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Abstract: In many visual perception studies, external visual noise is used as a 

methodology to broaden the understanding of information processing of visual 

stimuli. The underlying assumption is that two sources of noise limit sensory 

processing: the external noise inherent in the environmental signals and the internal 

noise or internal variability at different levels of the neural system. Usually, when 

external noise is added to an image, it is evenly distributed. However, the color 

intensity and image contrast are modified in this way, and it is unclear whether the 

visual system responds to their change or the noise presence. We aimed to develop 

several methods of noise generation with different distributions that keep the global 

image characteristics. These methods are appropriate in various applications for 

evaluating the internal noise in the visual system and its ability to filter the added 

noise. As these methods destroy the correlation in image intensity of neighboring 

pixels, they could be used to evaluate the role of local spatial structure in image 

processing. 

Keywords: Visual Noise, Gaussian Noise, Image quality, image power spectrum. 

1. Introduction 

Image noise is considered a nuisance in most areas of scientific disciplines and 

applications. It usually occurs due to defects in the imaging technologies. As a result, 

random fluctuations of image brightness or color occur. However, using image noise 

contributes significantly to broadening our understanding of information processing 

of visual stimuli as noise from different sources is inseparably added to the sensory 

signal and complicates and changes our perception [1]. It has been applied in studies 

comparing the performance of different populations varying in age or health 

conditions in different tasks. The main idea underlying this methodology is based on 

the assumption that two sources of noise limit sensory processing: the external noise 

inherent in the environmental signals [2] and the internal noise or internal variability 

at different levels of the neural system [3, 4]. P e l l i  and F a r e l l  [5] explain that 
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comparing sensitivity to stimulus characteristics with and without background noise 

allows separating the observer's ability of information processing from the observer's 

intrinsic noise. Visual noise, added to images is widely used to explore visual system 

characteristics in different diseases such as amblyopia [6], X-linked retinoschisis [7], 

glaucoma [8], age-related changes of visual functions [9] neural variability between 

children with Autism Spectrum Disorder and typical development, e.g., [10, 11]. 

Filtered noise allows specifying the spatial frequencies relevant to specific tasks' 

performance (e.g., letter identification, [12]). Filtered letters or other filtered visual 

objects have been used to study, for instance, contrast sensitivity [13], differences in 

binocular vision between emmetropia and myopia [14], spatial-frequency content for 

recognizing Chinese and alphabet characters [15], the effects of practice on 

sensitivity in a visual detection task [16], audiovisual speech perception [17], the 

effect of character sample density on legibility [18], etc. 

Another application of image noise in studying visual information processing is 

in image classification [19, 20, 1] to reveal what image characteristics are essential 

for this task. 

Using noise to mask a given image characteristic allows specifying whether this 

characteristic is processed independently [21, 22] and has been used to investigate 

unconscious visual processing [23, 24] or to an applied machine learning approach 

to psychophysical studies of second-order visual processing [25]. 

Different types of external noise have been added to the display depending on 

the target stimuli, technical opportunities, research purposes, etc. The most popular 

noise type added in visual perception studies is Gaussian [26-28]. Several studies 

(e.g., [29-32]) have used pixel noise, and others use white noise, e.g., [33]. 

Irrespective of the noise characteristics, the main problem that arises when 

adding background noise to the stimulus is that it modifies the original image's 

characteristics like luminance or color; hence, it is unclear whether the visual system 

responds to their change or the presence of noise. Sometimes the stimulus is 

temporally sandwiched by two independent external noise samples [34], or the 

stimulus is embedded in visual noise by using two computer displays [35]. However, 

it is much more convenient to use a single monitor and avoid eventual problems 

connected to the synchronization of the monitors or interference from the temporal 

characteristics of the visual system. Hence, a methodology that keeps the luminance 

and color characteristics unchanged would benefit a better understanding of the 

processing of the temporal and spatial image characteristics by the human visual 

system. Moreover, we could not find in the literature а methodological approach that 

could manipulate letters and other visual objects in such a way to produce different 

strictly controlled quantities of noise while at the same time preserving the main 

image characteristics. Consequently, we aimed to develop several methods of noise 

generation that keep the global image characteristics – image intensity and contrast. 

We have created four methods that correspond to the most widely used noise type in 

visual information processing studies. In the first, the noise distribution is uniform; 

in the second it is Gaussian; the others generate pixel noise.  

This paper is organized as follows: in Section 2, is presented the methodology 

of the different types of noise generation briefly; Section 3 presents the results of the 
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applications of the generated noise on selected images; Section 4 is devoted to 

analysing the effects of noise on the image characteristics; in Section 5 the potential 

application of the presented noise types is discussed; discussion and conclusion are 

made in Section 6. 

2. Methods 

2.1. Pseudo-random noise 

The noise level is determined by the number of pixels (N) that change color. This 

number must be less than or equal to the total number of pixels. The procedure 

involves a sequential generation of triples of random integers from the uniform 

distribution on the set 0 to 255. We will label them “noise pixels”. The difference 

between the original and the noise pixels is monitored.  
 

 
Fig. 1. Block-diagram of the pseudo-random noise generation 
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Fig. 1 presents a block-diagram of the pseudo-random noise generation. At each 

step of the procedure, a new noise pixel (nR, nG, nB) is generated, and its components 

can be modified depending on the difference (delta) between the original pixel color 

and the noise pixel color from the previous step. For the first pixel in the shuffled 

array, delta is set to 0. For the next pixels, if any of the components of delta is greater 

than 255, the value of the corresponding channel nR, nG, or nB is set to 0. If some of 

the differences dR, dG, or dB are less than 255, the corresponding channel of the 

noise pixel is set to 255. The original pixel is replaced by the noise pixel, and the 

value of delta is modified by adding the new color difference. Hence, the dynamic 

range of the images is kept in the range 0-255. 

The procedure is repeated N times. As a result, we have an image with added 

random noise whose mean colors differ from the original image very little, 

(1)   𝑛𝐾(1) = randi(0, 255), 

𝑑𝐾(𝑖) = {
0, 𝑖 = 1,

𝐾(𝑖) − 𝑛𝐾(𝑖), 𝑖 = 2, … , 𝑁,
 

𝑛𝐾(𝑖 + 1) = {
0, randi(0, 255) + 𝑑𝐾(𝑖) > 255 ,

255, randi(0, 255) + 𝑑𝐾(𝑖) < −255,
randi(0, 255) + 𝑑𝐾(𝑖),

 

𝐾 = {𝑅, 𝐺, 𝐵}, 𝑖 = 1, … , 𝑁. 
In (1), randi(0, 255) stands for random scalar integer generation from a uniform 

distribution with a range between 0 and 255. 

2.2. Modified Gaussian noise 

The noise level is defined as the number of pixels (N) to which noise values are added 

or subtracted. The value of N should be less or equal to half of image pixels. 

The noise pixels are generated as triples drawn from a normal distribution with 

a predefined mean and variance corresponding to the three color channels. For each 

odd pixel up to N/2, the values of the noise pixels are added. For the even values, the 

noise pixels are subtracted from the original ones (Fig. 2). In this way, the magnitude 

of change in each channel R, G, and B values for every two subsequent pixels in the 

shuffled array is the same but differs in sign. If some of the resulting values of R, G, 

or B are greater than 255, this value is set to 255. If some resultant R, G, or B values 

are smaller than 0, this value is set to 0. In this way, the brightness of the image varies 

in the range of 0-255. This procedure is repeated N/2 times. As a result, we have an 

image with added random noise from a normal distribution whose mean color 

intensities differ from the original image very little. The next equation represents the 

noise generation method: 

(2)   𝑑𝐾(𝑖) = nrand(𝜇, 𝜎), 𝑖 = 1, … , 𝑁/2, 

 𝑛𝐾(𝑖) = {
𝐾(𝑖) + 𝑑𝐾(𝑖), 𝑖 = 2𝑛 + 1, 𝑛 = 1, … , 𝑁,

𝐾(𝑖) − 𝑑𝐾(𝑖), 𝑖 = 2𝑛, 𝑛 = 1, … , 𝑁,
 

𝐾 = {𝑅, 𝐺, 𝐵}. 

In (2), nrand(µ, σ) stands for random number generation from a normal 

distribution with mean = µ and standard deviation equal to σ. 
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Fig. 2. Block-diagram of the modified Gaussian noise generation 
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2.3. Two colors exchange 

The exchange noise methods generate pixel noise. The two-colors method is similar 

to the “Salt-and peper” noise: 

(3)   PDF(𝑔) = {

𝑃(color1), 𝑔 = color1,

𝑃(color2), 𝑔 = color2,
0, 𝑔 ≠ color1, color2.

 

In (3), PDF is the Probability Density Function of the noise, P – the probability 

of replacement of image pixels with color1 or color2. Contrary to the common 

method of generation of this type of noise, in our method P(color1) = P(color2), and 

the pixel replacement is spatially restricted. The value of P depends on N – the 

number of pixels to be changed.  

Two colors – “color 1” and “color 2”, are chosen. Each of these colors must be 

present in the original image. The noise level is defined as the number of pixels (N) 

that will exchange color. This number should be less or equal to the smallest number 

of pixels with either “color 1” or “color 2”. In order to have a visible effect on the 

image appearance, the smallest number of pixels for color1 or color2 should be 10%. 

The block-diagram of the procedure is shown in Fig. 3. 

 

Fig. 3. Block-diagram of two colors-exchange noise generation 
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Each pixel in the array of coordinates is tested for having either “color 1” or 

“color 2”. The coordinates of the pixels with “color 1” and “color 2” are stored in two 

arrays. The members of both arrays are shuffled. The first N elements in the two 

arrays are exchanged. In this way, exactly N pixels with “color 1” change their color 

to “color 2” and vice versa. As a result, the number of pixels with “color 1” and  

“color 2” in the transformed image is the same as the initial image. This procedure 

could be repeated for any pair of colors in the image. 

2.4. Random exchange 

The noise level is defined as the number of pixels (N) that will exchange color. This 

number must be less than or equal to half the total number of pixels. Fig. 4 presents 

the block diagram of this noise generation. Essentially, each pair of subsequent 

elements in the shuffled array of size 2N exchange colors. As a result, the final image 

has the same color pixels as the original, but these pixels may be in a different 

location. 
 

 

Fig. 4. Block-diagram of the random exchange noise generation 
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3. Results 

We have tested the proposed methods for generating noise on two different images. 

The first was just a geometrically created image that contains only six colors. The 

image have approximately the same number of pixels of each color. It allows for 

evaluating the effects of the noise application in simplified conditions. The second 

image is a natural picture. Both images have been processed to a size of 1000×1000 

pixels. The results of the applied noise are presented in Fig. 5 and Fig. 6. For the 

pseudo-random and modified Gaussian methods, we have used a noise level of 50%. 

For the modified Gaussian noise, the mean has been set to 64 and the standard 

deviation – to 32 for each color component. For the 2-colors exchange method, the 

noise level has been 50% from the color with minimal pixel numbers. The noise level 

for the random exchange noise method has been set to 30%. This is the highest level 

at which the original image could be resolved. 
 

 

Fig. 5. Different noise types applied to the geometric designed image with six colors:  

original image (a); pseudo-random noise (b); modified Gaussian noise (c);  

two colors exchange noise (d); random colors exchange noise (e) 
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Fig. 6. Different noise types applied to the natural image with multiple colors: original image (a); 

pseudo-random noise (b); modified Gaussian noise (c); random colors exchange noise (d) 
 

 

Fig. 7. Image histogram for the geometric image. The colors correspond to the R, G, B 

components, black – to the luminosity. The abscissa represents the brightness values; the 

ordinate – the number of pixels times 105. First row – оriginal image; second row – pseudo-

random noise; third row – modified Gaussian noise; fourth row – 2-color exchange noise; fifth 

row – random-color exchange noise 
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Fig. 8. Image histogram for the natural image. The colors correspond to the R, G, B components, 

black – to the luminosity. The abscissa represents the brightness values; the ordinate – the 

number of pixels times 104. First row –  оriginal image; second row – pseudo-random noise; 

third row – modified Gaussian noise; fourth row – random-color exchange noise 
 

The spectral distribution of each component of color (R, G, B) and luminosity 

of the original and the modified by noise images are presented in Fig. 7 and Fig. 8. 

Table 1 and Table 2 show the average values of the color components (R, G, B) and 

luminosity in each image. We do not apply the two-colors exchange method to the 

natural image as there are very few pixels of a single color and the results of its 

application are not apparent. 
 

Table 1. Average values of the color components (R, G, B) and luminosity in the Geometric 

images with added different noise types 

IMAGE R G B L 

Geometric without noise 129.48 129.91 113.76 124.30  

Geometric with random noise 129.48 129.91 113.76 124.34  

Geometric with Gaussian noise 129.48 129.91 113.76 124.30  

Geometric with 2 colors exchange noise 129.48 129.91 113.76 124.30  

Geometric with random colors exchange noise 129.48 129.91 113.76 124.30 

 

Table 2. Average values of the color components (R, G, B) and luminosity in the Natural images 

with added different noise types 

IMAGE R G B L 

Natural without noise 150.80 133.89 128.22 137.63  

Natural with random noise 150.80 133.88 128.22 137.64  

Natural with Gaussian noise 150.35 134.34 129.62 138.10  

Natural with random colors exchange noise 150.80 133.89 128.22 137.63  

4. Effect of the noise type on the image characteristics 

The common characteristic of the methods of noise generation considered here is that 

they change very little the spectral characteristics of the images. Due to range effects, 
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the pseudo-random noise method induces more significant differences in the color 

intensity distribution. Both exchange methods preserve the spectral image 

distributions; however, they change the spatial correlation of image intensities of the 

neighboring elements, an essential characteristic of the natural images to which the 

visual system has evolved. 

Interestingly, entropy – a measure used to describe the randomness of a texture 

is equal to the original when the exchanged noise is applied to the image. It changes 

most for images with random noise. We have estimated (Table 3) also some of the 

metrics used for evaluating the image quality like the mean squared error, the peak 

signal-to-noise ratio (psnr), and the structural similarity index (ssim). The psnr gives 

the ratio of the mean-squared error and the maximal range of image pixels. The ssim 

assesses the impact of the noise on the luminance, contrast, and structure of the 

images [36]. The changes in these image characteristics are evaluated considering the 

peculiarities of the human visual system – its sensitivity to a relative, not absolute, 

luminance change and lower sensitivity to high than to low contrast. It evaluates the 

structural changes after luminance subtraction and variance normalization used to 

account for the contrast changes. The mse metric shows that the difference with the 

original is least for the image with added Gaussian noise and maximal – when the 

added noise is random. Similarly, the ssim measure evaluates the image with added 

Gaussian noise as most similar to the original and the images with random and 

random exchange noise as equally dissimilar to it. The psnr metric determines the 

image with added Gaussian noise as most deviant from the original. 
 

Table 3. Measures comparing the modified images with the original. The entropy is also given  
IMAGE entropy mse psnr, dB ssim 

Geometric without noise 0.998 - - - 

Geometric with random noise 5.243 5455.70 10.76 0.21 

Geometric with Gaussian noise 4.771 511.94 21.04 0.55 

Geometric with 2 colors exchange noise 0.998 2688.17 13.84 0.64 

Geometric with random colors exchange noise 0.998 4744.38 11.37 0.22 

IMAGE entropy mse pnsr ssim 

Natural without noise 7.792 - - - 

Natural with random noise 7.678 6284.78 10.15 0.25 

Natural with Gaussian noise 7.911 454.83 21.55 0.77 

Natural with random colors exchange noise 7.792 6322.16 10.12 0.22 
 

We have performed Fourier analysis to understand better the effects of the 

applied noise on the spatial image characteristics. To better understand the noise 

effect on the spatial frequency content of the images, the logarithm of the circularly 

averaged spectrum has been estimated and presented in Figs 9 and 10 as a function 

of spatial frequency for the two sample images we have used. The total power of the 

spectrum is related to the root-mean-square-contrast of individual images. As the 

generated noise changes little the luminance and color image characteristics, the total 

power spectrum is almost preserved. However, the added noise modifies its 

distribution over the different spatial frequencies and distorts the typical dependence 

of the power spectrum on the spatial frequency of 1/fα with α close to 2. Applying the 

proposed impulse noise types – random or exchange noise changes the exponent and 

the linearity of the power spectrum dependence on spatial frequencies. By flattening 
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the power spectra, these noises reduce the second-order redundancy in the 

corresponding image. 

 

Fig. 9. The circularly averaged power spectrum of the original geometric image and itsmodified by 

noise vesions. Both axes are logarithmic 

 

Fig. 10. The circularly averaged power spectrum of the original nature image and its modified by noise 

versions. Both axes are logarithmic 

5. Potential application of the proposed noise types 

While here we have present the results of the noise application only for two images, 

we have applied the proposed methods of generation on several images with different 

complexity. The findings we obtained confirm the conclusions about the noise 

effects: the proposed noise types preserve the global image characteristics – the mean 

luminance and the image histogram. Some distortions in the image histogram have 

been observed for the random and the Gaussian noise. The noise effect mostly 

depends on the spatial and local image characteristics.  
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The human visual system is supposed to be adapted to the statistical regularities 

in the environment [37]. Hence, adding either of the noise types we have presented 

may promote the understanding of the role of the environment in modeling the 

structure of neural computations. The exchange noise is the most appropriate of the 

noise types we have proposed because it preserves luminance and image color 

characteristics. By varying the noise level and hence, modifying the power spectrum's 

spatial-frequency distribution, it would be possible to study its effect in different tasks 

like identification and classification. This manipulation would allow investigation of 

the role of redundancy in visual information processing. Moreover, this noise type 

might be used for studying the normalization mechanisms of contrast in human 

vision. This mechanism is supposed to encode the total contrast in a local image patch 

effectively [38]. 

We have applied the 2-color exchange noise generation method in a study of 

reading [39]. The results of noise application have distorted the letters in words and 

allowed us to distinguish its effects on the reading performance of groups with 

different development. 

The proposed method of Gaussian noise generation is a better alternative to the 

standard white noise used in the studies aiming to evaluate the internal noise in 

different populations and tasks as it leaves the luminance and color characteristics of 

the image unchanged. It also preserves the image characteristics similar to the 

original at low spatial characteristics. Manipulating the standard deviation would 

allow evaluating the range of spatial frequencies relevant for each task. 

The proposed noise types may refine the similarity metrics in image quality 

analysis. 

6. Discussion and conclusion 

Our need to modify the existing methods for noise generation resulted from the 

necessity to add strictly controlled amount of noise to text stimuli in order to degrade 

the letter structure while preserving the main characteristics of the image. Adding 

„Salt-and-Pepper“ did not allow good control of the amount of added noise as the 

spatial positions of the black and white pixels are random.When black pixels fall on 

the text letters, they leave them unchanged. When white pixels fall on the space 

between the letters, nothing changes. These difficulties provoke us to seek other 

methods and to investigate their charasterisrics. 

The standard methods of adding visual noise to an image correspond to the 

naturally occurring noise during image generation [40]. Irrespective of the type of 

added noise (additive, multiplicative, or impulse), all of them change the image 

characteristics. For example, the most frequently used additive noise, the Gaussian 

noise, changes the mean and standard deviation of image intensity even when the 

mean of the Gaussian distribution of the added noise is zero due to its random 

generation [41]. This type of noise generation ignores the pixel values in the image. 

Similarly, the most commonly used impulse noise – the 'Salt-and-pepper’ noise 

changes the number of occurrences of color combinations [41], disregarding the pixel 

intensities in the image. When imposing either Poisson [42] or speckle [43] noises, 
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the pixel intensities in the image are taken into account, but again, the image 

histogram changes significantly. 

The methods of noise generation that we propose are better alternatives to the 

most widely used noise types. The Gaussian noise generated by our procedure keeps 

the color intensity distributions and the spatial structure of the image almost 

equivalent to the original. The exchange methods maintain the number of pixels of 

each color in the image, the mean color intensity, and its standard deviation and 

entropy. They affect the spatial structure similar to the random noise. The 2-color 

exchange method is suitable for images that contain a restricted number of colors. It 

leaves the color image characteristics constant regardless of the number of 

consecutive applications of the method and the choice of colors to be exchanged. The 

random-exchange method is appropriate for images with multiple colors, like natural 

scenes. It is also a good alternative to the “Salt-and-pepper” noise for adding 

background visual noise. 

Concerning the critical steps in the protocol, it is important to correctly program 

the procedures. To avoid potential mistakes, we recommend using our program 

“BMP Noise Generator” which can be downloaded at http://autism-vision.bas.bg/.  

At present, the program is limited to the processing of only bmp files. The 

software has been verified for all methods on images from 4 to 50.106 pixels. It could 

be supposed that it will process bigger images successfully. 

In conclusion, the proposed methods of noise generation lack the disadvantages 

of the most widely used methods of investigating human visual information 

processing and offer new possibilities for its understanding.  
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