
 68

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 22, No 3

Sofia  2022 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2022-0028

Hardware Response and Performance Analysis of Multicore

Computing Systems for Deep Learning Algorithms

Lalit Kumar, Dushyant Kumar Singh

CSED, MNNIT Allahabad, Prayagraj, India

E-mails: lalitkmr170@gmail.com dushyant@mnnit.ac.in

Abstract: With the advancement in technological world, the technologies like

Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are

gaining more popularity in many applications of computer vision like object

classification, object detection, Human detection, etc., ML and DL approaches are

highly compute-intensive and require advanced computational resources for

implementation. Multicore CPUs and GPUs with a large number of dedicated

processor cores are typically the more prevailing and effective solutions for the high

computational need. In this manuscript, we have come up with an analysis of how

these multicore hardware technologies respond to DL algorithms. A Convolutional

Neural Network (CNN) model have been trained for three different classification

problems using three different datasets. All these experimentations have been

performed on three different computational resources, i.e., Raspberry Pi, Nvidia

Jetson Nano Board, & desktop computer. Results are derived for performance

analysis in terms of classification accuracy and hardware response for each

hardware configuration.

Keywords: Embedded devices, Nvidia Jetson nano board, deep learning, image

classification, hardware performance, Cuda core.

1. Introduction

In the modern age, Machine Learning (ML), and Deep Learning (DL) algorithms

have attracted significant attention of researchers. One of the reasons is the

incremental improvements in DL algorithms where higher accuracy outcomes can

purposely be saught for many problem areas like Data Analytics, Natural Language

Processing, Image Processing, etc. These achievements have encouraged researchers

to apply deep learning methods for various complex tasks like object detection, object

classification, human detection, etc. [16, 20, 22].

Deep learning architectures like Convolutional Neural Network (CNN) perform

well but have intense requirements for high-end computation hardware. The huge

amount of data getting processed brings a high condition of computation need. The

advanced computing system equipped with highly evolved multicore CPUs is

mailto:lalitkmr170@gmail.com
mailto:dushyant@mnnit.ac.in

 69

actually cooping this demand. On the other hand, GPUs are there which could help

in accelerating the entire process of deep learning training and validation. It has often

been demonstrated in the literature that the need for CPU and GPU cores depends on

the layered architecture of the CNN. As the number of layers increases in CNN

architecture, more number of hardware cores are then required, for faster parallel

processing. A single-core CPU has restricted computational limits (e.g., computation

units and memory) to handle large-scale neural networks. To overcome this issue,

multicore architectures are now getting utilized. Modern parallelization of CPU and

GPU in multicore systems has shown remarkable results in deep learning kind of

applications [25-27].

Not only current day’s desktop PCs or Laptops facilitate multicore CPU

configuration, rather small embedded devices are now designed to contain such CPUs

and GPU [10, 14]. The embedded devices have gained the tremendous capability to

deal with AI algorithms using multicore architecture. The evolution in nanometer-

scale fabrication has made it possible to encapsulate miniature size CPU & GPU on

a very small size board. Raspberry Pi & Nvidia Jetson Nano are few to name [11].

They are made capable of even running complex training tasks of deep learning

models. Intel Neural Stick is yet another example that embeds the dedicated processor

cores for processing of neural network operations using TensorFlow and/or Caffe

libraries. To analyze the hardware response of these devices on deep learning

algorithms, the two of the above-mentioned embedded hardware are taken, and

experiments have been carried out for response time-related performance [15]. The

analysis is also done for desktop PC containing GPU, and relatively assessment is

done by comparing the three cases [24].

1.1. Raspberry Pi 3 B+

Raspberry Pi is a lightweight, compact embedded device capable of working like a

full-fledged computer system. Its embedded nature makes it suitable for real-time

applications. Raspberry Pi is with their sufficient computer power can efficiently be

used for various computer vision applications. Due to its low cost and small size, this

is a good option to use it inplace of a Desktop PC for moderate tasks [9].

Fig. 1. Structure of Raspberry Pi 3 B+ [32]

 70

Raspberry Pi, in its beginning was designed with a 700 MHz CPU in the year

2009. Later, it evolves as Pi 2, Pi 3, Pi 3 B & Pi 3 B+, where 3B+ is running at

1.2 GHz frequency with a 64-bit Broadcom CPU. Pi 3B+ possesses a quad core CPU

which can run complex algorithms at a faster speed while exploiting the

parallelizability in multiple cores. This support in hardware has motivated us to

employ deep learning-based object classification algorithms on Raspberry Pi to

analyze the hardware response [19].

1.2. Nvidia Jetson Nano Board

Nvidia in 2014 first developed an embedded board named Jetson TK1, which

contains the quad core ARM Cortex A15 CPU. Later, it advances as TK2, Xavier,

and Nano, where Nvidia Jetson Nano board has Quad core A57 CPU @1.53GHz and

921 MHz Maxwell generation GPU. The Quad core structure of the Nvidia Jetson

Nano board helps to execute complex AI errands with great efficiency. It also has a

quality of CPU & GPU based heterogeneous architecture, where CPU is used to speed

up the OS, and CUDA-capable GPU can be rapidly planned to accelerate the tasks of

ML. The overall hardware specification of Nvidia Jetson Nano motivated us to use it

in various computer vision problems like object detection, image classification, and

video surveillance [17, 18].

Fig. 2. View of Nvidia Jetson Nano Board [11]

1.3. Desktop PC

The PC has been taken as one competitive hardware for analyzing response as PC’s

has seen tremendous evolution in last few years. The advancement in desktop PC is

done by increasing the clock speed, increasing CPU cores and/or adding up the

GPU’s. The computational power of desktop PC is effectively increasing with

continuous evolution in CPU and GPU cores. The desktop PC used here is based on

 71

a 64-Bit octa-core Processor @ 4.2 GHz CPU and 4 GB Nvidia GTX 1650 Ti running

at a boost frequency of 1.3-1.5 GHz GPU. Here, the Nvidia GTX 1650 TI has 1,536

number of Cuda cores. This Quad core structure of CPU and multicore Cuda

architecture of GPU allows execution of the complex deep learning model with faster

speed.

This paper explores the performance of above mentioned embedded devices

(like Raspberry Pi 3 B+, Nvidia Jetson Nano Board) and desktop PC over image

classification tasks. A CNN model is used here to perform image classification. The

response time of each device is evaluated by running CNN model on different

training inputs. Due to a large number of CPU and GPU cores, the hardware response

of a desktop PC seems much better than both embedded devices. Another side, the

Nvidia Jetson’s hardware response is quite good compared to the Raspberry Pi 3B+

because it has a large number of CUDA cores of Maxwell generation GPU, that may

allow it to be used in place of a desktop PC where space and cost are constraints. In

contrast, the Raspberry Pi 3 B+ can also be used in place of a desktop PC, only for

small and medium level AI tasks [12, 13].

The remaining paper is organized as follows. Section 2 discusses related works.

The proposed CNN architecture to perform image classification tasks is discussed in

Section 3. Section 4 discusses the experimental results obtained using CNNs on

different hardware. Finally, the last section concludes the manuscript work presented

in this.

2. Related works

This section discusses the related work done on different computational hardware for

numerous applications, which is as follows:

Z u [1] have developed a heterogenous multicore architecture model based on

CPU and Multicore accelerator. This work proposes a parallel algorithm for Machine

learning and execution model related to heterogeneous multicore architecture

systems. It is mainly focused on performing testing and evaluation on S698P’s

emulator GRSIM. After testing S698P’s emulator, it is found that the effectiveness

of deep learning tasks is improved compared to traditional parallel processing.

G o m a t h e e s h w a r i and S e l v a k u m a r [2] propose a framework for optimizing

the performance and energy of multicore architecture. A deep learning model for

multicore architecture is designed for this system being proposed based on the

asymmetric multicore processor. This framework is based on the workload

characterization of CPU cores, followed by the core prediction module. The scheme

being proposed is implemented in basically three stages: feature Extraction,

optimization, and prediction of the core on which workload is distributed. This work

reduces energy consumption up to 35% and achieves 97% accuracy in core prediction

for the workload.

M i t t a l [3] has reviewed the performance of various NVIDIA Jetson platforms

strategies for speeding up Neural networks on this platform. This article talks about

the hardware and CNN level enhancement. It shows that Nvidia Jetson is speeding

up analytical tasks for a large area of applications. D e m i r and E r t ü r k [4] have

 72

proposed a combination action model consisting of SVM classification and a

hierarchical approach to improve the SVM classification and reduce the load on SVM

testing. For the image classification task, 2D wavelet decay is applied to each

hyperspectral picture band, and low spatial recurrence parts of each level are utilized

for hierarchical classification [7].

S u l t a n a, S u f i a n and D u t t a [5] have developed an advanced CNN

framework for image recognition tasks. They reveal that the network being proposed

is more extensive than the AlexNet, ZFNet, and VGGNet, which follow the

architecture of the traditional CNN model like LeNet-5. It has been experienced that

an efficient conventional CNN model is created after combining the initiation module

and residual blocks with the GoogLeNet and ResNet for better precision. The model

being proposed gets an efficient accuracy for various datasets. S a l i m i,

D e w a n t a r a and W i b o w o [6] presents a garbage identification and

characterization framework to deal with a real-world scenario. To initially classify

any objects on the floor, the Haar-Cascade technique is used here. At that point, the

GrayLevel Co-occurrence Matrix (GLCM) and HistOgram Gradient (HOG) are

combined to get efficient results. The pre-trained model of SVM is used here to

categorize natural waste, non-natural waste, and non-squander highlights using image

classification tasks and achieve up to 82.70% accuracy.

R a m c h a r a n et al. [7] have presented a method to identify Soybean diseases.

The proposed deep neural networks provide an avenue for the fast deployment of this

technology on mobile devices. After performing a deep learning approach, they get

98% accuracy for brown leaf spot, 96% accuracy for red mite damage, 95% accuracy

for green mite damage, 98% for brown cassava streak, and 96% accuracy for cassava

mosaic disease. The best-qualified model accuracy has been 98% [29, 30].

The traditional approaches require a large computational setup for performing a

real-time image classification task. As a result, they require a lot of time in

computational training and testing. Recently, the researchers have followed a

simplistic approach to the utilization of current design computational hardware.

Researches going all around are following the traditional hardware and therefore

limited in dealing with real-time and practical design & usage. Therefore, we have

tried analyzing multiple hardware for such deep learning-based complex tasks and so

used NVIDIA JETSON NANO, Raspberry Pi 3B+, and desktop PC for image

classification tasks using the CNN model. The description of the proposed

methodology is covered in the next section with the training results and performance

comparison between embedded devices and Desktop PC.

3. Proposed methodology

As mentioned earlier, the methodology being proposed aims at developing

CNN-based solutions for benchmark classification problems with respective datasets

and then executing them on different computational hardware. First, we have

discussed about CNN modeling for our set of classification problems.

 73

3.1. CNN modeling

CNN architecture incorporates four essential layers, namely Convolution Layer,

Pooling Layer, Fully Connected Layer, and Output Layer. The convolution layer has

several filters that perform the convolution operation on the image dataset. Here 3×3

filters are used to extract the features, such as edges from the input images. The

convolution layer captures low-level features like color, borders, gradient orientation,

etc. The pooling layer converts the high-dimensional data space into low-dimensional

data space. This conversion helps to reduce the computational power required for the

processing. The fully connected layer consists of neurons that facilitate training the

CNN model, and the output layer is responsible for generating the final result using

the activation function. The layers of CNN provide a scalable approach for image

classification and object recognition tasks in the various application domains. The

overall architecture of the proposed model is shown in Fig. 3. The parameter level

details of CNN layers are provided.

Fig. 3. Convolution Neural Network Architecture

Table 1. Parameter level details of the proposed CNN
Layer Output shape Param #

Convolution 2D_1 (None, 42, 42, 32) 896

Max Pooling_1 (None, 21, 21, 32) 0

Convolution 2D_2 (None, 7, 7, 64) 18496

Max Pooling_2 (None, 3, 3, 64) 0

Flatten (None, 576) 0

Dense (None, 128) 73856

Dense (None, 64) 8256

Dense (None, 5) 325

Total parameter 101,829

This model uses one input, two Convolutional, two pooling, and one output

layer. An image of size 128×128×3 is input to the first convolutional layer containing

32 filters of size 3×3 with pooling operation of pool size 2×2. The evaluated

consequences are again passed to the convolutional layer containing 64 filters of each

size of 3×3, followed by a pooling layer of pool size 2×2. The flattening layer is then

used to convert evaluated multidimensional vector to vector size spaces, which are

further utilized by FC1 and FC2 layers. Here, 30% of dropout is used in both FC

 74

layers to protect our training data from overfitting and underfitting. FC layers are

solely responsible for training. Finally, output yields softmax activation and produces

an outcome. Here, reLU activation is used in the convolution layer & tanh activation

is used for FC layers. The total trainable parameters in the proposed network come

to be 101,829.

The CNN architecture as discussed earlier is trained for three different

classification problems. First of these is plant leaf classifications. It could be a reliable

tool to understand plants for those who remain away from agriculture. It is hard to

remember plants by viewing a large variety of flora. This is one popular problem

found in the research literature, therefore we had considered this as our benchmark

for the hardware response analysis task. The other classification problem covered

here is the garbage classification, one of the hitting issues related to “Swach Bharat

Abhiyan.” Same way, trash classification is another benchmark classification

problem considered here. To get to this objective, the CNN model is trained to

classify the trash in real-time, which could help the municipalities to manage the

household trash.

For the garbage management system, image classification helps determine the

type of garbage. There are some basic classes like household waste, kitchen waste,

city waste, etc., on which the CNN model is trained.

3.2. Hardware setup

The model being proposed is trained on a machine configured with a CPU

Ryzen 7-4800H, 8 Gb RAM, and 4 GB NVIDIA GTX 1650Ti GPU (1024 CUDA

cores). Other side, the trained model is tested on two embedded devices, i.e.,

Raspberry Pi 3 B+ and Nvidia Jetson Nano Board.

Fig. 4. Image classification over computing devices

The Raspberry Pi 3 B+ consists of a 64-bit Broadcom quad core Cortex-A53

CPU with a clock speed of 1.4 GHz and 2 GB SDRAM. The Raspberry 3B+ operating

system runs on the Raspbian 10 operating environment, stored on the SD card. The

pre-trained model is tested on a Raspberry Pi 3 B+ board to classify images for

different datasets. The implementation procedure in the Nvidia Jetson Nano board is

similar to Raspberry Pi 3 B+ for image classification tasks. The Nvidia Jetson

contains greater number of computational units compared to the Raspberry Pi 3 B+.

This makes Nvidia Jetson more reliable for handling complex computer vision tasks

[12, 13]. The Nvidia Jetson Nano board runs on a quad core ARM Cortex-A57 with

 75

4 GB of SDRAM and consumes a maximum power of 10 W. The Nvidia Jetson Nano

board runs on the Jetpack SDK (Ubuntu 18.4), which is stored on the SD card. Here,

the same pre-trained CNN models are used to classify plant leaves, garbage, and

garbage images. The CNN model shows effective results with the Jetson board

[10, 15].

Fig. 4 shows the workflow of the image classification task computed over

different hardware devices. These devices are connected to the camera module from

where they receive the frames. The captured frames are then passed to the CNN

model, classifying the images into their respective classes. Finally, the device returns

the classification result based on the evaluated CNN prediction.

3.3. Datasets

The existing trash, garbage, and PlantVillage datasets are taken from an openly

accessible data repository, namely Kaggle and Gale. PlantVillage dataset has images

of different fruits and vegetables, whereas the trash dataset has various images of

paper, cardboard, plastic, grass, metal, etc. Otherside, the garbage dataset contains

images like kitchen_Garbage, City_Garbage, Village_Garbage, Forest_Garbage,

Hazardous_Garbage, and all. The descriptions related to datasets are presented in

Table 2.

Table 2. Description of Datasets

Description of datasets

Features Plant village Trash dataset Garbage dataset

Dataset

repository

link

https://www.kaggle.com

/emmarex/plantdisease

https://gale31.github.io

/TIDY/

https://www.kaggle.com/a

sdasdasasdas/garbage-

classification

Classes

Apple_Healthy,

Blueberry_Healthy,

Grape_Healthy,

Peach_Healthy,

Potato_Healthy,

Soyabean_Healthy,

Strawberry_Healthy,

Tomato_Healthy

cardboard,

metal,

paper,

plastic,

and

grass

kitchen_Garbage,

City_Garbage,

Village_Garbage,

Forest_Garbage,

Hazardous_Garbage

No of training

images
6000 4000 3000

No of testing

images
1219 976 786

Total images 7219 4976 3786

4. Experimental results

In this section, the hardware performance of desktop PC and two embedded devices

is analyzed on CNN architecture for multithreading workloads. This also provides

the training results of classification when executed on the proposed model with three

https://www.kaggle.com/emmarex/plantdisease
https://www.kaggle.com/emmarex/plantdisease
https://gale31.github.io/TIDY/
https://gale31.github.io/TIDY/
https://www.kaggle.com/asdasdasasdas/garbage-classification
https://www.kaggle.com/asdasdasasdas/garbage-classification
https://www.kaggle.com/asdasdasasdas/garbage-classification

 76

datasets, and the prediction time for test images on both embedded devices and a

desktop PC. A detailed description of all experimental setups is mentioned in

Table 3.

Table 3. Experimental setup details

Feature Desktop PC Nvidia Jetson Nano Board Raspberry Pi 3 B+

CPU Ryzen 7

Quad-core ARM

Cortex-A57

(4 core),

Broadcom BCM2837B0,

Cortex-A53 (ARMv8)

64-bit SoC@ 1.4GHz

CPU core Octa-core Quad-core Single-core

GPU
4 GB Nvidia

1650Ti

NVIDIA Maxwell architecture

with 128 NVIDIA CUDA® cores
Broadcom video core-IV

RAM 8 GB 4 GB 4 GB

Operating

System & its

version

Window 10 Home Ubuntu 18.4 Raspbian 5.4.51

Peak

performance
1792 Gflops 500 Gflops 200 Gflops

Power required 120 W 10 W 1.5 W to 6.7 W

Weight 250 gm 85 gm 50 gm

Price $250 $89 $35

4.1. Results

This section presents the experimental results of the proposed CNN architecture

evaluated over a desktop PC and two embedded devices. Table 4 shows the

experimental results of the proposed model performed on the PlanVillage datasets.

This model takes 2412 s (40.2 min) in the entire training process for batch size 4,

which is the least time for training the deep learning model compared to other batch

sizes. The proposed model has achieved the highest accuracy at batch size 4, which

is up to 98.57%.

Table 4. Experimental Results of Plant Village Dataset

It
er

at
io

n

Batch size (4) Batch size (8) Batch size (16)

Training Validation Training Validation Training Validation

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

20 97.16 0.360 97.14 0.130 95.73 0.480 95.71 0.350 96.04 0.450 90.00 0.800

40 98.22 0.220 97.14 0.310 97.39 0.310 97.14 0.230 97.90 0.280 97.14 0.320

60 98.87 0.150 98.57 0.130 97.76 0.280 98.57 0.230 97.89 0.250 98.57 0.110

80 99.01 0.150 95.71 0.250 98.88 0.140 95.71 0.300 98.81 0.150 97.14 0.250

100 98.98 0.150 97.14 0.180 98.44 0.210 98.57 0.120 98.90 0.140 97.57 0.130

120 98.80 0.130 98.57 0.090 98.72 0.180 95.71 0.380 99.22 0.100 97.63 0.200

Execution

time

Time per Epoch= 20 s 10 ms

Total execution

time= 120×20.10=2412 s

Time per Epoch= 20 s 30 ms

Total execution

time= 120×20.30=2436 s

Time per Epoch= 20 s 58 ms

Total execution

time= 120×20.58=2469.6 s

Table 5 contains the training and validation results for the Trash dataset at

various epoch levels. Here, the efficient training time taken by batch size 4 is 1104 s

(18.4 min), which is the least amount of time taken for training compared in case of

 77

other batch size. The highest accuracy is achieved at batch size 16, which is up to

71%.

Table 5. Training results of Trash Dataset

It
er

at
io

n

Batch size (4) Batch size (8) Batch size (16)

Training Validation Training Validation Training Validation

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

20 66.84 0.293 58.00 0.344 70.49 0.273 56.00 0.350 66.78 0.296 50.00 0.349

40 74.99 0.226 64.00 0.329 74.06 0.237 54.00 0.361 71.25 0.264 54.00 0.342

60 79.60 0.197 65.00 0.361 81.02 0.191 62.00 0.367 77.03 0.219 57.00 0.353

80 84.06 0.162 65.00 0.372 83.60 0.161 66.00 0.327 82.75 0.176 67.00 0.311

100 87.89 0.135 67.00 0.373 87.38 0.134 66.00 0.343 81.86 0.179 61.00 0.337

120 87.39 0.129 67.00 0.393 90.01 0.116 67.00 0.329 87.35 0.143 71.00 0.314

Execution

time

Time per Epoch= 9 s 20 ms

Total execution

time = 120×9.20=1104 s

Time per Epoch= 9 s 37 ms

Total execution

time = 120×9.37=1124.4 s

Time per Epoch= 9 s 74 ms

Total execution

time = 120×9.74 =1168.8 s

Table 6 presents the experimental results for the proposed model evaluated over

the garbage dataset. The experimental outcomes show an interesting thing because

the training accuracy of each batch size is different from each other. The reason

behind this is the variation in a class image of the garbage dataset. The highest

validation accuracy is achieved as 90 % with batch size 4. The efficient execution

time is found using batch size 8, i.e., 1458.6 s (24.30 min).

Table 6. Training results of Garbage Dataset

It
er

at
io

n
 Batch size (4) Batch size (8) Batch size (16)

Training Validation Training Validation Training Validation

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss

20 67.09 0.282 71.11 0.240 36.88 0.454 27.78 0.478 33.73 0.467 27.78 0.504

40 72.93 0.262 76.67 0.206 42.65 0.434 34.44 0.448 42.87 0.432 40.00 0.471

60 77.84 0.234 83.33 0.191 47.42 0.389 48.89 0.416 47.39 0.406 44.44 0.402

80 80.70 0.199 83.33 0.168 59.49 0.348 61.11 0.355 52.72 0.369 55.56 0.356

100 80.91 0.190 84.44 0.161 64.28 0.323 70.00 0.289 57.77 0.347 58.89 0.330

120 83.23 0.176 90.00 0.126 67.50 0.289 70.00 0.300 61.05 0.314 66.67 0.309

Execution time

Time per Epoch=12 s 73

ms

Total execution time

=120×12.73=1527.6 s

Time per Epoch = 12 s 15 ms

Total execution

time = 120×12.15=1458.6 s

Time per Epoch = 12 s 29 ms

Total execution

time = 120×12.29 =1474.8 s

To better understand the effect of hyper-parameter on the CNN model, we

performed hyperparameter tuning on all datasets with various activation functions

shown in Table 7. We used ReLU, Tanh, and LeakyReLU on Convolutional Layer

and ReLU, Tanh on fully connected layer. At last, we used the sigmoid function at

the output layer of the model.

 78

Table 7. Hyper-parameter tuning for CNN model

Dataset Model Batch

size

Dropout

Activation function

Optimizer Epochs

Training Validation

Convolutional

layer

FC

layer

O/P

layer

Accuracy Loss Accuracy Loss

Plant

Village

A1 4 0.30 Relu Relu Softmax Adam 100 98.32 0.312 98.78 0.208

A2 8 0.30 Tanh Tanh Softmax Adam 100 97.19 0.389 97.34 0.247

A3 16 0.30 LeakyRelu Relu Softmax Adam 100 97.32 0.312 97.48 0.224

A4 4 0.30 Relu Relu Softmax Ada Delta 100 98.17 0.301 97.54 0.212

A5 8 0.30 Tanh Tanh Softmax Ada Delta 100 98.68 0.325 98.18 0.230

A6 16 0.30 LeakyRelu Relu Softmax Ada Delta 100 98.08 0.112 98.22 0.210

Trash

B1 4 0.30 Relu Relu Softmax Adam 100 86.23 0.345 78.00 0.497

B2 8 0.30 Tanh Tanh Softmax Adam 100 84.01 0.215 66.00 0.413

B3 16 0.30 LeakyRelu Relu Softmax Adam 100 87.35 0.215 72.00 0.314

B4 4 0.30 Relu Relu Softmax Ada Delta 100 87.49 0.310 67.00 0.369

B5 8 0.30 Tanh Tanh Softmax Ada Delta 100 85.01 0.747 66.00 0.258

B6 16 0.30 LeakyRelu Relu Softmax Ada Delta 100 87.35 0.852 72.00 0.247

Garbage

C1 4 0.30 Relu Relu Softmax Adam 100 68.91 0.287 78.00 0.156

C2 8 0.30 Tanh Tanh Softmax Adam 100 67.50 0.369 72.00 0.360

C3 16 0.30 LeakyRelu Relu Softmax Adam 100 62.37 0.425 67.67 0.358

C4 4 0.30 Relu Relu Softmax Ada Delta 100 72.91 0.217 62.00 0.874

C5 8 0.30 Tanh Tanh Softmax Ada Delta 100 67.50 0.369 72.00 0.488

C6 16 0.30 LeakyRelu Relu Softmax Ada Delta 100 62.37 0.425 67.67 0.458

In Table 7, we see that the performance of the proposed model for various

datasets in the presence of different modeling parameters varies. Model A1 for the

plantvillage dataset has achieved the highest validation accuracy (98.78%) and

training accuracy (98.32%) compared to other variants. Model B1 for the trash dataset

has achieved the highest validation and training accuracy, up to 78.00% and 86.23%,

respectively, compared to other variants. In contrast, the C1 variant of the garbage

dataset has also acquired 78.00% validation and 68.91% training accuracy, which is

most efficient compared to other variants.

4.2. Result analysis

The graph in Fig. 5 presents the timing observed for the training process of the deep

learning model, for the PlantVillage, garbage, and trash datasets, with different batch

sizes, i.e., 4, 8, and 16. After analyzing the training time for each dataset, it is found

that the PlantVillage dataset takes more time in training at batch sizes 4, 8, and 16

than the other datasets because it has a total of 7219 images with eight classes of

images. The training is performed on GPU enabled desktop PC, and it took a fair

time, averaging 2400 s, i.e., around 40 min. Faster training becomes possible with

available parallel Cuda cores in Nvidia GPU.

The same trained model is run on all three hardware to analyze their

performance. The graph in Fig. 6 presents the timing analysis of the classification

task on these hardwares. On analyzing the graph in Figure 6, we find a significant

difference in the response time for all hardware. Here, desktop PC simultaneously

takes 2× and 3× less time to classify an image than Nvidia Jetson Nano Board and

Raspberry Pi 3 B+. This significant difference in prediction time is seen due to several

reasons. The first reason is the specifications of embedded devices and desktop PC

shown in Table 2, which means if any device has a parallel and application-specific

 79

processor, it may take less time and effort to complete the task. The second reason is

the availability of Cuda cores of GPU in devices. GPUs rend images more quickly

than a CPU because of their parallel processing architecture, allowing them to

simultaneously perform multiple calculations across data streams. Due to this,

Raspberry Pi takes a lot of time compared to Nvidia and desktop PC because it has

only 128 Cuda cores.

Fig. 5. Training time distribution of the model on different datasets

Fig. 6. Comparison of response time for classification

All experiments have been carried out in the Window’s environment on a

machine configured with 9th generation i5, 8 GB RAM, and 256 GB SSD.

CUDA 10.0 with CUDNN 7.5 libraries used to effectively accelerate the GPU-based

processing. The dataset used in the experiments is detailed as follows.

2412 2436 2469.6

1527.6 1458.6 1474.8

1104 1124.4 1168.8

0

500

1000

1500

2000

2500

3000

4 8 16

T
ra

in
in

g
 T

im
e
 (

in
 s

ec
o
n

d
s)

Batch Size

Training Time for Each Datasets (in seconds)

Plant

Village

Garbage

Trash

1.46
1.92 1.76

2.96

3.87
3.45

4.35

5.16
5.54

0

1

2

3

4

5

6

Crop Garbage Trash

P
re

d
ic

ti
o

n
 T

im
e

(i
n

 s
ec

o
n

d
s)

Dataset

Prediction Time for Test Image

Desktop PC

Nvidia Jetson

Nano Board

Raspberry Pi 3

B+

 80

5. Conclusion

This paper presents a study of embedded devices and a desktop PC for various neural

network applications on multiple datasets and also reviewes the key feature of the

Nvidia Jetson Nano Board, Raspberry Pi 3 B+, and a Desktop PC. This paper

discusses CNN-level optimization and hardware performance activities under various

conditions. The experimental results have shown that the Nvidia Jetson Nano board

is 50% more efficient than the Raspberry Pi board due to the availability of a large

number of Cuda cores (i.e., 128 Cuda cores) with Cortex-A7 CPU and Maxwell

generation GPU. Hence, the Nvidia Jetson Nano board takes less time in the image

classification task than a raspberry Pi device. On the other side, Desktop PC is almost

two times (2x) more efficient than the Nvidia Jetson Nano because it has a 1536 Cuda

core compared to the 128 Cuda core of the Nvidia Jetson Nano Board. As a result, it

is found that a Desktop PC with larger processing units are more efficient than the

embedded devices (i.e., the Nvidia Jetson Nano board and the Raspberry Pi 3B+

board).

R e f e r e n c e s

1. Z u, Y. Deep Learning Parallel Computing and Evaluation for Embedded System Clustering

Architecture Processor. – Design Automation Embedded System, Vol. 24, 2020, pp. 145-159.

2. G o m a t h e e s h w a r i, B., J. S e l v a k u m a r. Appropriate Allocation of Workloads on

Performance Asymmetric Multicore Architectures via Deep Learning Algorithms. –

Microprocessors and Microsystems, Vol. 73, 2020, 102996. ISSN 0141-9331.

3. M i t t a l, S. A Survey on Optimized Implementation of Deep Learning Models on the NVIDIA

Jetson Platform. – Journal of Systems Architecture, Vol. 97, 2019, pp. 428-442.

ISSN 1383-7621.

4. D e m i r, B., S. E r t ü r k. Improving SVM Classification Accuracy Using a Hierarchical Approach

for Hyperspectral Images. – In: Proc. of 16th IEEE International Conference on Image

Processing (ICIP’09). IEEE, 2009.

5. S u l t a n a, F., A. S u f i a n, P. D u t t a. Advancements in Image Classification Using Convolutional

Neural Network. – In: Proc. of 4th International Conference on Research in Computational

Intelligence and Communication Networks (ICRCICN’18), IEEE, 2018.

6. S a l i m i, B. S., B. D e w a n t a r a, I. K. W i b o w o. Visual-Based Trash Detection and

Classification System for Smart Trash Bin Robot. – In: Proc. of International Electronics

Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC’18), Bali,

Indonesia, 2018, pp. 378-383. DOI: 10.1109/KCIC.2018.8628499.

7. R a m c h a r a n, A., et al. Deep Learning for Image-Based Cassava Disease Detection. – Frontiers

in Plant Science, Vol. 8, 2017, p. 1852.

8. B a s u l t o-L a n t s o v a, J., A. P a d i l l a-M e d i n a, F. J. P e r e z-P i n a l, A. I. B a r r a n c o-

G u t i e r r e z. Performance Comparative of OpenCV Template Matching Method on Jetson

TX2 and Jetson Nano Developer Kits. – In: Proc. of 10th Annual Computing and

Communication Workshop and Conference (CCWC’20), 2020, pp. 0812-0816.

9. K i m, S., S. S o n g, J. K i m, Z. Y u a n, J. C h o. Fast Rotation-Invariant Template Matching with

Candidate Reduction Using CUDA. – In: Proc. of International Symposium on Consumer

Electronics (ISCE’15), 2015, pp. 1-2.

10. H a n g ü n, B., Ö. E y e c i o ğ l u. Performance Comparison between OpenCV Built in CPU and

GPU Functions on Image Processing Operations. – International Journal of Engineering

Science and Application, Vol. 1, 2017, pp. 34-41.

 81

11. T a i r A. s a l i h, M o h a m m a d B a s m a n G h. A Novel Face Recognition System Based on

Jetson Nano Developer Kit. – IOP Conference Series: Materials Science and Engineering, Vol.

928, 2020, No 3, IOP Publishing.

12. K u m a r, L., D. K. S i n g h. Analyzing Computational Response and Performance of Deep

Convolution Neural Network for Plant Disease Classification Using Plant Leave Dataset. – In:

Proc. of 10th IEEE International Conference on Communication Systems and Network

Technologies (CSNT’21), 2021, pp. 549-553. DOI: 10.1109/CSNT51715.2021.9509632.

13. S i n g h, D u s h y a n t K u m a r. 3D-CNN Based Dynamic Gesture Recognition for Indian Sign

Language Modeling. – Procedia Computer Science, Vol. 189, 2021, pp. 76-83.

14. S h a h i d, A., M. M u s h t a q. A Survey Comparing Specialized Hardware and Evolution in TPUs

For Neural Networks. – In: Proc. of 23rd International Multitopic Conference (INMIC’20).

IEEE, 2020.

15. G a o, F., Z. H u a n g, S. W a n g et al. Optimized Parallel Implementation of Face Detection Based

on Embedded Heterogeneous Many-Core Architecture. – Int. J. Pattern Recognit. Artif. Intell.,

Vol. 31, 2017, No 7, 1756011.

16. Y i n, S., O. P e n g, S. T a n g et al. A High Energy Efficient Reconfigurable Hybrid Neural

Network Processor for Deep Learning Applications. – IEEE J. Solid State Circuits, Vol. 53,

2018, No 4, pp. 968-982.

17. W e n, S., H. W e i, Z. Z e n g et al. Memristive Fully Convolutional Network: An Accurate

Hardware Image-Segmentor in Deep Learning. – IEEE Trans. Emerg. Top Comput. Intell.,

Vol. 2, 2018, No 5, pp. 324-334.

18. S u g i e, T., T. A k a m a t s u, T. N i s h i t s u j i et al. High-Performance Parallel Computing for

Next-Generation Holographic Imaging. – Nat Electron, Vol. 1, 2018, No 4, pp. 254-259.

19. T h o m a n, P., K. D i c h e v, T. H e l l e r et al. A Taxonomy of Task-Based Parallel Programming

Technologies for High-Performance Computing. – J. Supercomput., Vol. 74, 2018, No 4,

pp. 1422-1434.

20. A n s a r i, M. A., D. K. S i n g h. Review of Deep Learning Techniques for Object Detection and

Classification. – In: Proc. of International Conference on Communication, Networks and

Computing. Springer, Singapore, 2018.

21. H a y a s h i, N., et al. Advanced Embedded Packaging for Power Devices. – In: Proc. of IEEE 67th

Electronic Components and Technology Conference (ECTC’17), 2017, pp. 696-703.

DOI: 10.1109/ECTC.2017.215.

22. L e c h n e r, M., A. J a n t s c h. Blackthorn: Latency Estimation Framework for CNNs on

Embedded Nvidia Platforms. – IEEE Access, Vol. 9, 2021, pp. 110074-110084.

DOI: 10.1109/ACCESS.2021.3101936.

23. V r e č a, J., et al. Accelerating Deep Learning Inference in Constrained Embedded Devices Using

Hardware Loops and a Dot Product Unit. – IEEE Access, Vol. 8, 2020, pp. 165913-165926.

DOI: 10.1109/ACCESS.2020.3022824.

24. T y c h a l a s, D., A. K e l i r i s, M. M a n i a t a k o s. Stealthy Information Leakage

through Peripheral Exploitation in Modern Embedded Systems. – IEEE Transactions on

Device and Materials Reliability, Vol. 20, June 2020, No 2, pp. 308-318.

DOI: 10.1109/TDMR.2020.2994016.

25. N e e l a m, D., D. K. S i n g h. Review of Deep Learning Techniques for Gender Classification in

Images. – In: Proc. of Harmony Search and Nature Inspired Optimization Algorithms.

Springer, Singapore, 2019. 1089-1099.

26. L u c k o w, M. C., N. A s h c r a f t, E. W e i l l, E. D j e r e k a r o v, B. V o r s t e r. Deep Learning

in the Automotive Industry: Applications and Tools. – In: Proc. of IEEE Int. Conf. Big Data,

December 2016, pp. 3759-3768.

27. D e v y a t k i n, V., D. M. F i l a t o v. Neural Network Traffic Signs Detection System

Development. – In: Proc. of XXII Int. Conf. Soft Comput. Meas. (SCM’19)), May 2019,

pp. 125-128.

Received: 10.01.2022; Second Version: 21.04.2022; Accepted: 08.06.2022

