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Abstract: With the advancement in technological world, the technologies like 

Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are 

gaining more popularity in many applications of computer vision like object 

classification, object detection, Human detection, etc., ML and DL approaches are 

highly compute-intensive and require advanced computational resources for 

implementation. Multicore CPUs and GPUs with a large number of dedicated 

processor cores are typically the more prevailing and effective solutions for the high 

computational need. In this manuscript, we have come up with an analysis of how 

these multicore hardware technologies respond to DL algorithms. A Convolutional 

Neural Network (CNN) model have been trained for three different classification 

problems using three different datasets. All these experimentations have been 

performed on three different computational resources, i.e., Raspberry Pi, Nvidia 

Jetson Nano Board, & desktop computer. Results are derived for performance 

analysis in terms of classification accuracy and hardware response for each 

hardware configuration. 

Keywords: Embedded devices, Nvidia Jetson nano board, deep learning, image 

classification, hardware performance, Cuda core. 

1. Introduction 

In the modern age, Machine Learning (ML), and Deep Learning (DL) algorithms 

have attracted significant attention of researchers. One of the reasons is the 

incremental improvements in DL algorithms where higher accuracy outcomes can 

purposely be saught for many problem areas like Data Analytics, Natural Language 

Processing, Image Processing, etc. These achievements have encouraged researchers 

to apply deep learning methods for various complex tasks like object detection, object 

classification, human detection, etc. [16, 20, 22].  

Deep learning architectures like Convolutional Neural Network (CNN) perform 

well but have intense requirements for high-end computation hardware. The huge 

amount of data getting processed brings a high condition of computation need. The 

advanced computing system equipped with highly evolved multicore CPUs is 
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actually cooping this demand. On the other hand, GPUs are there which could help 

in accelerating the entire process of deep learning training and validation. It has often 

been demonstrated in the literature that the need for CPU and GPU cores depends on 

the layered architecture of the CNN. As the number of layers increases in CNN 

architecture, more number of hardware cores are then required, for faster parallel 

processing. A single-core CPU has restricted computational limits (e.g., computation 

units and memory) to handle large-scale neural networks. To overcome this issue, 

multicore architectures are now getting utilized. Modern parallelization of CPU and 

GPU in multicore systems has shown remarkable results in deep learning kind of 

applications [25-27].  

Not only current day’s desktop PCs or Laptops facilitate multicore CPU 

configuration, rather small embedded devices are now designed to contain such CPUs 

and GPU [10, 14]. The embedded devices have gained the tremendous capability to 

deal with AI algorithms using multicore architecture. The evolution in nanometer-

scale fabrication has made it possible to encapsulate miniature size CPU & GPU on 

a very small size board. Raspberry Pi & Nvidia Jetson Nano are few to name [11]. 

They are made capable of even running complex training tasks of deep learning 

models. Intel Neural Stick is yet another example that embeds the dedicated processor 

cores for processing of neural network operations using TensorFlow and/or Caffe 

libraries. To analyze the hardware response of these devices on deep learning 

algorithms, the two of the above-mentioned embedded hardware are taken, and 

experiments have been carried out for response time-related performance [15]. The 

analysis is also done for desktop PC containing GPU, and relatively assessment is 

done by comparing the three cases [24]. 

1.1. Raspberry Pi 3 B+ 

Raspberry Pi is a lightweight, compact embedded device capable of working like a 

full-fledged computer system. Its embedded nature makes it suitable for real-time 

applications. Raspberry Pi is with their sufficient computer power can efficiently be 

used for various computer vision applications. Due to its low cost and small size, this 

is a good option to use it inplace of a Desktop PC for moderate tasks [9]. 
 

 
Fig. 1. Structure of Raspberry Pi 3 B+ [32] 
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Raspberry Pi, in its beginning was designed with a 700 MHz CPU in the year 

2009. Later, it evolves as Pi 2, Pi 3, Pi 3 B & Pi 3 B+, where 3B+ is running at  

1.2 GHz frequency with a 64-bit Broadcom CPU. Pi 3B+ possesses a quad core CPU 

which can run complex algorithms at a faster speed while exploiting the 

parallelizability in multiple cores. This support in hardware has motivated us to 

employ deep learning-based object classification algorithms on Raspberry Pi to 

analyze the hardware response [19]. 

1.2. Nvidia Jetson Nano Board 

Nvidia in 2014 first developed an embedded board named Jetson TK1, which 

contains the quad core ARM Cortex A15 CPU. Later, it advances as TK2, Xavier, 

and Nano, where Nvidia Jetson Nano board has Quad core A57 CPU @1.53GHz  and 

921 MHz Maxwell generation GPU. The Quad core structure of the Nvidia Jetson 

Nano board helps to execute complex AI errands with great efficiency. It also has a 

quality of CPU & GPU based heterogeneous architecture, where CPU is used to speed 

up the OS, and CUDA-capable GPU can be rapidly planned to accelerate the tasks of 

ML. The overall hardware specification of Nvidia Jetson Nano motivated us to use it 

in various computer vision problems like object detection, image classification, and 

video surveillance [17, 18]. 

 

Fig. 2. View of Nvidia Jetson Nano Board [11] 

1.3. Desktop PC 

The PC has been taken as one competitive hardware for analyzing response as PC’s 

has seen tremendous evolution in last few years. The advancement in desktop PC is 

done by increasing the clock speed, increasing CPU cores and/or adding up the 

GPU’s. The computational power of desktop PC is effectively increasing with 

continuous evolution in CPU and GPU cores. The desktop PC used here is based on 
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a 64-Bit octa-core Processor @ 4.2 GHz CPU and 4 GB Nvidia GTX 1650 Ti running 

at a boost frequency of 1.3-1.5 GHz GPU. Here, the Nvidia GTX 1650 TI has 1,536 

number of Cuda cores. This Quad core structure of CPU and multicore Cuda 

architecture of GPU allows execution of the complex deep learning model with faster 

speed. 

This paper explores the performance of above mentioned embedded devices 

(like Raspberry Pi 3 B+, Nvidia Jetson Nano Board) and desktop PC over image 

classification tasks. A CNN model is used here to perform image classification. The 

response time of each device is evaluated by running CNN model on different 

training inputs. Due to a large number of CPU and GPU cores, the hardware response 

of a desktop PC seems much better than both embedded devices. Another side, the 

Nvidia Jetson’s hardware response is quite good compared to the Raspberry Pi 3B+ 

because it has a large number of CUDA cores of Maxwell generation GPU, that may 

allow it to be used in place of a desktop PC where space and cost are constraints. In 

contrast, the Raspberry Pi 3 B+ can also be used in place of a desktop PC, only for 

small and medium level AI tasks [12, 13]. 

The remaining paper is organized as follows. Section 2 discusses related works. 

The proposed CNN architecture to perform image classification tasks is discussed in 

Section 3. Section 4 discusses the experimental results obtained using CNNs on 

different hardware. Finally, the last section concludes the manuscript work presented 

in this. 

2. Related works 

This section discusses the related work done on different computational hardware for 

numerous applications, which is as follows: 

Z u  [1] have developed a heterogenous multicore architecture model based on 

CPU and Multicore accelerator. This work proposes a parallel algorithm for Machine 

learning and execution model related to heterogeneous multicore architecture 

systems. It is mainly focused on performing testing and evaluation on S698P’s 

emulator GRSIM. After testing S698P’s emulator, it is found that the effectiveness 

of deep learning tasks is improved compared to traditional parallel processing. 

G o m a t h e e s h w a r i  and S e l v a k u m a r  [2] propose a framework for optimizing 

the performance and energy of multicore architecture. A deep learning model for 

multicore architecture is designed for this system being proposed based on the 

asymmetric multicore processor. This framework is based on the workload 

characterization of CPU cores, followed by the core prediction module. The scheme 

being proposed is implemented in basically three stages: feature Extraction, 

optimization, and prediction of the core on which workload is distributed. This work 

reduces energy consumption up to 35% and achieves 97% accuracy in core prediction 

for the workload. 

M i t t a l  [3] has reviewed the performance of various NVIDIA Jetson platforms 

strategies for speeding up Neural networks on this platform. This article talks about 

the hardware and CNN level enhancement. It shows that Nvidia Jetson is speeding 

up analytical tasks for a large area of applications. D e m i r  and E r t ü r k  [4] have 
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proposed a combination action model consisting of SVM classification and a 

hierarchical approach to improve the SVM classification and reduce the load on SVM 

testing. For the image classification task, 2D wavelet decay is applied to each 

hyperspectral picture band, and low spatial recurrence parts of each level are utilized 

for hierarchical classification [7]. 

S u l t a n a, S u f i a n  and D u t t a  [5] have developed an advanced CNN 

framework for image recognition tasks. They reveal that the network being proposed 

is more extensive than the AlexNet, ZFNet, and VGGNet, which follow the 

architecture of the traditional CNN model like LeNet-5. It has been experienced that 

an efficient conventional CNN model is created after combining the initiation module 

and residual blocks with the GoogLeNet and ResNet for better precision. The model 

being proposed gets an efficient accuracy for various datasets. S a l i m i, 

D e w a n t a r a  and W i b o w o  [6] presents a garbage identification and 

characterization framework to deal with a real-world scenario. To initially classify 

any objects on the floor, the Haar-Cascade technique is used here. At that point, the 

GrayLevel Co-occurrence Matrix (GLCM) and HistOgram Gradient (HOG) are 

combined to get efficient results. The pre-trained model of SVM is used here to 

categorize natural waste, non-natural waste, and non-squander highlights using image 

classification tasks and achieve up to 82.70% accuracy. 

R a m c h a r a n  et al. [7] have presented a method to identify Soybean diseases. 

The proposed deep neural networks provide an avenue for the fast deployment of this 

technology on mobile devices. After performing a deep learning approach, they get 

98% accuracy for brown leaf spot, 96% accuracy for red mite damage, 95% accuracy 

for green mite damage, 98% for brown cassava streak, and 96% accuracy for cassava 

mosaic disease. The best-qualified model accuracy has been 98% [29, 30]. 

The traditional approaches require a large computational setup for performing a 

real-time image classification task. As a result, they require a lot of time in 

computational training and testing. Recently, the researchers have followed a 

simplistic approach to the utilization of current design computational hardware. 

Researches going all around are following the traditional hardware and therefore 

limited in dealing with real-time and practical design & usage. Therefore, we have 

tried analyzing multiple hardware for such deep learning-based complex tasks and so 

used NVIDIA JETSON NANO, Raspberry Pi 3B+, and desktop PC for image 

classification tasks using the CNN model. The description of the proposed 

methodology is covered in the next section with the training results and performance 

comparison between embedded devices and Desktop PC. 

3. Proposed methodology 

As mentioned earlier, the methodology being proposed aims at developing  

CNN-based solutions for benchmark classification problems with respective datasets 

and then executing them on different computational hardware. First, we have 

discussed about CNN modeling for our set of classification problems. 
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3.1. CNN modeling 

CNN architecture incorporates four essential layers, namely Convolution Layer, 

Pooling Layer, Fully Connected Layer, and Output Layer. The convolution layer has 

several filters that perform the convolution operation on the image dataset. Here 3×3 

filters are used to extract the features, such as edges from the input images. The 

convolution layer captures low-level features like color, borders, gradient orientation, 

etc. The pooling layer converts the high-dimensional data space into low-dimensional 

data space. This conversion helps to reduce the computational power required for the 

processing. The fully connected layer consists of neurons that facilitate training the 

CNN model, and the output layer is responsible for generating the final result using 

the activation function. The layers of CNN provide a scalable approach for image 

classification and object recognition tasks in the various application domains. The 

overall architecture of the proposed model is shown in Fig. 3. The parameter level 

details of CNN layers are provided. 
 

 
Fig. 3. Convolution Neural Network Architecture 

Table 1. Parameter level details of the proposed CNN 
Layer Output shape Param # 

Convolution 2D_1 (None, 42, 42, 32) 896 

Max Pooling_1 (None, 21, 21, 32) 0 

Convolution 2D_2 (None, 7, 7, 64) 18496 

Max Pooling_2 (None, 3, 3, 64) 0 

Flatten (None, 576) 0 

Dense (None, 128) 73856 

Dense (None, 64) 8256 

Dense (None, 5) 325 

Total parameter 101,829 
 

This model uses one input, two Convolutional, two pooling, and one output 

layer. An image of size 128×128×3 is input to the first convolutional layer containing 

32 filters of size 3×3 with pooling operation of pool size 2×2. The evaluated 

consequences are again passed to the convolutional layer containing 64 filters of each 

size of 3×3, followed by a pooling layer of pool size 2×2. The flattening layer is then 

used to convert evaluated multidimensional vector to vector size spaces, which are 

further utilized by FC1 and FC2 layers. Here, 30% of dropout is used in both FC 
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layers to protect our training data from overfitting and underfitting. FC layers are 

solely responsible for training. Finally, output yields softmax activation and produces 

an outcome. Here, reLU activation is used in the convolution layer & tanh activation 

is used for FC layers. The total trainable parameters in the proposed network come 

to be 101,829. 

The CNN architecture as discussed earlier is trained for three different 

classification problems. First of these is plant leaf classifications. It could be a reliable 

tool to understand plants for those who remain away from agriculture. It is hard to 

remember plants by viewing a large variety of flora. This is one popular problem 

found in the research literature, therefore we had considered this as our benchmark 

for the hardware response analysis task. The other classification problem covered 

here is the garbage classification, one of the hitting issues related to “Swach Bharat 

Abhiyan.” Same way, trash classification is another benchmark classification 

problem considered here. To get to this objective, the CNN model is trained to 

classify the trash in real-time, which could help the municipalities to manage the 

household trash. 

For the garbage management system, image classification helps determine the 

type of garbage. There are some basic classes like household waste, kitchen waste, 

city waste, etc., on which the CNN model is trained.  

3.2. Hardware setup 

The model being proposed is trained on a machine configured with a CPU  

Ryzen 7-4800H, 8 Gb RAM, and 4 GB NVIDIA GTX 1650Ti GPU (1024 CUDA 

cores). Other side, the trained model is tested on two embedded devices, i.e., 

Raspberry Pi 3 B+ and Nvidia Jetson Nano Board. 

 
Fig. 4. Image classification over computing devices 

The Raspberry Pi 3 B+ consists of a 64-bit Broadcom quad core Cortex-A53 

CPU with a clock speed of 1.4 GHz and 2 GB SDRAM. The Raspberry 3B+ operating 

system runs on the Raspbian 10 operating environment, stored on the SD card. The 

pre-trained model is tested on a Raspberry Pi 3 B+ board to classify images for 

different datasets. The implementation procedure in the Nvidia Jetson Nano board is 

similar to  Raspberry Pi 3 B+ for image classification tasks. The Nvidia Jetson 

contains greater number of computational units compared to the Raspberry Pi 3 B+. 

This makes Nvidia Jetson more reliable for handling complex computer vision tasks 

[12, 13]. The Nvidia Jetson Nano board runs on a quad core ARM Cortex-A57 with 



 75 

4 GB of SDRAM and consumes a maximum power of 10 W. The Nvidia Jetson Nano 

board runs on the Jetpack SDK (Ubuntu 18.4), which is stored on the SD card. Here, 

the same pre-trained CNN models are used to classify plant leaves, garbage, and 

garbage images. The CNN model shows effective results with the Jetson board  

[10, 15]. 

Fig. 4 shows the workflow of the image classification task computed over 

different hardware devices. These devices are connected to the camera module from 

where they receive the frames. The captured frames are then passed to the CNN 

model, classifying the images into their respective classes. Finally, the device returns 

the classification result based on the evaluated CNN prediction. 

3.3. Datasets 

The existing trash, garbage, and PlantVillage datasets are taken from an openly 

accessible data repository, namely Kaggle and Gale. PlantVillage dataset has images 

of different fruits and vegetables, whereas the trash dataset has various images of 

paper, cardboard, plastic, grass, metal, etc. Otherside, the garbage dataset contains 

images like kitchen_Garbage, City_Garbage, Village_Garbage, Forest_Garbage, 

Hazardous_Garbage, and all. The descriptions related to datasets are presented in 

Table 2. 

Table 2. Description of Datasets 

Description of datasets 

Features Plant village Trash dataset Garbage dataset 

Dataset  

repository  

link 

https://www.kaggle.com

/emmarex/plantdisease 

https://gale31.github.io

/TIDY/ 

https://www.kaggle.com/a

sdasdasasdas/garbage-

classification 

Classes 

Apple_Healthy, 

Blueberry_Healthy, 

Grape_Healthy, 

Peach_Healthy, 

Potato_Healthy, 

Soyabean_Healthy, 

Strawberry_Healthy, 

Tomato_Healthy 

cardboard, 

metal, 

paper, 

plastic, 

and 

grass 

kitchen_Garbage, 

City_Garbage, 

Village_Garbage, 

Forest_Garbage, 

Hazardous_Garbage 

No of training  

images 
6000 4000 3000 

No of testing  

images 
1219 976 786 

Total images 7219 4976 3786 

4. Experimental results 

In this section, the hardware performance of desktop PC and two embedded devices 

is analyzed on CNN architecture for multithreading workloads. This also provides 

the training results of classification when executed on the proposed model with three 

https://www.kaggle.com/emmarex/plantdisease
https://www.kaggle.com/emmarex/plantdisease
https://gale31.github.io/TIDY/
https://gale31.github.io/TIDY/
https://www.kaggle.com/asdasdasasdas/garbage-classification
https://www.kaggle.com/asdasdasasdas/garbage-classification
https://www.kaggle.com/asdasdasasdas/garbage-classification
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datasets, and the prediction time for test images on both embedded devices and a 

desktop PC. A detailed description of all experimental setups is mentioned in  

Table 3. 

Table 3. Experimental setup details 

Feature Desktop PC Nvidia Jetson Nano Board Raspberry Pi 3 B+ 

CPU Ryzen 7 

Quad-core ARM  

Cortex-A57  

(4 core), 

Broadcom BCM2837B0,  

Cortex-A53 (ARMv8)  

64-bit SoC@ 1.4GHz 

CPU core Octa-core Quad-core Single-core 

GPU 
4 GB Nvidia 

1650Ti 

NVIDIA Maxwell architecture 

with 128 NVIDIA CUDA® cores 
Broadcom video core-IV 

RAM 8 GB 4 GB 4 GB 

Operating 

System & its 

version 

Window 10 Home Ubuntu 18.4 Raspbian 5.4.51 

Peak 

performance 
1792 Gflops 500 Gflops 200 Gflops 

Power required 120 W 10 W 1.5 W to 6.7 W 

Weight 250 gm 85 gm 50 gm 

Price $250 $89 $35 

4.1. Results 

This section presents the experimental results of the proposed CNN architecture 

evaluated over a desktop PC and two embedded devices. Table 4 shows the 

experimental results of the proposed model performed on the PlanVillage datasets. 

This model takes 2412 s (40.2 min) in the entire training process for batch size 4, 

which is the least time for training the deep learning model compared to other batch 

sizes. The proposed model has achieved the highest accuracy at batch size 4, which 

is up to 98.57%. 

Table 4. Experimental Results of Plant Village Dataset 

It
er

at
io

n
 

Batch size (4) Batch size (8) Batch size (16) 

Training Validation Training Validation Training Validation 

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss 

20 97.16 0.360 97.14 0.130 95.73 0.480 95.71 0.350 96.04 0.450 90.00 0.800 

40 98.22 0.220 97.14 0.310 97.39 0.310 97.14 0.230 97.90 0.280 97.14 0.320 

60 98.87 0.150 98.57 0.130 97.76 0.280 98.57 0.230 97.89 0.250 98.57 0.110 

80 99.01 0.150 95.71 0.250 98.88 0.140 95.71 0.300 98.81 0.150 97.14 0.250 

100 98.98 0.150 97.14 0.180 98.44 0.210 98.57 0.120 98.90 0.140 97.57 0.130 

120 98.80 0.130 98.57 0.090 98.72 0.180 95.71 0.380 99.22 0.100 97.63 0.200 

 

Execution 

time 

Time per Epoch= 20 s 10 ms 

Total execution  

time= 120×20.10=2412 s 

Time per Epoch= 20 s 30 ms 

Total execution  

time= 120×20.30=2436 s 

Time per Epoch= 20 s 58 ms 

Total execution  

time= 120×20.58=2469.6 s 

Table 5 contains the training and validation results for the Trash dataset at 

various epoch levels. Here, the efficient training time taken by batch size 4 is 1104 s 

(18.4 min), which is the least amount of time taken for training compared in case of 
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other batch size. The highest accuracy is achieved at batch size 16, which is up to 

71%.  

Table 5. Training results of Trash Dataset 

It
er

at
io

n
 

Batch size (4) Batch size (8) Batch size (16) 

Training Validation Training Validation Training Validation 

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss 

20 66.84 0.293 58.00 0.344 70.49 0.273 56.00 0.350 66.78 0.296 50.00 0.349 

40 74.99 0.226 64.00 0.329 74.06 0.237 54.00 0.361 71.25 0.264 54.00 0.342 

60 79.60 0.197 65.00 0.361 81.02 0.191 62.00 0.367 77.03 0.219 57.00 0.353 

80 84.06 0.162 65.00 0.372 83.60 0.161 66.00 0.327 82.75 0.176 67.00 0.311 

100 87.89 0.135 67.00 0.373 87.38 0.134 66.00 0.343 81.86 0.179 61.00 0.337 

120 87.39 0.129 67.00 0.393 90.01 0.116 67.00 0.329 87.35 0.143 71.00 0.314 

 

Execution 

time 

Time per Epoch= 9 s 20 ms 

Total execution  

time = 120×9.20=1104 s 

Time per Epoch= 9 s 37 ms 

Total execution  

time = 120×9.37=1124.4 s 

Time per Epoch= 9 s 74 ms 

Total execution  

time = 120×9.74 =1168.8 s 

Table 6 presents the experimental results for the proposed model evaluated over 

the garbage dataset. The experimental outcomes show an interesting thing because 

the training accuracy of each batch size is different from each other. The reason 

behind this is the variation in a class image of the garbage dataset. The highest 

validation accuracy is achieved as 90 % with batch size 4. The efficient execution 

time is found using batch size 8, i.e., 1458.6 s (24.30 min). 

Table 6. Training results of Garbage Dataset 

It
er

at
io

n
 Batch size (4) Batch size (8) Batch size (16) 

Training Validation Training Validation Training Validation 

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss 

20 67.09 0.282 71.11 0.240 36.88 0.454 27.78 0.478 33.73 0.467 27.78 0.504 

40 72.93 0.262 76.67 0.206 42.65 0.434 34.44 0.448 42.87 0.432 40.00 0.471 

60 77.84 0.234 83.33 0.191 47.42 0.389 48.89 0.416 47.39 0.406 44.44 0.402 

80 80.70 0.199 83.33 0.168 59.49 0.348 61.11 0.355 52.72 0.369 55.56 0.356 

100 80.91 0.190 84.44 0.161 64.28 0.323 70.00 0.289 57.77 0.347 58.89 0.330 

120 83.23 0.176 90.00 0.126 67.50 0.289 70.00 0.300 61.05 0.314 66.67 0.309 

 

Execution time 

Time per Epoch=12 s 73 

ms 

Total execution time 

=120×12.73=1527.6 s 

Time per Epoch = 12 s 15 ms 

Total execution  

time = 120×12.15=1458.6 s 

Time per Epoch = 12 s 29 ms 

Total execution  

time = 120×12.29 =1474.8 s 

To better understand the effect of hyper-parameter on the CNN model, we 

performed hyperparameter tuning on all datasets with various activation functions 

shown in Table 7. We used ReLU, Tanh, and LeakyReLU on Convolutional Layer 

and ReLU, Tanh on fully connected layer. At last, we used the sigmoid function at 

the output layer of the model.  
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Table 7. Hyper-parameter tuning for CNN model 

Dataset Model Batch 

size 

Dropout 

Activation function 

Optimizer Epochs 

Training Validation 

Convolutional 

layer 

FC 

layer 

O/P 

layer 

Accuracy Loss Accuracy Loss 

Plant 

Village 

A1 4 0.30 Relu Relu Softmax Adam 100 98.32 0.312 98.78 0.208 

A2 8 0.30 Tanh Tanh Softmax Adam 100 97.19 0.389 97.34 0.247 

A3 16 0.30 LeakyRelu Relu Softmax Adam 100 97.32 0.312 97.48 0.224 

A4 4 0.30 Relu Relu Softmax Ada Delta 100 98.17 0.301 97.54 0.212 

A5 8 0.30 Tanh Tanh Softmax Ada Delta 100 98.68 0.325 98.18 0.230 

A6 16 0.30 LeakyRelu Relu Softmax Ada Delta 100 98.08 0.112 98.22 0.210 

 

Trash 

B1 4 0.30 Relu Relu Softmax Adam 100 86.23 0.345 78.00 0.497 

B2 8 0.30 Tanh Tanh Softmax Adam 100 84.01 0.215 66.00 0.413 

B3 16 0.30 LeakyRelu Relu Softmax Adam 100 87.35 0.215 72.00 0.314 

B4 4 0.30 Relu Relu Softmax Ada Delta 100 87.49 0.310 67.00 0.369 

B5 8 0.30 Tanh Tanh Softmax Ada Delta 100 85.01 0.747 66.00 0.258 

B6 16 0.30 LeakyRelu Relu Softmax Ada Delta 100 87.35 0.852 72.00 0.247 

 

Garbage 

C1 4 0.30 Relu Relu Softmax Adam 100 68.91 0.287 78.00 0.156 

C2 8 0.30 Tanh Tanh Softmax Adam 100 67.50 0.369 72.00 0.360 

C3 16 0.30 LeakyRelu Relu Softmax Adam 100 62.37 0.425 67.67 0.358 

C4 4 0.30 Relu Relu Softmax Ada Delta 100 72.91 0.217 62.00 0.874 

C5 8 0.30 Tanh Tanh Softmax Ada Delta 100 67.50 0.369 72.00 0.488 

C6 16 0.30 LeakyRelu Relu Softmax Ada Delta 100 62.37 0.425 67.67 0.458 

In Table 7, we see that the performance of the proposed model for various 

datasets in the presence of different modeling parameters varies. Model A1 for the 

plantvillage dataset has achieved the highest validation accuracy (98.78%) and 

training accuracy (98.32%) compared to other variants. Model B1 for the trash dataset 

has achieved the highest validation and training accuracy, up to 78.00% and 86.23%, 

respectively, compared to other variants. In contrast, the C1 variant of the garbage 

dataset has also acquired 78.00% validation and 68.91% training accuracy, which is 

most efficient compared to other variants.  

4.2. Result analysis 

The graph in Fig. 5 presents the timing observed for the training process of the deep 

learning model, for the PlantVillage, garbage, and trash datasets, with different batch 

sizes, i.e., 4, 8, and 16. After analyzing the training time for each dataset, it is found 

that the PlantVillage dataset takes more time in training at batch sizes 4, 8, and 16 

than the other datasets because it has a total of 7219 images with eight classes of 

images. The training is performed on GPU enabled desktop PC, and it took a fair 

time, averaging 2400 s, i.e., around 40 min. Faster training becomes possible with 

available parallel Cuda cores in Nvidia GPU.  

The same trained model is run on all three hardware to analyze their 

performance. The graph in Fig. 6 presents the timing analysis of the classification 

task on these hardwares. On analyzing the graph in Figure 6, we find a significant 

difference in the response time for all hardware. Here, desktop PC simultaneously 

takes 2× and 3× less time to classify an image than Nvidia Jetson Nano Board and 

Raspberry Pi 3 B+. This significant difference in prediction time is seen due to several 

reasons. The first reason is the specifications of embedded devices and desktop PC 

shown in Table 2, which means if any device has a parallel and application-specific 
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processor, it may take less time and effort to complete the task. The second reason is 

the availability of Cuda cores of GPU in devices. GPUs rend images more quickly 

than a CPU because of their parallel processing architecture, allowing them to 

simultaneously perform multiple calculations across data streams. Due to this, 

Raspberry Pi takes a lot of time compared to Nvidia and desktop PC because it has 

only 128 Cuda cores. 

 

Fig. 5. Training time distribution of the model on different datasets 

 
Fig. 6. Comparison of response time for classification 

All experiments have been carried out in the Window’s environment on a 

machine configured with 9th generation i5, 8 GB RAM, and 256 GB SSD.  

CUDA 10.0 with CUDNN 7.5 libraries used to effectively accelerate the GPU-based 

processing. The dataset used in the experiments is detailed as follows. 
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5. Conclusion 

This paper presents a study of embedded devices and a desktop PC for various neural 

network applications on multiple datasets and also reviewes the key feature of the 

Nvidia Jetson Nano Board, Raspberry Pi 3 B+, and a Desktop PC. This paper 

discusses CNN-level optimization and hardware performance activities under various 

conditions. The experimental results have shown that the Nvidia Jetson Nano board 

is 50% more efficient than the Raspberry Pi board due to the availability of a large 

number of Cuda cores (i.e., 128 Cuda cores) with Cortex-A7 CPU and Maxwell 

generation GPU. Hence, the Nvidia Jetson Nano board takes less time in the image 

classification task than a raspberry Pi device. On the other side, Desktop PC is almost 

two times (2x) more efficient than the Nvidia Jetson Nano because it has a 1536 Cuda 

core compared to the 128 Cuda core of the Nvidia Jetson Nano Board. As a result, it 

is found that a Desktop PC with larger processing units are more efficient than the 

embedded devices (i.e., the Nvidia Jetson Nano board and the Raspberry Pi 3B+ 

board). 
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