)      𝐹𝑡(𝑥) = ∑ 𝑓𝑡(𝑥)𝑇
𝑡=1 . 

3.1.2. Face alignment and normalization processes  

Face alignment is an important task to adjust the human’s face to the frontal position. 

The eye landmarks (i.e., twelve points) alone are sufficient to align the face to the 

frontal position out of sixty-eight facial landmarks. Thus, we first locate the eye 

landmarks using the Dlib library. To find the left and right eye’s center point, we 

calculate the mean of all points for both the left and right eye concerning the  

x-coordinate and y-coordinate using the equations (3) and (4) below. We calculate 

the coordinate-wise displacement for the left and right eyes to find the left and right 

eye centroid:  

(3)    L_E_center = {
𝑥 (L_E_LM𝑠)

2
,

𝑦 (L_E_LM𝑠)

2
}, 

(4)    R_E_center = {
𝑥 (R_E_LM𝑠)

2
,

𝑦 (R_E_LM𝑠)

2
}. 

Furthermore, we calculate the Euclidean Distance (ED) for these displacements 

as shown in (5), (6), and (8). The angular displacement (arctangent) formula is shown 
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in (7). Afterward, we define the expected range of visible faces and the eyes to be 

scaled after alignment, as shown in (9). The eye center is now calculated, considering 

the left and right eye’s position coordinates as shown in (10):  
(5)    𝑑𝑦 = R_E_Center[1] − L_E_Center[1], 

(6)    𝑑𝑥 = R_E_Center[0] − L_E_Center[0], 

(7)    Angle (𝜃) =  tan−1 {
𝑑𝑦

𝑑𝑥
}, 

(8)    ED =  √(𝑑𝑥2 + 𝑑𝑦2), 

(9)    Scale (S) =
Desired_distance

ED
, 

(10)    Eyes_Center = {
L_E_center[0]+R_E_center [0]

2
,

L_E_center[1]+R_E_center [1]

2
}. 

The parameters detected such as center eye point, scaling factor, and rotation 

angle are sufficient to form a rotation matrix. This center point creates a new matrix 

with reduced face width and increased face height. Finally, warp affine 

transformation is applied with the three essential details: the image, the new matrix 

(consisting of translation, rotation, and scaling), and the updated shape of the 

expected face. Face normalization is the process of setting each image to an 

appropriate range.  

3.1.3. Image enhancement  

Image enhancement includes various preprocessing operations such as serialization 

and annotation, resizing, and class-wise labeling of the dataset. Applying these 

operations reduces the inconsistency and complexity of our use case NUAA dataset 

[12, 13]. 

3.2. Color space conversion and channel splitting module 

The color space is a mathematical abstraction that allows the reconstruction of the 

color through various digital and analog representations. The distinct color space 

distribution may be essential to understanding the suitability of a specific color space 

to discriminate a fake face from an actual face. In this article, we consider three 

diverse color spaces such as RGB, HSV, and YCrCb.  

3.2.1. RGB color space  

RGB color distribution comprises three primary colors: Red, Green, and Blue. This 

color model is the most reliable and convenient for the human visual system as it can 

reproduce a wide range of new colors and is more intuitive for visualizing color 

images.   

3.2.2. HSV color space  

HSV [14] represents Hue, Saturation, and Value to represent specific color 

information. The Hue component is responsible for resembling the actual color. 

Saturation defines the strength of the whiteness, whereas the value represents the 

count of intensity (i.e., lightness). The Hue and Saturation components reflect the 

chrominance information, whereas the value represents the luminance information. 

The three components, H, S, and V, can be derived from the RGB color model as 

shown in (11), (12), and (13), respectively: 
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(11)    𝐻 = cos−1 [
0.5[(𝑅−𝐺)+(𝑅−𝐵)]

√[(𝑅−𝐺)2+(𝑅−𝐵)(𝐺−𝐵)]
], 

(12)    𝑆 = 1 −
3

(𝑅+𝐺+𝐵)
[min(𝑅, 𝐺, 𝐵)], 

(13)    𝑉 =
1

3
[(𝑅 + 𝐺 + 𝐵)]. 

3.2.3. YCrCb color space 

YCrCb [4] is one of the prominent color spaces mainly used to represent the colors 

for digital TV. The scene captured through the real face and the spoofed face has 

significantly differed in brightness (i.e., Y value or intensity) and chrominance 

information (i.e., Cr and Cb). This color space provides more effective and fine 

complementary details of facial color through two-color channel components. The 

conversion of the RGB color model to YCrCb is easy in mathematical essence, as 

shown in (14), (15), and (16).  
(14)    𝑌 = 𝑅 × 0.301 + 𝐺 × 0.586 + 𝐵 × 0.113 , 
(15)    𝐶b = 𝑅 × (−0.168) + 𝐺 × (−0.332) + 𝐵 × (0.500) + 128, 

(16)    𝐶r = 𝑅 × (0.500) + 𝐺 × (−0.417) + 𝐵 × (−0.082) + 128. 

3.2.4. Channel-splitting process 

Channel splitting [5, 14]  segregates respective channels from a specific color space 

distribution to analyze the impact of each color channel in extracting significant 

features.  

3.3. Feature extraction module 

This section demonstrates a new efficient dual-phase feature extraction method to 

obtain more intuitive information for efficient classification. The first method is the 

Color-based Local Binary Pattern (CLBP), which extracts the channel-wise features 

from a given color space and passes the composite features to the deep network. The 

second method is a convolutional neural network-based transfer learning (VGG16, 

InceptionV3, and MobileNetV2) deployed to provide intensive learning that raises 

the classification accuracy remarkably.  

3.3.1. Algorithm 1 

Algorithm 1 illustrates the complete feature extraction phases. 
Algorithm 1. Two-Stage Feature Extraction Process 

Input: Input image 𝐼Face image size H×W×C. 

Output: Classification of the input image 𝐼Face 

Initialize Parameters 

𝑋_train = [ ],  𝑌_train = [ ],  𝑋_test = [ ],  𝑌_test =  [ ] 
 𝑋_train,  𝑌_train ← next (train_generator) 

 𝑋_test,  𝑌_test ← next (test_generator) 

 𝑋_train_LBP = [ ], 𝑌_train_LBP = [ ], 𝑋_test_LBP = [ ], 𝑌_test_LBP = [ ] 
Step 1. 𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝟏: Color − based LBP (𝐼Face) 

Step 2. Load input image 𝐼Face 

Step 3. Convert the color Space of the image 𝐼Face 

Step 4. Split the color space to extract channel − wise information  
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Step 5. 𝐟𝐨𝐫 images in  𝑋_train 𝐝𝐨 

Step 6.      𝐟𝐨𝐫 images in  𝑋_test 𝐝𝐨 

Step 7.            Find the histogram for each distinct channel  
Step 8.         𝐷 ← LocalBinaryPattern (neighbourhood, radius, method) 

Step 9.         Append the channel − wise histogram with LBP to 𝑋_test_LBP 

Step 10.      Append the channel − wise histogram with LBP to 𝑋_train_LBP 

Step 11.      𝐞𝐧𝐝 𝐟𝐨𝐫 

Step 12.      𝑋_train_LBP ← 𝑋_train_LBP. astype(′float32′) 

Step 13.      𝑋_test_LBP ← 𝑋_test_LBP. astype(′float32′) 

Step 14.      𝑋_train_LBP ← 𝑋_train_LBP ∗ 1/255 

Step 15.      𝑋_test_LBP ← 𝑋_test_LBP ∗ 1/255 

Step 16.      𝑋_train_LBP ← asarray(𝑋_train_LBP) 

Step 17.       𝑋_test_LBP ← asarray(𝑋_test_LBP) 

Step 18.  𝑋_train_LBP ← Reshape(𝑋_train_LBP ) 

Step 19. 𝑋_test_LBP ← Reshape(𝑋_test_LBP ) 

Step 20. 𝑌_train_LBP ← Assign_label (𝑌_train) 

Step 21. 𝑌_test_LBP ← Assign_label (𝑌_test) 

Step 22. 𝐞𝐧𝐝 𝐟𝐨𝐫 

Step 23. 𝐞𝐧𝐝 𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝟏 

Step 24. 𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝟐: CNN − based TL models (𝐼Face, 𝑋_train_LBP, 𝑋_test_LBP) 

Step 25. Load the TL base model excluding its Top layer 

Step 26. Shape (𝑋_train_LBP [1: ]) ←  Shape(input_shape(𝐻, 𝑊, 𝐶)) 

Step 27. 𝑀 = Flatten (Output(base model)) 

Step 28. Apply dense network with activation function 

Step 29. Apply binary classification with sigmoid function 

Step 30. Compile the model using Optimizer, loss, and metrics 

Step 31. Fit the model for training and validation data  
Step 32. 𝐫𝐞𝐭𝐮𝐫𝐧 𝐭𝐡𝐞 𝐟𝐚𝐜𝐞 𝐢𝐦𝐚𝐠𝐞 𝐼Face 𝐰𝐢𝐭𝐡 𝐜𝐥𝐚𝐬𝐬 𝐥𝐚𝐛𝐞𝐥𝐬 
𝐞𝐧𝐝 𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝟐 

The algorithm above highlights the complete feature extraction method, 

consisting of handcrafted color-texture-based LBP (Stage-1), and CNN-based 

transfer learning (Stage-2), with the significance of features’ fusion. 

3.3.2. Color-Based Local Binary Pattern (CLBP) 

The local binary pattern is the most widely used grayscale-based feature descriptor. 

The LBP extracts low-level information such as edge, color, and intensity from each 

color channel. The histogram of these features represents the frequency occurrence 

of chrominance (color) and luminance (brightness) information. The example of the 

LBP operator is shown in Fig. 2.  

 
Fig. 2. Example of LBP operator 
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LBP evaluates a binary code for each image pixel by considering the threshold 

value in the circularly symmetric neighborhood with the central pixel’s value, as 

shown in Fig. 3. Each value higher than a given threshold value (i.e., a central pixel 

value) is assigned to zero, whereas the rest values are assigned one. 

The LBP operator finalizes the binary and their decimal equivalent by assigning 

one to each pixel with a higher than a threshold value and zero to the rest of the pixels, 

starting from the left top corner. Now, the equivalent decimal number is placed in the 

central position of the matrix. This new central value is the actual pixel value 

generated through LBP to represent the features better. Fig. 4 depicts the visualization 

of LBP operation for each color channel image. 

 

Fig. 3. Illustration of general LBP operations 

 

 
Fig. 4. Visualization of LBP operation for each color channel image  

LBP is intended to deal with grayscale images only. However, LBP considers 

the luminance and chrominance information at different locality levels. Therefore, 

we have modified a normal LBP to a color-based LBP consisting of eight 

neighborhood pixels with a radius value. The working of the LBP descriptor for the 

specified number of neighbors and radius of the center is represented in the equations  

(17)    LBP𝑃,𝑅
𝑖 (𝐴, 𝐵) =  {

∑ 𝛿(𝑟𝑛
(𝑖)

− 𝑟c
(𝑖)

) × 2𝑛𝑃−1
𝑛=0  if 𝑈(𝑖)  ≤ 2,

𝑃(𝑃 − 1) + 2                     otherwise,
 

(18)   𝑈(𝑖) =  |𝛿(𝑟𝑃−1
(𝑖)

− 𝑟c
(𝑖)

) − 𝛿(𝑟0
(𝑖)

− 𝑟c
(𝑖)

)| + ∑ |𝛿(𝑟𝑛
(𝑖)

− 𝑟c
(𝑖)

) − 𝛿(𝑟𝑛−1
(𝑖)

− 𝑟c
(𝑖)

)|,𝑃
𝑛=1  

where 𝛿(𝐴) = 1 if 𝐴 ≥ 0, otherwise 0. 𝑟c and 𝑟𝑛 (𝑛 = 0, 1, 2, … , 𝑃 − 1)  are the 

intensity values of the central pixel (𝐴, 𝐵) and 𝑃 is its neighborhood pixels located at 

the circle of radius 𝑅(𝑅 > 0). Let 𝐼 be a face image for color space 𝑆, where,  

𝑆 ∈ {RGB, HSV, YCrCb} and, let 𝐻𝑆
(𝑖)

, {𝑖 = 1, … , 𝑀} be its uniform LBP histogram 

extracted from the 𝑀 channel of the space 𝑆. The color LBP feature of the image 𝐼 

represented in the space 𝑆 can be defined as  

(19)    𝐻𝑆 = [𝐻𝑆
(1)

… … 𝐻𝑆
(𝑀)

]. 

The conceptual diagram of the proposed color-based LBP feature extraction 

process is shown in Fig. 5.  

Fig. 5 clarifies the steps involved in image preprocessing, color space 

conversion, channel splitting, and the first-stage feature extraction process. Here, 

channel-wise extracted features for each color space are combined to obtain a 
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composite feature vector. However, the color-based LBP feature descriptor was 

insufficient to provide extensive learning to the model. It is seen that channel-wise 

LBP features have been extracted, and a normalized composite feature vector is 

passed to the deep network for a different level of feature extraction. Thus, we need 

a deep neural network model to deal with the image data effectively.  

 

 
Fig. 5. Conceptual diagram of the proposed color-based LBP feature extraction process  

3.3.3. Convolutional Neural Network-based Transfer Learning method (CNNTL) 

The convolutional neural network is a widely used deep network, particularly for 

image classification problems, as it efficiently extracts spatial features from input 

streams [15]. Transfer learning is one of the most popular methods inspired by the 

convolutional neural network and is used in many applications, including face 

recognition. As the name suggests, transfer learning utilizes the learning experience 

to reduce the efforts to train massive networks and the overhead of computing the 

weights for a whole network from scratch [16]. Intelligence (i.e., pretrained weights) 

and hyperparameters fine-tuning are effectively utilized to extract the deep features 

that can better represent real-world scenarios. The transfer learning uses the 

ImageNet pretrained weights. ImageNet includes 1000 distinct classes of image data. 

A conceptual diagram of the proposed transfer learning-based feature extraction 

process is shown in Fig. 6.  

 
Fig. 6. Conceptual diagram of the proposed transfer learning-based feature extraction process  

The three prominent transfer learning models, VGG16, InceptionV3, and 

MobileNetV2 are deployed on the normalized LBP composite features, leaving the 

top classification layer frozen. Thus, the top layer restricts the model from presenting 

the output. The output of the base model is considered with the new customized dense 

networks and the classification layer. We also have added three dense customized 

networks to the VGG16 model (i.e., fully connected, 512, 256) feature maps. In the 

InceptionV3 model, we consider four customized dense layers (i.e., FC, 1024, 512, 

256) feature maps. In contrast, the MobileNetV2 contains three denser layers (i.e., 
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FC, 512,128). A new classification layer is added to each model at the end of the 

network structure. The specification of the transfer learning models (VGG16, 

InceptionNetV3, and MobileNetV2) is represented in Table 2.  

Table 2. Detailing of VGG16, MobileNetV2, InceptionV3 

Model Developed by Input Specification 
No of  

parameters 

Accuracy/ 

error 

Refe- 

rences 

VGG16 

(2014) 

Simonyan and 

Zisserman 
224 ×224 

Layers-16,  

CL-13, FCL-03 
138 M 

7.3 % Top-5, 

Error 
[18]  

MobileNetV2 

(2018) 

Daniel Falbel, JJ Allaire,  

François 
224 ×224 

Residual bottleneck 

layers-19 
2.11 M 

72 %, Top-1 

Accuracy 
[17]  

InceptionV3 

(2014) 
Szegedy 299 ×299 Layers-48 7.0 M 

6.67 % Top-5, 

Error 
[19]  

3.3.4. Visual Geometry Group (VGG16) network architecture 

VGG16 is a CNN architecture-based model mostly preferred for computer vision 

problems, especially image-based face classification. However, the architecture of 

VGG16 is slightly complex, containing thirteen convolutional layers and three fully-

connected layers with many parameters (138 million).  

3.3.5. MobileNetV2 network architecture  

MobileNetV2 is the second extended version of MobileNet after MobileNetV1. The 

MobileNetV2 is a CNN-based model that provides convenience to deal with low-

power computational devices, such as mobile and Raspberry Pi, for real-time 

application. Therefore, MobileNetV2 has a small three-layer architecture consisting 

of 2.11 million parameters.  

3.3.6. InceptionV3 network architecture  

The InceptionV3 is an improved version of InceptionV1. This model has forty-eight 

layers of deep networks; however, it breaks large convolution into a smaller grid in 

conjunction with multiple-size filters. This feature makes the model more efficient 

and intuitive than other contemporaries, especially in image analysis.  

The model’s description, including the features maps and other hyperparameters 

used in this work, is presented in Table 3.  

Table 3. Specification of the tuned parameters for proposed models 
Fine Tuned  Parameters VGG16 InceptionV3 MobileNetV2 

Input image 224 × 224 299 × 299 224 ×224 

CL 13 blocks (total 16) 45 blocks (total 48) Bottleneck layers-19 

FC,  Dense, and Classification 04 (F, 512, 256, 1) 05 (F, 1024, 512, 256, 1) 04 (F, 512, 128, 1) 

Learning Rate 0.0001 0.0001 0.0001 

Kernel Size 3 × 3 1 × 1, 3 × 3, 5 × 5, 7 × 7 1 × 1, 3 × 3, 7 × 7 

Batch Size 32 32 32 

Pooling Max Average Global average 

Optimization Adam Adam Adam 

Dropout 0.25 (dense) 0.5 (dense) 0.25 (dense) 

Number of epochs 30 30 30 

Activation 

Conv ReLu ReLu ReLu 

FC ReLu ReLu ReLu 

Class Sigmoid Sigmoid Sigmoid 

Callbacks ReducedLR, EarlyStopping ReducedLR, EarlyStopping ReducedLR, EarlyStopping 
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We have performed fine-tuning of hyperparameters after unfreezing the top 

layers of the base model to train the whole network for our data stream. In order to 

obtain the best classification accuracy, various hyper-parameters, such as learning 

rate, activation function, the total count of epochs, batch size, pooling, kernel size, 

optimizer, early stopping, and dropout were precisely fine-tuned after several 

experiments and have been finalized accordingly. The final layer of the deep network 

is the classification layer, where the sigmoid activation function predicts the class of 

the given image.  

4. Experiments and result analysis   

This section describes the requirement for the experimental setup. The experiments 

have been performed on an interactive python notebook (i.e., Google Colaboratory). 

Google Colab is an open-source cloud-based platform with free GPU and TPU 

support irrespective of the system’s configurations. The “Tesla K80” GPU device 

have been accessed through the CUDA version 11.2 for fast preprocessing on image 

matrices during training. Python 3.7.10 version with Tensorflow 2.4.1 and Keras 

2.4.3 have been considered to perform all the experiments in terms of programming. 

Subsequently, the outcomes of these experiments have been evaluated and analyzed 

comparatively for all of our proposed models.  

4.1. Dataset collection and possible scenarios 

The performance of deep learning models depends on the machine’s data (i.e., 

dataset) and level of data understanding (i.e., learning). Thus, we have considered a 

benchmark dataset, i.e., NUAA, for our experiments. This dataset contains twenty-

five videos captured via a webcam with an image size of 640 by 480 for real faces 

and thirty-three videos with the exact resolution for the spoofed face. These captured 

video streams consist of fifteen subjects, and each subject is of the Asian race. Eighty 

percent of the subjects are men, and the remaining twenty percent are women, with 

both subjects being 20 to 30 years of age. Images/frames can be extracted from the 

video files. The training and test split of these two class samples are shown in  

Table 4. 

Table 4. Specification of the NUAA dataset 

NUAA Dataset 

Class Distribution Number of samples Total 

Genuine face 
Train 4080 

5100 
Test 1020 

Spoofed face 
Train 6000 

7500 
Test 1500 

Total number of samples in the NUAA dataset 12,600 
 

Some sample images from the NUAA dataset consisting of live face, handhold 

print, digital photo, and blurred and over-exposed images are depicted in Fig. 7. 

The dataset consists of multiple images of genuine and fake faces taken at 

different environmental conditions with different time instances for acquisition 
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purposes, reflecting more generalized real-world scenarios. Next section illustrates 

the performance measures evaluated in our proposed approach. 

 

 
Fig. 7. The possible scenarios covered in the proposed methodology  

4.2. Performance measures 

To measure the effectiveness of the models being proposed, the test samples should 

predict the correct class for the given input image or video streams. The correct 

predicted labels out of total test samples represent the accuracy of the model. In 

comparison, the absolute difference between the predicted class labels and the 

expected class labels shows the loss of the model. The vital parameters used to 

evaluate performance matrices can be classified into the following categories: 

1. True positive. The number of test samples classified as True and predicted 

as True. 

2. False positive. The number of test samples classified as False and predicted 

as True. 

3. True negative. The number of test samples classified as False and predicted 

as False. 

4. False negative. The number of test samples classified as True and predicted 

as False. 

The classification measures, such as accuracy, precision, recall, F1-Score, and 

negative predicted value, can be calculated as follows: 

(20)    Accuracy =
TP+TN

(TP+TN+FP+FN)
 , 

(21)    Precision =
TP

(TP+FP)
, 

(22)    Recall (Sensitivity) =
TP

(TP+FN)
, 

(23)    Specificity =
TN

(TN+FP)
, 

(24)    Negative Predicted Value =
TN

(TN+FN)
, 

(25)     F1-Score =
2×Precision ×Recall

(Precision+Recall)
. 
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4.3. Experimental outcome 

We have performed the feature extraction and classification experimentations for the 

three diverse color spaces (i.e., RGB, HSV, and YCrCb) for three different models 

(i.e., VGG16, InceptionV3, and MobileNetV2) after first level feature extraction 

through color-based LBP. Here, we calculate classification measures to validate the 

performance of the proposed model. Fig. 8 (a)-(i) represents the confusion matrix for 

all three transfer learning models concerning the three color spaces. 

Based on the parameters used in the confusion matrix, we calculate the other 

performance metrics as per the formula from (20) to (25). Table 5 depicts the 

performance metrics evaluated for the NUAA dataset on proposed models. 

Table 6 demonstrates the final experimental results for all the proposed models 

considering three color spaces (i.e., RGB, HSV, and YcrCb).  

The experiment results reveal that the RGB color space performs extremely best 

with an accuracy of 99.76% for the color-based LBP and InceptionV3 model, while 

the HSV color space provides excellent results with an accuracy of 99.96% for the 

color-based LBP and VGG16 model. The YCrCb space provides an accurate result 

of 99.80% accuracy for the color-based LBP and MobileNetV2 methods. Thus, The 

HSV color space represents higher accuracy than the other two proposed models.  

 

 
Fig. 8. The confusion matrix for each color model (a)-(i) 

Table 5. Performance measures evaluated for the proposed model 

Proposed  

Model 
Feature extraction methods 

Performance measures 

Accuracy Precision Recall F1-Score Specificity Negative predicted value 

Proposed  

Model-I 

LBP(RGB) VGG16 97.58 98.03 98.96 98.50 91.98 95.63 

LBP(RGB) InceptionV3 99.76 99.81 99.90 99.86 98.94 99.47 

LBP(RGB) MobileNetV2 93.93 95.98 96.84 96.40 78.55 82.46 

Proposed  

Model-II 

LBP(HSV) VGG16 99.96 99.95 100 99.98 99.68 100 

LBP(HSV) InceptionV3 98.85 99.18 99.42 99.30 96.23 97.32 

LBP(HSV) MobileNetV2 98.61 99.15 99.28 99.22 94.41 93.42 

Proposed  

Model-III 

LBP(YCrCb) VGG16 99.76 99.86 99.86 99.86 99.15 99.15 

LBP(YCrCb) InceptionV3 98.81 99.23 99.49 99.35 91.13 93.90 

LBP(YCrCb) MobileNetV2 99.80 99.83 99.96 99.89 97.86 99.46 
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Table 6. Experimental outcome for all proposed models 
Proposed  

Model 
Methods 

Train Validation 

Accuracy Loss Accuracy Loss 

Proposed  

Model-I 

LBP(RGB) VGG16 99.98 % 0.0272 97.58 % 0.0785 

LBP(RGB) InceptionV3 99.03 % 0.0272 99.76 % 0.0044 

LBP(RGB) MobileNetV2 99.72 % 0.0090 93.93 % 0.1844 

Proposed  

Model-II 

LBP(HSV) VGG16 99.67 % 0.0120 99.96 % 0.0015 

LBP(HSV) InceptionV3 98.39 % 0.0473 98.85 % 0.0342 

LBP(HSV) MobileNetV2 99.34 % 0.0188 98.61 % 0.0446 

Proposed  

Model-III 

LBP(YCrCb) VGG16 98.45 % 0.0444 99.76 % 0.0059 

LBP(YCrCb) InceptionV3 98.98 % 0.0319 98.81 % 0.0284 

LBP(YCrCb) MobileNetV2 99.61 % 0.0138 99.80 % 0.0064 

 

In contrast, the overall least accuracy is found in RGB color space, with an 

accuracy of 93.93% for color-based LBP and MobileNetV2 methods. The trade-off 

between training and validation accuracy and respective loss for training and 

validation are represented in Figs 9-11 (Proposed Model-I for RGB color space),  

Figs 12-14 (Proposed Model-II for HSV color space), and Figs 15-17 (Proposed 

Model-III for YCrCb color space), respectively. 
 

 
 (a)                                                                (b) 

Fig. 9. Trade-off between training vs. validation for VGG16 (RGB): accuracy (a); loss (b) 

 

 
(a)                                                                  (b) 

Fig. 10. Trade-off between training vs. validation for InceptionV3 (RGB): accuracy (a); loss (b) 
 

 
 (a)                                                               (b) 

Fig. 11. Trade-off between training vs. validation for MobileNetV2 (RGB): accuracy (a); loss (b)  
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(a)                                                                 (b) 

Fig. 12. Trade-off between training vs. validation for VGG16 (HSV): accuracy (a); loss (b) 

 

         
                      (a)                                                             (b) 

Fig. 13. Trade-off between training vs. validation for InceptionV3 (HSV): accuracy (a); loss (b) 

 
                  (a)                                                              (b) 

Fig. 14. Trade-off between training vs. validation for MobileNetV2 (HSV): accuracy (a); loss (b) 

 

  
                 (a)                                                               (b) 

Fig. 15. Trade-off between training vs. validation for VGG16 (YCrCb): accuracy (a); loss (b) 

 

  
                 (a)                                                                 (b) 

Fig. 16. Trade-off between training vs. validation for InceptionV3 (YCrCb): accuracy (a); loss (b) 
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              (a)                                                             (b) 

Fig. 17. Trade-off between training vs. validation for MobileNetV2 (YCrCb): accuracy (a); loss (b) 

 

These results clarify that HSV color space provides more promising results to 

classify the spoofed face and the real face, considering the chrominance information 

(i.e., color). In comparison, the performance of the YCrCb color space is in the second 

top position to classify the real face and the spoofed face. The RGB color space 

represents comparatively least score despite the InceptionV3 model. 

4.3. Comparison with other State-of-the-Art methods 

The results have been compared with other state-of-the-art methods to check the 

effectiveness of our outcomes from the proposed models. Table 7 represents the year-

wise performance comparison between techniques based on accuracy, baseline 

architecture, and face spoofing attack scenarios. All comparisons have been analyzed 

individually, and we have only considered the results of print photo attacks for the 

NUAA dataset. The comparative analysis shows that all our proposed models 

outperform other existing approaches. 

Table 7. Comparison of the proposed models with state-of-the-art methods  
Reference Baseline architecture/ Accuracy Year 

T a n, L i, L i u  et al. [12]  DoG, Logistic regression 88.15% 2010 

Y a n g, L e i, L i a o  et al. [20] 
Component-dependent face 

coding, Fisher criterion 
97.78% 2013 

D e  S o u z a, d a  S i l v a  S a n t o s, 

P i r e s  et al. [21]  
LBPNet (LBP + CNN) 97.60% 2017 

A n a n d, and V i s h w a k a r m a  [8] 

LBP (Mono) 

CNN (Mono) 

Min Fusion 

Max Fusion 

94.31% 

98.15% 

52.9 % 

52.5 % 

2020 

R a g h a v e n d r a and K u n t e  [22]  

EDDTCP with SVM 

EDDTCP with k-NN 

EDDTCP with LDA 

93.04%, 89.83%, 

92.22% 
2020 

S. K u m a r, S. S i n g h and J. K u m a r 

[23]  
SegNet (CNN-based) 97% 2021 

Proposed Model-I 

LBP(RGB) + VGG16 97.58 % 2021 

LBP(RGB) + InceptionV3 99.96 % 2021 

LBP(RGB) + MobileNetV2 93.93 % 2021 

Proposed Model-II 

LBP(HSV) + VGG16 99.96 % 2021 

LBP(HSV) + InceptionV3 98.85 % 2021 

LBP(HSV) + MobileNetV2 98.61 % 2021 

Proposed Model-III 

LBP(YCrCb) + VGG16 99.76 % 2021 

LBP(YCrCb) + InceptionV3 98.81 % 2021 

LBP(YCrCb) + MobileNetV2 99.80 % 2021 

 

Interestingly, a significant performance difference is found among the 

handcrafted feature-based methods, deep neural network methods, and our integrated 
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methods, which involve local (handcrafted) and global (deep) features for the face 

spoofing task. Table 7 clearly shows that the performance of our InceptionV3 model 

with RGB color feature-based LBP is superior to other techniques. The VGG16 

method with LBP and HSV color space outperforms other methods by a margin. In 

the same way, the accuracy of the mobileNetV2 with the YCrCb method leads by a 

significant margin to other methods. Thus, it is clear from the above results that the 

combination of transfer learning methods with the color-based LBP can significantly 

improve the accuracy of the face spoofing detection task.   

5. Conclusion 

This article investigates the effectiveness of different color spaces (RGB, HSV, and 

YCrCb) to discriminate the spoofed face from the genuine face by implementing 

image preprocessing and the dual-phase feature extraction (i.e., handcrafted and 

deep) methods. The color-based LBP (first-stage) provides more intuitive results for 

analyzing the intrinsic disparities of color space on different locality levels. The 

spoofed face is the recaptured image of the original image; thus, it involves color 

distortion, which the LBP has promisingly has detected. This paper applies the 

channel-splitting process to segregate distinct color channels on which LBP is 

deployed to get adequate patterns. All these extracted features have been 

concatenated to create a new composite feature vector. However, LBP alone is 

insufficient to provide deep learning to our model. Thus, we have passed these 

composite feature vectors to the next level (i.e., transfer learning module) after 

normalizing the feature set. Intelligence (i.e., pretrained weights) and 

hyperparameters fine-tuning are effectively utilized to extract the deep features that 

can better represent real-world scenarios. We have implemented our customized 

dense network and new classification layer for all three models (i.e., VGG16, 

InceptionV3, and MobileNetV2). We have achieved the best accuracy of 99.96% for 

HSV color-based LBP with VGG16, while 99.80% for YCrCb color-based LBP with 

MobileNetV2, and the accuracy of 99.76% for RGB with the InceptionV3 method. 

In the future, we will attempt to produce a new real-time model capable of 

recognizing faces for the 3D mask in conjunction with other presentation artifacts 

interfaces such as replay video and testing on cross-datasets. 
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