
 48

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 22, No 3

Sofia  2022 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2022-0027

Uncertainty Aware T2SS Based Dyna-Q-Learning Framework

for Task Scheduling in Grid Computing

K. Bhargavi1, Sajjan G. Shiva2
1Department of CSE, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
2Department of CS, University of Memphis, Memphis, Tennessee, USA

E-mails: bhargavik@sit.ac.in Sshiva@memphis.edu

Abstract: Task scheduling is an important activity in parallel and distributed

computing environment like grid because the performance depends on it. Task

scheduling gets affected by behavioral and primary uncertainties. Behavioral

uncertainty arises due to variability in the workload characteristics, size of data and

dynamic partitioning of applications. Primary uncertainty arises due to variability in

data handling capabilities, processor context switching and interplay between the

computation intensive applications. In this paper behavioral uncertainty and primary

uncertainty with respect to tasks and resources parameters are managed using

Type-2-Soft-Set (T2SS) theory. Dyna-Q-Learning task scheduling technique is

designed over the uncertainty free tasks and resource parameters. The results

obtained are further validated through simulation using GridSim simulator. The

performance is good based on metrics such as learning rate, accuracy, execution

time and resource utilization rate.

Keywords: Dyna-Q-Learning, grid computing, T2SS, uncertainty, performance.

1. Introduction

In recent years there is a tremendous development of grid computing environment,

which supports applications that have high computation demands. Compared to other

High-Performance-Computing (HPC) environments like cluster computing and cloud

computing, the grid computing allows large scale heterogeneous computation to be

performed at speed among the geographically distributed nodes [1, 2]. Although

individual grids are customized to perform specific operations, but they are even

extended to perform variety of other operations multimodal approximations,

simultaneous analysis of data, large scale sharing of grid resources, belief

propagation, approximate factorization, topic modelling, distributed arithmetic, high

resolution image indexing, logic synthesis, etc. However grids are subjected to lot of

performance issues due to uncertainty in the computing environment that include

inadequate excitation, poor signal to noise ratio for input data, progressive refinement

of grids, higher number of grid operators, discretization of uncertainty measurement,

low fidelity model outputs, randomness of input parameters, dispersion of resources,

mailto:bhargavik@sit.ac.in

 49

vulnerability of problem, complexity of unstructured data, curse of computational

dimensionality, suboptimal task scheduling, poor fault tolerance, cascading grid

failures, and many more. Hence, there is a necessity to manage uncertainty in the

input and output parameters to improve endurance performance for longer duration

of time [3-5].

Type 2 Soft Set (T2SS) is one of the promising types of mathematical

framework which oversees the parametric uncertainty (vagueness) by drawing soft

boundary over the parameters. It is being applied in various applications that include

function smoothness, integration, game theory, scientific computing, internet

computing, signal processing, data science, control theory, thermal analysis, robotics,

data intensive computation, machine control, load unbalancing, etc. [6, 7].

Dyna-Q-Learning is a kind of reinforcement learning technique which

formulates policies from both real experiences and simulation experience. The

technique works in three phases planning, acting, and learning in which value

function (policy function) gets improved through direct learning or indirect learning

of the agent. For planning and direct reinforcement learning one-step tabular

Q-Learning is employed and whenever the model is queried the last observed state

and the reward are returned as prediction. Both planning and learning phases of

Dyna-Q-Learning agent learn from various sources of information through common

final path [8].

Task scheduling is an important activity in HPC domain, the main objective of

the task scheduler is to improve the system performance by satisfying the resource

requirement of the tasks by efficiently managing uncertainty. In this paper the

parametric uncertainty of grid environment is overseen by performing double

approximation of the parameters using T2SS mathematical framework. Better task

scheduling policies are formulated with few interactions with the environment

through efficient utilization of the direct and indirect experiences of the

Dyna-Q-Learning agent [9, 10].

The main objectives of the paper are as follows.

 Mathematical representation of the grid computing system model for task

scheduling by setting up definitions for the performance metrics.

 Identifying the uncertainty in the grid resource and task parameters using

Hidden Markov Model (HMM) and Partially Observable Markov Decision Process

(POMDP) model.

 Design of a novel T2SS based Dyna-Q-Learning task scheduling framework

supported by algorithms for each of the component of the framework.

 Expected value analysis of the proposed Dyna-Q-Learning task scheduling

under finite and infinite computing scenarios.

 Simulation of the Dyna-Q-Learning task scheduler using GridSim simulator

by considering three different type of workloads that are MetaCentrum, Grid5000

and DAS-2 type of workloads.

 Validation of the results obtained through expected value analysis.

The remaining part of the paper is organized as follows: Section 2 discusses the

related works; Section 3 presents the system model considered for operation along

with the definitions for the performance metrics; Section 4 presents the proposed

 50

architecture for load balancing containing the details about HMM view of grid

resource model, Partially Observable Markov Decision Process (POMDP) view of

client task model and T2SS based Dyna-Q-Learning Task Scheduling Framework;

Section 5 presents the results and discussion; and finally Section 6 draws the

conclusion.

2. Related work

B h a t i a [11] provides a brief review of the task scheduling algorithms in HPC

environment. The grid computing involves various research problems pertaining to

load balancing, workflow scheduling, security, information management, and so on.

The grids are broadly classified into two types that are computational grid and data

grid. Computational grids are used to meet the scheduling demands of the complex

scientific problems and data grids are used to meet the scheduling demands of

substantial number of storage devices. The task scheduling is one of the potential

problems in grid systems and the available scheduling algorithms in literature fall

into three categories that are centralized, decentralized and hierarchical which operate

either in online mode or offline mode. Several heuristic algorithms like genetic

algorithm, simulated annealing, tabu search, swarm intelligence, reinforcement

learning, opportunistic mechanism, suffrage, Max-Min, Min-Min, and many more

are discussed in literature. All these algorithms find difficulty in exploring large state

space due to poor uncertainty handling capacity which often leads to performance

degradation.

C a s a g r a n d e et al. [12] discuss deep reinforcement learning based job

scheduler. Adaptive job scheduling policies that are energy efficient are formulated

by efficiently exploiting the workload patterns in the grid systems. This incorporates

deep learning approach inside the computational agent to make runtime job

scheduling decisions through trial-and-error mechanism. The computational agent

begins with no prior knowledge and starts to gain the reward which represents the

quality of the action taken at each observed state. Complicated job control problems

that arise within the large state space environment are managed efficiently. But it fails

miserably to address specific characteristics of the workload on varying degree of

sequential jobs.

E n g et al. [13] deal with task scheduling using hybrid approach that combines

both variable neighborhood descent algorithm and great deluge algorithm. The

vector-based representation of the tasks is performed. The heuristic tries to improve

the solution by replacing the current solution with neighboring solution having higher

fitness value. Multiple neighborhood search strategy is employed in a systematic

manner to properly schedule independent tasks. The Deluge algorithm uses boundary

value concept in a linear way throughout the search process to arrive at the high-

quality job scheduling solutions. Combination of both heuristic algorithms produces

global optimal policies, but the computational time taken to produce neighboring

solutions is extremely high.

U m a r and P u j i y a n t a [14] present ejecting based dynamic task scheduling

in combination with the conventional First Come First Serve (FCFS) technique. The

https://www.researchgate.net/scientific-contributions/Lucas-C-Casagrande-2172584422

 51

task arrival rate is assumed to follows Poisson distribution. Scheduling begins by

placing the incoming tasks in a logical matrix using ejected based FCFS technique.

Further inverse permutation matrix, transpose of the permutation matrix, and line

vector of the tasks gets computed. The computation process is repeated in iterations

until all the tasks are distributed efficiently among the grid resources. The execution

time of the scheduler is less due to fast computation of the transpose of task matrix.

However, the policy formulated is suboptimal as it fails to manage properly the

varying workload pattern of the task.

T a n g et al. [15] describe memory based homogeneous task scheduling

technique. The distributed Particle Swarm Optimization (PSO) with memory

function mimics the behavior of intelligent swarm groups to formulate scalable tasks

scheduling policies. Initially, the tasks are submitted with the resource requirement

into the waiting queue to get executed. The distributed particles in the grid space

exchange their load information with their peers to determine the minimum loaded

particle. Further tasks scheduling happens through exchange of load information

between the nearby particles at a faster speed. However, the convergence rate is low

as it gets trapped in local optimum solution under high uncertainty.

The limitations identified in the existing works are as follows [16, 17].

 Tailoring of system specific task scheduling policies often ends up in

formulating sub-optimal policies.

 Existing policies are rule-based which fails to understand the exact workload

pattern.

 Unable to determine candidate solutions which results in performance

degradation.

 Improper modelling of hidden states and partial states results in poor task

scheduling solutions.

3. System model

Consider a grid computing environment comprising of a set of incoming client tasks

CT = CT1, CT2, CT3, … , CT𝑛, every client task is identified by parameters that

include parameter id (pid), resource requirement (rr), workload and speed of

operation (sop) CT𝑖 = CTid, CTat = (pid, rr, sop). T2SS of CT𝑖′𝑠 sare created such

that for any pair of client task (CT𝑖 , CTat) over universal set U there exists a mapping

such that CT𝑖: C Tat → 𝑃(𝑈) which produces T2SS of tasks T2SS_CT =
T2SS_CT1, … , T2SS_CT𝑛. T2SS of grid resources GR𝑖′𝑠 are created such that for any

pair of grid resource (GR𝑖 , GRat) over universal set U there exists a mapping such

that GR𝑖: GRat → 𝑃(𝑈)which produces T2SS of grid resources TT2SS_GR =
T2SS_GR1, T2SS_GR2, … , T2SS_GR𝑛. The Dyna-Q-Learning scheduler performs

action to map the 𝑇2𝑆𝑆 of client tasks among appropriate grid resources to receive

maximum number of the rewards, i.e., CT𝑖 ∗ 𝐴𝑛 → 𝑅. After sufficient iteration of

training, the Dyna-Q-Learning scheduler develops an optimal task mapping policy

𝜋𝑖 = argmax𝑎𝑄(CT𝑖 , 𝑎), 𝑎𝑖 ∈ 𝐴. The mathematical definition for the Performance

Metrics (PM) considered are four as follows.

 52

PM1. Learning rate(𝐋𝐑(𝐃𝐲𝐧𝐚_𝐐𝐋))

Learning rate is the speed at which the Dyna-Q-Learning scheduler finds an

optimal match between the T2SS of client tasks and the T2SS of grid resources. It is

computed by considering the time taken to form first policy (𝑡𝜋
1) and the time taken

to form total number of policies (𝑡𝜋
𝑁).

(1) LR(Dyna_QL) = (𝑡𝜋
1 ∗ 𝑡𝜋

𝑁).

PM2. Accuracy (𝐀𝐂(𝐃𝐲𝐧𝐚_𝐐𝐋))

Accuracy of the Dyna-Q-Learning scheduler is the degree to which the outcome

of the client task to grid resource mapping adheres to the standard of efficient

completion of client tasks and intact use of the grid resources. It is the ratio of ideal

mapping (OM) and the sum of Ideal and Non-Ideal Mapping (IM+NIM). In which i

represents the number of client tasks and j represents number of grid resources.

(2) AC(DynaQL) = ∑ ∑ [
IM𝑖𝑗

(IM𝑖𝑗+NIM𝑖𝑗)
]

𝑗=𝑘
𝑗=1

𝑖=𝑛
𝑖=1 .

PM3. Execution time (ET(𝐃𝐲𝐧𝐚_𝐐𝐋))

Execution time of the Dyna-Q-Learning scheduler is the total time spent by the

Dyna-Q-Learning scheduler to schedule the client tasks properly among the grid

resources in grid resource pool. It is the sum of the times taken to create T2SS of

client tasks (TT2SS_CT𝑖
), grid resources (𝑇T2SS_GR𝑖

), and tasks scheduling distribution

policies (𝑇𝜋𝑖
).

(3) ET(Dyna_QL) = ∑ [𝑇T2SS_CT𝑖
]𝑖=𝑛

𝑖=1 +∑ [𝑇T2SS_GR𝑖
]𝑖=𝑘

𝑖=1 +∑ [𝑇𝜋𝑖
]𝑖=𝑙

𝑖=1 .

PM4. Resource utilization rate (𝐑𝐔(𝐃𝐲𝐧𝐚_𝐐𝐋))

The resource utilization rate of the Dyna-Q-Learning scheduler is the utilities of

the grid resources that are consumed by the incoming client tasks. It is measured by

computing the number of grid resources that were left idle (𝑁GR𝑖dle) and over-utilized

(𝑁
GR𝑖

𝑖dle) among N available grid resources.

(4) AC(Dyna_QL)) = [𝑁GR𝑖
over − 𝑁

GR𝑖
idle] /𝑁.

4. Proposed work

The proposed work discusses the HMM based grid resource model, POMDP based

client task model and T2SS-based Dyna-Q-Learning Task Scheduling Framework.

The states of the grid resources are unobservable hence flexible generalization of grid

resources is required which is achieved via HMM representation. The states of the

client tasks are partially observable and needs clear representation which is achieved

via POMDP representation. The T2SS based Dyna-QL-Scheduler framework forms

high quality task scheduling policies using Dyna reinforcement learning technique

that can gain knowledge from simulated grid scenario by keeping track of each of

state and action pair visited by the agent.

4.1. HMM view of the grid resource model

The resources in grid computing environment get affected due to uncertainty which

is modelled using HMM [18]. Several causes for uncertainty are elasticity of

resources, high-energy consumption, inconsistency of states, dynamic sharing of

 53

resources, poor coordination among resources, no clear standards, multi

administration of organizations, constrained number of resources, non-determinism

of resources, independent failures and so on. Due to the uncertainty in grid resources,

the dynamics of the resource is completely hidden. Hence, the grid resources are

modelled using HMM.

The HMM of grid resource is defined by five attributes.

(5) HMM(GR𝑖) = GR𝑖 , 𝑆(GR𝑖), 𝑉(GR𝑖), 𝐵(GR𝑖), 𝐴(GR𝑖), 𝐼(GR𝑖), GR𝑖 ∈ GR,

where:

𝑆(GR𝑖) = Set of all hidden states of the grid resource, i.e., |𝑆(GR𝑖)| = 𝑀, where

M is finite;

𝑉(GR𝑖) = Set of observable symbols of the hidden state, i.e., | 𝑉(GR𝑖)| = 𝑁,

where N is finite

𝐵(GR𝑖)=Initial state probability of the grid resource;

𝐴(GR𝑖) = State transition probabilities 𝐴(GR𝑖), 𝐴(GR𝑖) ∈ 𝑆(GR𝑖);
𝐼(GR𝑖) =Probability emission matrix of the grid resource.

4.2. POMDP view of the client task model

The incoming client tasks also get affected by uncertainty which is modelled using

POMDP [19]. Several factors that cause uncertainty are demand fluctuation, gaps in

the security, inconsistent dataflow, variety of data, vastness of data, operational

problems, exploration between the tasks, conflicting goals and so on. Due to the

uncertainty in tasks, the exact dynamics of the tasks is not visible. Hence, the

incoming tasks are modelled using POMDP model.

The POMDP of grid task is defined by five attributes.

(6)POMDP(CT𝑖) = CT𝑖 , 𝑆(CT𝑖), 𝐴(CT𝑖), 𝑃(CT𝑖), 𝑅(CT𝑖), Ω(CT𝑖), 𝑂(CT𝑖), CT𝑖 ∈ CT,
where:

𝑆(CT𝑖) = Set of all possible partial states of the client task, i.e.,|𝑆(CT𝑖)| = 𝑀,

where M is finite;

𝐴(CT𝑖) = Set of all state actions;

𝑃(CT𝑖)= Transition function where 𝑆(CT𝑖) × 𝐴(CT𝑖) × 𝑆(CT𝑖) → [0, 1];
𝑅(CT𝑖)=Reward function, i.e., 𝑅(CT𝑖) ← 𝑆(CT𝑖) × 𝐴(CT𝑖);

Ω(CT𝑖)= Set of all partial observations;

𝑂(CT𝑖) = Observation function, i.e., 𝑂(CT𝑖) = 𝑆(CT𝑖) × 𝐴(CT𝑖) × Ω(CT𝑖).

4.3. Proposed T2SS based Dyna-Q-Learning task scheduling framework

Fig. 1 gives pictorial representation of the proposed T2SS-based Dyna-Q-Learning

task scheduling framework for grid computing environment. The framework is

composed of three functional components that are T2SS-based Task Uncertainty

reducer (T2SS_CTUR), T2SS-based Grid Resource Uncertainty reducer

(T2SS_GRUR) and Dyna-Q-Learning-Scheduler (Dyna-QL-Scheduler). The Grid

Information Service (GIS) stores the information about the grid resources in terms of

resource id number, availability of the resource, capacity of the resource, type of the

resource and current load over the grid resource. The T2SS_CTUR and T2SS_GRUR

modules input incoming client tasks, grid resource parameters, and manage the

uncertainty using T2SS. The Dyna-QL-Scheduler uses the Dyna-Q Algorithm that

 54

allows the scheduler to start learning and keep improving incrementally to form

optimal task scheduling policies.

Fig. 1. Proposed T2SS based Dyna-Q-Learning task scheduling framework

4.3.1. T2SS based Client Task Uncertainty Reducer (T2SS_CTUR)

The T2SS_CTUR, inputs the client tasks with uncertainty

CT = CT1, CT2, CT3, … , CT𝑛 to generate T2SS of tasks, which are free from

uncertainty T2SS_CT = T2SS_CT1, T2SS_CT2, … , T2SS_CT𝑛, by considering wide

range of client task attributes. The T2SS of client tasks over a universal set U and set

of client task attributes CTat is represented as 𝐹(CT𝑖
at), where CT𝑖

at is the subset of

CTatand F is a function from CT𝑖
atto the power set of U P(U). The detail working of

the T2SS_CTUR is given in Algorithm 1.

Algorithm 1. Working of T2SS_CTUR

Step 1. Begin

Step 2. Input: CT = CT1, CT2, CT3, … , CT𝑛

Step 3. Output: T2SS_CT = T2SS_CT1, … , T2SS_CT𝑛

Step 4. Training: T2SS_CTUR

Step 5. for every training client task set CT do

Step 6. for every ordered training client task pair

(CT𝑖 , CT𝑖
at) in CT do

Step 7. CT𝑖
at ∈ CTat , 𝐹(CT𝑖

at) =⊘

Step 8. Compute training T2SS of tasks, i.e.,

T2SS_CT𝑖={𝐹(CT𝑖
at)} ∈ 𝑃(𝑈)

Step 9. end for

Step 10. end for

Step 11. Testing: T2SS_CTUR

Step 12. for every client test task set CT do

Step 13. for every ordered test client task pair (CT𝑖 , CT𝑖
at)

in CT do

Step 14. Enumerate T2SS_CT ∷= T2SS_CT𝑖 ∪ (CT𝑖 , CT𝑖
at)

 55

Step 15. end for

Step 16. end for

Step 17. Output T2SS of client tasks

T2SS_CT = T2SS_CT1, T2SS_CT2, … , T2SS_CT𝑛

Step 18. End

4.3.2. T2SS based Grid Resource Uncertainty Reducer (T2SS_GRUR)

The T2SS_GRUR inputs grid resource set GR = GR1, GR2, GR3 … GR𝑛 to create

T2SS of grid resources over a universal set U and a set of grid resource attributes

GR𝑖
at is represented as 𝐹(GR𝑖

at) where GR𝑖
at is the subset of GRat, and F is a function

from GR𝑖
at to the power set of U P(U) to generate T2SS of grid resources

TT2SS_GR = T2SS_GR1, T2SS_GR2, … , T2SS_GR𝑛. The detail working of

T2SS_GRUR is given in Algorithm 2.

Algorithm 2. Working of T2SS_GRUR

Step 1. Begin

Step 2. Input: GR = GR1, GR2, GR3 … GR𝑛

Step 3. Output: T2SS_GR = T2SS_GR1, T2SS_GR2, … , T2SS_GR𝑛

Step 4. Training: T2SS_GRUR

Step 5. for every training grid resource set GR do

Step 6. for every ordered training grid resource pair, i.e., (GR𝑖, GR𝑖
at) in GR do

Step 7. GR𝑖
at ∈ VM𝑖

at, 𝐹(GR𝑖
at) = ⊘

Step 8. Compute training soft-set of grid resource pair

 T2SS_GR𝑖={𝐹(GR𝑖
at)}∈ 𝑃(𝑈)

Step 9. end for

Step 10. end for

Step 11. Testing: T2SS_GRUR

Step 12. for every grid resource set GR do

Step 13. Use the test T2SS of grid resource, i.e., T2SS_GR𝑖 = {𝐹(GR𝑖
at) ∈ 𝑃(𝑈)}

Step 14. Enumerate T2SS_GR ∷= T2SS_GR𝑖 ∪ (GR𝑖 , GR𝑖
at)

Step 15. end for

Step 16. Output T2SS of grid resource, i.e.,

T2SS_GR ∷= T2SS_GR1, T2SS_GR2, … , T2SS_GR𝑛

Step 17. End

4.3.3. Dyna-QL-Scheduler

The Dyna-QL-Scheduler inputs T2SS of client tasks

T2SS_CT = T2SS_CT1, … , T2SS_CT𝑛 and grid resources

T2SS_GR = T2SS_GR1, … , T2SS_GR𝑛 to map the client tasks to appropriate grid

resources by forming optimal task scheduling policy CT𝑖 × 𝐴𝑛 → 𝑅 using

Dyna-Q-Learning Algorithm. The Dyna-Q-Learning Algorithm combines both direct

reinforcement learning and model-based learning to perform one step tabular

Q-Learning for planning phase and one step tabular Q-Learning learning phase. The

detail working of the Dyna-QL-Scheduler is given in Algorithm 3.

 56

Algorithm 3. Working of Dyna-QL-Scheduler

Step 1. Begin

Step 2. Input: T2SS_CT = T2SS_CT1, … , T2SS_CT𝑛 and

T2SS_GR = T2SS_GR1, … , T2SS_GR𝑛

Step 3. Output:

Π(T2SS_CT → T2SS_GR) = Π1, Π2, Π3, … , Π𝑝

Step 4. Training: Dyna-QL-Scheduler

Step 5. Initialize 𝑄(𝑆, 𝐴) =⊘ and Model(𝑆, 𝐴) =⊘ for all 𝑠 ∈ Sanda ∈ 𝐴

Step 6. for every training T2SS_CT𝑖 and T2SS_GR𝑖 do

Step 7. Begin Q-Learning phase

Step 8. Assign the state 𝑆 ← current non-terminal state

Step 9. Assign the action A← 𝜖 greedy policy(S, A)

Step 10. Take an action a, where 𝑎 ∈ 𝐴, observe the resultant reward R and

update the state 𝑆 → 𝑆1

Step 11. Compute the Q-value

𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾max𝑎𝑄(𝑆1, 𝐴) − 𝑄(𝑆, 𝐴)]
Step 12. End Q-Learning training phase

Step 13. Begin Model learning training phase

Step 14. Assume the grid computing environment is deterministic after

applying T2SS theory over the tasks and grid resources

Step 15. Update the training model Model(𝑆, 𝐴) ← 𝑅 and

 Model(𝑆, 𝐴) ← 𝑆1

Step 16. End Model learning training phase

Step 17. Begin planning training phase

Step 18. Assign the state 𝑆 ←previously observed random state

Step 19. Assign the action A←Random action take in the state 𝑆

Step 20. Compute reward R, Updated state 𝑆1, i.e.,

R, 𝑆1 ← Model(𝑆, 𝐴)

Step 21. Compute 𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾max𝑎𝑄(𝑆1, 𝐴) − 𝑄(𝑆, 𝐴)]
Step 22. End planning training phase

Step 23. Formulate policies Π ∷= Π⋃Π𝑖

Step 24. Testing: Dyna-QL-Scheduler

Step 25. Initialize 𝑄(𝑆, 𝐴) =⊘ and Model(𝑆, 𝐴) =⊘ for all 𝑠 ∈ Sanda ∈ 𝐴

Step 26. for every testing T2SS_CT𝑖 and T2SS_GR𝑖 do

Step 27. Begin Q-Learning testing phase

Step 28. Take an action a, where 𝑎 ∈ 𝐴, observe the resultant reward R and

update the state 𝑆 → 𝑆1

Step 29. Compute the Q value

𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾max𝑎𝑄(𝑆1, 𝐴) − 𝑄(𝑆, 𝐴)]
Step 30. End Q-Learning testing phase

Step 31. Begin Model learning testing phase

Step 32. Update the testing model Model(𝑆, 𝐴) ← 𝑅 and Model(𝑆, 𝐴) ← 𝑆1

Step 33. End Model learning testing phase

Step 34. Begin planning testing phase

Step 35. Compute reward R, Updated state 𝑆1, i.e., R, 𝑆1 ← Model(𝑆, 𝐴)

 57

Step 36. Compute 𝑄(𝑆, 𝐴) = 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾max𝑎𝑄(𝑆1, 𝐴) − 𝑄(𝑆, 𝐴)]
Step 37. End planning testing phase

Step 38. Output the optimal T2SS of client tasks to grid resource mapping

policies, i.e., Π = Π1, Π2, … , Πp

Step 39. End

5. Results

The simulation of the proposed Dyna-QL-Scheduler is evaluated using GridSim Alea

simulator on Lenovo Aspire3 Quadcore machine with 2058 MB of RAM. The

performance of the proposed Dyna-QL-Scheduler is compared with existing

schedulers by considering with two types of workloads that are BASIC and

EXTENDED (EXT). Under EXTENDED workload three distinct types are

considered that are EXT_FAIL, EXT_REQ and EXT_ALL [22, 23]. For EXT_FAIL

workload, higher priority is given for failure of the grid devices and specific

requirements of the client tasks are ignored which are managed by EXTENDED

workload. For EXT_REQ workload, the failure of the grid devices is ignored, and

higher priority is given for requirements of the client tasks. For EXT_ALL workload

both failure of grid devices and particular requirements of the client tasks are given

higher priority. Different experiments are conducted by considering MetaCentrum,

Grid5000 and DAS-2 problem scenarios. The DAS-2 workload has two different

variants of grid devices which are referred as DAS-2-L and DAS-2-M. Table 1 gives

the summary of the workloads, problems and experiments conducted details [24, 25].

Table 1. Summary of workloads, problems and experiments using GridSim
Workloads Problem scenarios

MetaCentrum BASIC EXT_FAIL EXT_REQ EXT_ALL

Grid5000 BASIC EXT_FAIL EXT_REQ EXT_ALL

DAS2 BASIC EXT_FAIL_L EXT_FAIL_M EXT_REQ

EXT_ALL_L EXT_ALL_M

5.1. Experiment 1. MetaCentrum workload

The MetaCentrum workload with BASIC, EXT_FAIL, EXT_REQ and EXT_ALL

scenarios are taken into consideration. Comparison of the Dyna-QL-Scheduler

against four existing schedulers ES1, ES2, ES3, and ES4 is conducted towards

performance metrics like learning rate, accuracy, execution time and resource

utilization rate.

5.1.1. Learning rate

Fig. 2 gives the comparison over the learning rate. It is observed from the graph that

the learning rate incurred by the Dyna-QL-Scheduler is high for all the four types of

problem scenarios as the model learns from experience instead of performing random

actions. The learning rate incurred by the ES1 is above average for BASIC,

EXT_FAIL, EXT_REQ but the learning rate is below average for EXT_ALL as the

model requires more data for processing and suffers from overfitting problem due to

intense training. The learning rate incurred by the ES2 is average for EXT_FAIL,

EXT_REQ but the learning rate is below average for BASIC and EXT_ALL as the

 58

model is capable enough of handling large state space but suffers from optimization

problem. The learning rate of ES3 is poor for all the four types of problem scenarios

as the lengthier tasks suffer from starvation. The learning rate incurred by the ES4 is

above average for Dyna-QL, EXT_FAIL, and EXT_REQ but the learning rate is poor

for EXT_ALL as the model easily gets trapped into local optimum solution.

Fig. 2. Learning rate incurred for MetaCentrum workload

5.1.2. Accuracy

Fig. 3. Accuracy incurred for MetaCentrum workload

Fig. 3 gives the comparison over the accuracy achieved. It is observed from the

graph that the accuracy achieved by the Dyna-QL-Scheduler is high for all the four

types of problem scenarios as the model stays stable when exposed to uncertainty.

The accuracy achieved by the ES1 is above average for BASIC, EXT_FAIL,

EXT_ALL but the accuracy is below average for EXT_REQ as the chances of the

model forgetting previous learnt knowledge is more when exposed to large state

space problems. The accuracy achieved by the ES2 is average for BASIC, EXT_REQ

and EXT_all but above average for EXT_FAIL as the heuristic function of the model

suddenly drops when exposed to critical situation. The accuracy achieved by the ES3

is average for EXT_FAIL and EXT_REQ but it is poor for BASIC and EXT_ALL as

the model neglect the tasks with late due dates. The accuracy achieved by the ES4 is

average for BASIC but very less for EXT_REQ, EXT_FAIL and EXT_ALL as the

model fails to efficiently explore the workspace.

 59

5.1.3. Execution time

Fig. 4 gives the comparison over the execution time. It is observed from the graph

that the execution time of the Dyna-QL-Scheduler is extremely low for BASIC and

EXT_FAIL and below average for EXT_REQ and EXT_ALL as the model construct

the Markov Decision Process (MDP) from experience at each computing stage to

manage task dynamics. The execution time of the ES1 is average for BASIC,

EXT_REQ and EXT_ALL but extremely high for EXT_FAIL as the computing

states get overloaded due to too much of reinforcements. The execution time of the

ES2 is low for BASIC but extremely high for EXT_REQ, EXT_FAIL and EXT_ALL

as the model moves to worst state during termination. The execution time of the ES3

and ES4 are very high for EXT_REQ, EXT_FAIL and EXT_ALL but less for BASIC

as the model take a greater number of iterations to converge towards promising

solutions.

Fig. 4. Execution time incurred for MetaCentrum workload

5.1.4. Resource utilization rate

Fig. 5. Resource utilization rate incurred for MetaCentrum workload

Fig. 5 gives the comparison over the resource utilization rate. It is observed from

the graph that the resource utilization rate of the Dyna-QL-Scheduler is extremely

high for all the four types of problem scenarios as the model is capable enough of

accumulating with minimum epochs of planning. The resource utilization rate of the

 60

ES1 is low for BASIC and EXT_REQ and is found to be average for EXT_FAIL and

EXT_ALL as the model does not have standard for training and tuning. The resource

utilization rate of the ES2 of high for BASIC and EXT_ALL and is found to be low

for EXT_FAIL and EXT_REQ as the model repeatedly changes the neighborhood

position and fails to obtain exact valley results during perturbation phase. The

resource utilization rate of the ES3 is below average for all the four types of scenarios

as the model lacks scalability and suffers from non-trivial verifiability problem. The

resource utilization rate of the ES4 is below average for BASIC, EXT_REQ,

EXT_FAIL and extremely low for EXT_ALL due to poor clamping of PSO particles

during planning and modelling phases of the algorithm.

5.2. Experiment 2. Grid5000 workload

The Grid5000 workload with BASIC, EXTENDED_FAIL, EXTENDED_REQ

and EXTENDED_ALL problem scenarios are considered. Comparison of the

Dyna-QL-Scheduler against four existing schedulers ES1, ES2, ES3, and ES4 is

conducted towards performance metrics like learning rate, accuracy, execution time

and resource utilization rate.

5.2.1. Learning rate

Fig. 6. Learning rate incurred for Grid5000 workload

Fig. 6 gives the comparison over the learning rate. It is observed from the graph

that the learning rate of the Dyna-QL-Scheduler remained higher for all the four types

of problem scenarios as the Q-Learning model does not need to compute separately

the reward function or transition function. The learning rate of the ES1 is average for

BASIC, EXT_FAIL and EXT_REQ but extremely low for EXT_ALL as the model

is flexible enough to be optimally get tuned for desired solutions. The learning rate

of the ES3 remained average for all the four types of problem scenarios as the model

is fair for longer tasks and unfair for shorter tasks. The learning rate of the ES4 is

average for EXT_FAIL and EXT_REQ and low for BAISC and EXT_ALL. The

learning rate of the ES4 remained average for all the four types of problem scenarios

as it gets easily stuck in local optima.

 61

5.2.2. Accuracy

Fig. 7 gives the comparison over the accuracy achieved. It is observed from the graph

that the accuracy of the Dyna-QL-Scheduler remained above average for all the four

types of problem scenarios. The accuracy of the ES1 remained extremely high for

EXT_FAIL but exceptionally low for BASIC, EXT_REQ and EXT_ALL as the

model continuously gain knowledge from real-time experience and keep updating the

Q-table. The accuracy of the ES2 is incredibly low for all four types of problem

scenarios as the model employs harmony search to arrive at promising solutions

which suffers from premature convergence to poor solutions. The accuracy of the

ES3 remained above average for BASIC, EXT_FAIL and EXT_REQ but it is low for

EXT_ALL as the model completely ignores the complexity of the data transmission.

The accuracy of ES4 is above average for BASIC and exceptionally low for

EXT_FAIL, EXT_REQ and EXT_ALL as the model fails to accurately compute the

step size to determine global best particle.

Fig. 7. Accuracy incurred for Grid5000 workload

5.2.3. Execution time

Fig. 8. Execution time incurred for Grid5000 workload

Fig. 8 gives the comparison for the execution time. The execution time of the

Dyna-QL-Scheduler remained low for all the four types of problem scenarios as the

policies formulated are of high quality due to proper optimization of reinforcement

policies. The execution time of ES1 is moderate for all four types of problem

scenarios due to the inherent limitation of policy gradient theorem. The execution

 62

time of ES2 is moderate for BASIC and EXT_FAIL but extremely high for

EXT_REQ and EXT_ALL as the model cannot widen the search process to find out

the promising solutions. The execution time of ES3 is high for all the four types of

problem scenarios as the model demands for a greater number of computation cycles

to reduce the tardiness of the tasks. The execution time of ES4 is very high for all the

four types of problem scenarios as the model does not allow the logistic function to

change the parameter values to overcome instability in learning.

5.2.4. Resource utilization rate

Fig. 9 gives the comparison of the resource utilization rate of the Dyna-QL-Scheduler

with other four recent schedulers ES1, ES2, ES3 and ES4. The resource utilization

rate of Dyna-QL-Scheduler is above average for all the four types of problem

scenarios as the model require moderate number of experience tuples for

convergence. The resource utilization rate of ES1 is average for all the four types of

problem scenarios as the model requires moderate number of random search

experiences to arrive at promising solutions. The resource utilization rate of ES3 is

above average for BASIC and EXT_REQ but low for EXT_FAIL, and EXT_ALL as

the smaller tasks gets ignored while processing larger tasks. The resource utilization

rate of ES4 is low for all the four types of problem scenarios due to lack of precision

factor.

Fig. 9. Resource utilization rate for Grid5000 workload

5.3. Experiment 3. DAS-2 workload

The DAS-2 workload with BASIC, EXT_FAIL_L, EXT_FAIL_M, EXT_REQ,

EXT_ALL_L and EXT_ALL_M problem scenarios are considered. Comparison of

the Dyna-QL-Scheduler against four existing schedulers ES1, ES2, ES3, and ES4 is

conducted towards performance metrics like learning rate, accuracy, execution time

and resource utilization rate.

5.3.1. Learning rate

Fig. 10 gives the comparison for the learning rate attained. The learning rate of the

Dyna-QL-Scheduler is extremely high for BASIC, EXT_FAIL_L, EXT_FAIL_M

and EXT_REQ but average for EXT_ALL_L and EXT_ALL_M because the model

 63

converges to optimal policy with minimum exploitation of Q-Value. The learning

rate of ES1isabove average for BASIC, EXT_FAIL_L and EXT_FAIL_M but low

for other scenarios as the model becomes terribly unstable when exposed to larger

state space problems. The learning rate of ES2 is below average for all six types of

problem scenarios due to abrupt terminating of the algorithm when it reaches ridge

positions in the larger state space. The learning rate of ES3 is high for EXT_FAIL_M

but low for other problem scenarios as the model ignores disk service time. The

learning rate of ES4 is high for EXT_FAIL_L and EXT_FAIL_M but low for other

problem scenarios as convergence rate of the algorithm gradually decreases during

particle evolution.

Fig. 10. Learning rate incurred for DAS-2 workload

5.3.2. Accuracy

Fig. 11. Accuracy incurred forDAS-2 workload

Fig. 11 gives the comparison for the accuracy achieved. The accuracy achieved

by the Dyna-QL-Scheduler is extremely high for all six types of scenarios due to

deliberative planning of the Q-Learning agent in background at every time step of

planning and modelling. The accuracy achieved by the ES1 is high for EXT_FAIL_L

 64

but low for other problem scenarios as the model suffers from catastrophic forgetting

due to continuous learning process. The accuracy achieved by the ES2 is below

average for all six types of scenarios as the steepest descent lacks monotone

convergence. The accuracy achieved by the ES3 is higher for BASIC, EXT_FAIL_M

and EXT_ALL_L type of scenarios but lower for EXT_FAIL_L, EXT_REQ and

EXT_ALL_M as it ignores input/output efficiency and involves lot of random head

movements towards suboptimal solutions. The accuracy achieved by the ES4 is low

for all six types of scenarios.

5.3.3. Execution time

Fig. 12 gives the comparison for the execution time incurred. The execution time of

the Dyna-QL-Scheduler remained low for all the six types of problem scenarios as

the model gradually keeps learning by taking instant feedbacks and revises the task

scheduling decisions. The execution time of ES1 is moderate for all six types of

problem scenarios as the model is not scalable and often results in wrong solutions

due to rotation invariants. The execution time of ES2 is moderate for all six types of

problem scenarios as the model act decently when the search space is flat with same

neighboring state values. The execution time of ES3 is moderate for all six types of

problem scenarios as the model saturates the system when the load increases. The

execution time of ES4 is extremely high for all six types of problem scenarios as the

fitness functions are non-differentiable when exposed to large state space

environment.

Fig. 12. Execution time incurred for DAS-2 workload

5.3.4. Resource utilization rate

Fig. 13 gives the comparison for the resource utilization rate. The resource

utilization rate of Dyna-QL-Scheduler is high for all six types of problem scenarios

as the model can efficiently handle stochastic transitions without requiring much

 65

adaptation. The resource utilization rate of ES1 and is average for all six types of

scenarios as the model moderately scales well with the increase in data. The resource

utilization rate of ES2 is above average for EXT_ALL_L and EXT_ALL_M type of

scenarios but low for other problem scenarios as initial approximation of the solution

is poor in terms of quality. The resource utilization rate of ES4 is below average for

all six types of scenarios as the tendency of the model locating local minima is more

instead of global minima.

Fig. 13. Resource utilization rate incurred for DAS-2 workload

The main limitation of the proposed Dyna-Q-Learning task scheduling

framework in grid is occasional instability in the computing capability under dynamic

variation in the workload. The grid devices with different variants pose several

challenges at runtime in terms of sudden drop in processing capability, shortage of

memory for memory intensive applications, and improper sharing of resource at

components level. Here the challenges posed by grid devices variants during runtime

are not handled in global optimal manner at runtime. Instead the Dyna-Q-Learning

agent tries to converge to nearly optimal optimization policies.

6. Conclusion

The paper presents a novel Dyna-Q-Learning task scheduling framework. The

uncertainties in the computing environment are precisely identified using appropriate

Markov models. The proposed Dyna-Q-Learning task scheduler learns from

experience and converges to optimal scheduling policies with minimum exploitation

of Q-Value. From expected value analysis and simulation results, it is found that the

proposed scheduler outperforms four recent schedulers with respect to performance

parameters like learning rate, accuracy, execution time and resource utilization rate.

We plan to extend the proposed scheduler with respect to system stability by

establishing timing constraint for the scheduler at runtime.

 66

Data availability. To carry out simulation of the proposed “Dyna-Q-Learning

Framework for Task Scheduling in Grid Computing” three different workloads are

considered that are MetaCentrum workload, Grid5000, and DAS2. The data is shown

from two papers [22, 26].

R e f e r e n c e s

1. Q a s a i m e h, M., R. S. A l-Q a s s a s, S. A l j a w a r n e h. Recent Development in Smart Grid

Authentication Approaches: A Systematic Literature Review. – Cybernetics and Information

Technologies, Vol. 19, 2019, No 1, pp. 27-52.

2. D a b r o w s k i, C. Reliability in Grid Computing Systems. – Concurrency and Computation: Practice

and Experience, Vol. 21, 2009, No 8, pp. 927-959.

3. S a d a s h i v, N., S. D. K u m a r. Cluster, Grid and Cloud Computing: A Detailed Comparison. – In:

Proc. of 6th International Conference on Computer Science & Education (ICCSE’11), IEEE,

August 2011, pp. 477-482.

4. C a s a n o v a, H. Distributed Computing Research Issues in Grid Computing. – ACM SIGAct News,

Vol. 33, 2002, No 3, pp. 50-70.

5. Y u, J., R. B u y y a, K. R a m a m o h a n a r a o. Workflow Scheduling Algorithms for Grid

Computing. – In: Proc. of Metaheuristics for Scheduling in Distributed Computing

Environments, 2008, Berlin, Heidelberg, Springer, pp. 173-214.

6. M a j i, P. K., R. B i s w a s, A. R. R o y. Soft Set Theory. – Computers & Mathematics with

Applications, Vol. 45, 2003, No 4-5, pp. 555-562.

7. H a y a t, K., M. I. A l i, B. Y. C a o, X. P. Y a n g. A New Type-2 Soft Set: Type-2 Soft Graphs and

Their Applications. – Advances in Fuzzy Systems, 2017.

8. G u, S., T. L i l l i c r a p, I. S u t s k e v e r, S. L e v i n e. Continuous Deep q-Learning with Model-

Based Acceleration. – In: Proc. of International Conference on Machine Learning, PMLR, June

2016, pp. 2829-2838.

9. J e a u n i t a, T. J., V. S a r a s v a t h i. A Multi-Agent Reinforcement Learning-Based Optimized

Routing for QoS in IoT. – Cybernetics and Information Technologies, Vol. 21, 2021, No 4,

pp. 45-61.

10. E n g, K., A. M u h a m m e d, M. A. M o h a m e d, S. H a s a n. A Hybrid Heuristic of Variable

Neighbourhood Descent and Great Deluge Algorithm for Efficient Task Scheduling in Grid

Computing. – European Journal of Operational Research, Vol. 284, 2020, No 1, pp. 75-86.

11. B h a t i a, M. K. Task Scheduling in Grid Computing: A Review. – Advances in Computational

Sciences and Technology, Vol. 10, 2017 No 6, pp. 1707-1714.

12. C a s a g r a n d e, L. C., G. P. K o s l o v s k i, C. C. M i e r s, M. A. P i l l o n. DeepScheduling: Grid

Computing Job Scheduler Based on Deep Reinforcement Learning. – In: Proc. of International

Conference on Advanced Information Networking and Applications, April 2020, Springer

Cham, pp. 1032-1044.

13. E n g, K., A. M u h a m m e d, M. A. M o h a m e d, S. H a s a n. A Hybrid Heuristic of Variable

Neighbourhood Descent and Great Deluge Algorithm for Efficient Task Scheduling in Grid

Computing. – European Journal of Operational Research, Vol. 284, 2020, No 1, pp. 75-86.

14. U m a r, R., A. P u j i y a n t a. Development of First Come First Serve-Ejecting Based Dynamic

Scheduling (FCFS-EDS) Simulation Scheduling Method for MPI Job in a Grid System. –

Journal of Engineering and Applied Sciences, Vol. 12, 2017, No 8, pp. 1972-1978.

15. T a n g, K., W. J i a n g, R. C u i, Y. W u. A Memory-Based Task Scheduling Algorithm for Grid

Computing Based on Heterogeneous Platform and Homogeneous Tasks. – International

Journal of Web and Grid Services, Vol. 16, 2020, No 3, pp. 287-304.

16. Z e i g l e r, B. P., A. M u z y, E. K o f m a n. Theory of Modeling and Simulation: Discrete Event &

Iterative System Computational Foundations. Academic Press, 2018.

17. Z h a n g, J., G. D i n g, Y. Z o u, S. Q i n, J. F u. Review of Job Shop Scheduling Research and Its

New Perspectives under Industry 4.0. – Journal of Intelligent Manufacturing, Vol. 30, 2019,

No 4, pp. 1809-1830.

 67

18. N i e, R., S. H e, F. L i u, X. L u a n, H. S h e n. Hmm-Based Asynchronous Controller Design of

Markovian Jumping Lur’e Systems within a Finite-Time Interval. – IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 2020.

19. B h a t t a c h a r y a, S., S. B a d y a l, T. W h e e l e r, S. G i l, D. B e r t s e k a s. Reinforcement

Learning for POMDP: Partitioned Rollout and Policy Iteration with Application to

Autonomous Sequential Repair Problems. – IEEE Robotics and Automation Letters, Vol. 5,

2020, No 3, pp. 3967-3974.

20. H e a t h, A., N. K u n s t, C. J a c k s o n, M. S t r o n g, F. A l a r i d-E s c u d e r o,

J. D. G o l d h a b e r-F i e b e r t, H. J a l a l. Calculating the Expected Value of Sample

Information in Practice: Considerations from 3 Case Studies. – Medical Decision Making,

Vol. 40, 2020, No 3, pp. 314-326.

21. H i r o n a k a, T., M. B. G i l e s, T. G o d a, H. T h o m. Multilevel Monte Carlo Estimation of the

Expected Value of Sample Information. – SIAM/ASA Journal on Uncertainty Quantification,

Vol. 8, 2020, No 3, pp. 1236-1259.

22. K l u s a c e k, D., M. S o y s a l, F. S u t e r. Alea-Complex Job Scheduling Simulator. – In: 13th

International Conference on Parallel Processing and Applied Mathematics, September 2019.

23. K a d a, B., H. K a l l a. An Efficient Fault-Tolerant Scheduling Approach with Energy Minimization

for Hard Real-Time Embedded Systems. – In: Proc. of International Workshop on Distributed

Computing for Emerging Smart Networks, October 2019, Springer Cham., pp. 102-117.

24. T o s h e v, A. Particle Swarm Optimization and Tabu Search Hybrid Algorithm for Flexible Job

Shop Scheduling Problem-Analysis of Test Results. – Cybernetics and Information

Technologies, Vol. 19, 2019, No 4, pp. 26-44.

25. I v a n o v a-R o h l i n g, V. N., N. R o h l i n g. Evaluating Machine Learning Approaches for

Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit

Systems. – Cybernetics and Information Technologies, Vol. 20, 2020, No 6, pp. 61-73.

26. E l e l i e m y, A., A. M o h a m m e d, F. M. C i o r b a. Exploring the Relation between Two Levels

of Scheduling Using a Novel Simulation Approach. – In: Proc. of 16th International

Symposium on Parallel and Distributed Computing (ISPDC’17), 2017, pp. 26-33.

Received: 25.03.2022; Second Version: 10.07.2022; Accepted: 28.07.2022

