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Abstract: The continuous progress of computing technologies increases the need for 

improved methods and tools for assessing the performance of information systems in 

terms of reliability, conformance, and quality of service. This paper presents an 

extension of Information Theory by introducing a novel hierarchy concept as a 

complement to the traditional entropy approach. The methodology adjustments are 

applied to a simulative numerical example for assessing the reliability of systems with 

different complexity and performance behavior. 
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1. Introduction and review of previous work 

Impressive innovations in computer hardware and software have created new 

opportunities for information systems together with new challenges for systems 

administrators and company managers. 

Historically, the application of system analysis in modern industries 

management starts with “Principles of Scientific Management” (T a y l o r  [1]), 

whose influence can be found in several concepts and theories for quality 

management [2]. In recent decades, several approaches have been developed with the 

aim to improve the effectiveness of production and information processes, such as 

the “Total Quality Management (TQM)” [3-6], various international quality 

standards like ISO 9000-9001 [7, 8], “Six-sigma” [9], “Lean manufacturing” [10, 11]. 

One of the key aspects in most of the industrial management theories is the 

relation between the system’s quality of performance with the conformity to the 

users’ requirements for optimization of processes and products. Even experienced 

consultants face challenges when dealing with the problems concerning information 

flows in the newest computing technologies and sophisticated information systems 

[12]. Quite often, computer and communication professionals have to rely on abstract 

judgements and subjective preferences based on information from unreliable sources 

[13]. In similar situations, the Decision-Makers (DMs) have to make their choices for 

initial investments and current maintenance under conditions of uncertainty and 

conflicts of interests between vendors, manufacturers, and other third parties. Since 
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the 1970-s, one of the most popular approaches to exploring the reliability of 

information systems has been to construct hierarchical configurations with a limited 

number of Critical Success Factors (CSF) [13-18]. Although pragmatic, such an 

approach suffers from the lack of uniform listing for CSF and the limited time and 

computational resources for assessing the specifics in different sectors and 

organizations [20-22]. This consideration stresses the need for objective and 

universal models for analyzing the performance of information systems [23].  

This paper presents a structured approach that considers the role of all main 

computing modules and allows for assessing the system complexity by comparing 

the information related to the performance incidents on the basis of the traditional 

entropy and novel hierarchy concepts. In this context, the complexity of the system 

and its reliability is associated with the randomness of resources’ and probabilities’ 

distribution among the system’s components as a basis for further multi-criteria 

analysis and decision making. A justification why entropy and hierarchy can be used 

to assess the complexity and effectiveness of different management and information 

systems is contained in the basic principles of L. v o n  B e r t a l a n f f y  [24] and 

W i e n e r’s concept [26]. Based on statistical measurements, the entropy and 

hierarchy concepts can provide reliable tools for assessing the status and the 

performance of information systems [26, 27]. 

2. Assessing system complexity in entropy and hierarchy 

From a methodological point of view, treating of raw data for the relative weights of 

components and the probabilities of events can be performed with two different 

concepts: 1) entropy – for measuring directly diversity, competition, uncertainty;  

2) concentration (hierarchy) – for measuring directly order, domination and certainty. 

Traditionally, natural sciences assess the distribution of resources among systems 

components in terms of diversity, uncertainty, and chaos. Social sciences (economics, 

competition law, etc.) prefer to consider these issues from an opposite point of view 

– the concentration of resources reflecting the level of domination and hierarchy in 

competition interactions, or, in other words, the certainty for the realization of events 

with different probability distributions. Previous publications [28, 29] have discussed 

essential methodology aspects and introduced novel tools for assessing system 

complexity on the basis of novel Hierarchy approaches, comparing them with the 

most popular existing indicators. 

At micro-level (Level-1), the empiric data about individual components parts 

𝑝𝑖 are treated (filtered) with some non-linear function (called here basic transform 

function) which plays a key role in assessing system complexity. The basic functions 

conceptualize the specifics of the different approaches on what and how will be 

measured: a) disorder and uncertainty in terms of entropy 𝑒(𝑝𝑖); b) order and 

certainty in terms of concentration/hierarchy ℎ(𝑝𝑖).  

At macro-level (Level-2), the transformed output results for all individual 

system components are summed to obtain the aggregated result of cumulative 

Entropy (E) or cumulative Hierarchy (H):  

(1)   𝐻 =  ∑ ℎ(𝑝𝑖
𝑛
𝑖=1 ), 
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(2)   𝐸 =  ∑ 𝑒(𝑝𝑖
𝑛
𝑖=1 ). 

2.1. Information theory and traditional entropy 

The complexity of systems and their structural evolution are key issues for 

characterizing the specifics of their dynamics in a large number of areas. 

The term “Entropy” was introduced in 1865 by C l a u s i u s  [30] as a parameter 

for describing the internal thermodynamic transformations in isolated systems 

(“entropy” comes from the Greek word Entropia which means transformation). 

In the 1870s, B o l t z m a n n  [31], G i b b s  [32], and M a x w e l l  [33] added a 

statistical dimension to the understanding of entropy by founding the principles of 

“statistical mechanics”. By 1948, the Clausius concept for measuring entropy 

se(𝑝𝑖) = −𝑝𝑖 . log𝑏 𝑝𝑖 was borrowed as a key point in the “Information Theory of 

Claude Shannon” [34] in the format with binomial logarithm basis (i.e., b=2): 

(3)   se(𝑝𝑖) = −𝑝𝑖 . log2 𝑝𝑖𝑠, 
(4)   SE(𝑝𝑖) =  ∑  se(𝑝𝑖) = −𝑛

𝑖=1 ∑ 𝑝𝑖 . log2 𝑝𝑖
𝑛
𝑖=1 . 

Fig. 1 displays the graphical visualization of micro-level individual Shannon 

Entropy se(𝑝𝑖) = −𝑝𝑖 . log𝑏 𝑝𝑖 and the nominal cumulative maximal Shannon 

Entropy SEmax in the popular of logarithmic bases (b=2, b=2.718, and b=10). 

 
Fig. 1. Individual and nominal Maximal Shannon Entropy function and their integral values in the 

most popular formats: a) log2; b) ln; c) log10   

The parabolic profile of the Shannon Entropy’s basic function produces a 

specific ambiguous issue – two very different values of primary data 𝑝𝑖 are 

transformed into one value of individual entropy. For example: in the format with a 

binomial logarithm basis, both 𝑝𝑖 = 0.25 and 𝑝𝑖 = 0.5 result in an equal value of 

individual entropy: 0.25 log2 0.25 =  0.5 log2 0.5 = 0.5. This case is only one 

example of a large number of such possible pairs that produce the same type of 
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confusion and uncertainty. Also, in the interval  𝑝𝑖  𝜖(0.2, 0.6) the parabola of se(𝑝𝑖)   

possesses a very flattened profile, while at its both ends for 𝑝𝑖≈0 and 𝑝𝑖≈1 the 

individual entropy is practically equal to zero, se(𝑝𝑖)≈0. The mathematical definition 

of Equation (3) depends only on the variable 𝑝𝑖 excluding any possibility for flexible 

modelling of the basic and cumulative function. In addition, the necessity to perform 

the common procedure of normalization may also create undesired confusion since 

higher maximal levels of entropy used for normalization produce more unbalanced 

results. From this point of view, the ambiguous ranking of individual entropy values 

creates uncertainty in using Shannon Entropy as a universal method for classification. 

2.2. Logistic Hierarchy (LH): consistency, balance, flexibility 

The main priority for modeling novel indicators in our approach is to limit the 

possible “distortion effect” and the loss of primary information in the process of 

transforming empiric input data about parts 𝑝𝑖 into output individual hierarchy 

values. At the same time, the efforts are focused on obtaining a balanced distribution 

of cumulative system information at the macro-level by selecting a value for the 

power constant b which will position the value for minimum cumulative hierarchy 

for a fully symmetric macro-state with 10 components with equal “parts”  𝑝1 = 𝑝2 =
⋯ = 𝑝10 = 0.1 = 10% at the central level of 0.5. 

The basic transform functions can be modeled with different mathematical 

models. One of them is the so-called logistic function concept. It defines functions 

with a specific S-type (sigmoid) graphical profiles that monotonically increase with 

the increase of the values of the basic variable parameter, which in our case is 𝑝𝑖 

(relative weight or event probability) of an individual component. Logically, such 

monotonically increasing S-profiles are particularly suitable for assessing the system 

complexity and representing the structural evolution of information from the point of 

view of domination and certainty. A higher value of 𝑝𝑖 logically reflects stronger 

domination and more information in terms of order and competitive strength.   

To enlarge and improve the analysis of system complexity an original concept 

called logistic hierarchy (lh) is introduced and defined as follows:  

(5)   lh(log) =  
𝑝𝑖

1+(
∑ log𝑅𝑗

𝑝𝑖
𝐽
𝑗=1

𝐽
)

𝑐, 

where: 𝑝𝑖 are the part/relative weight/probability of micro-states; 𝑝𝑖ϵ [0, 1];  
n is the number of components in the system populations; 

𝑅𝑗 are the referral weights or Reference Structural Thresholds (RST); 𝑅𝑗ϵ[0, 1]; 

J is the number of Reference Structural Thresholds (RST) or 𝑅𝑗;  

c is the the intensity of competition interactions; cϵ[1, 3]. 

The key role in the novel basic function concept lh belongs to the module 

(
∑ log𝑅𝑗

𝑝𝑖
𝐽
𝑗=1

𝐽
)  which in the format of arithmetic average accumulates and generalizes 

the information about the possible “logarithmic comparisons” of individual 

components weights 𝑝𝑖  with a flexibly definable set of reference values RST 𝑅𝑗 used 

as respective logarithm bases. As a result, the logistic hierarchy lh approach allows 
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modelling flexibly an unlimited number of functions with different S-curve profiles. 

In all of them, primary data 𝑝𝑖 is non-linearly transformed in the universal 

dimensionless scale interval [0, 1], without any ambiguity on the micro-level or a 

need for normalization on the macro-level. Several simulations have been conducted 

to select the variant with a set with two RSTs (𝑗 = 2;   𝑅1 = 0.001; 𝑅2 = 0.25) and 

c=2 for defining the basic function lh(log:0.001;0.25) as follows: 

(6)   lh(log: 0.001; 0.25) =  
𝑝𝑖

1+(
log0.001 𝑝𝑖+log0.25 𝑝𝑖

2
)

2. 

Fig. 2 includes the graphics of the following functions: 

a) basic transform function in the variant lh(log:0.001;0.25);  

b) cumulative Minimal Hierarchy in the “Equalization in each population” 

scenario, formed by the sets of points for symmetric and sub-symmetric system 

configurations;  

c) cumulative Maximal Working Hierarchy in the “Single leader domination 

decreasing in all populations” scenario, formed by system configurations with 

maximal asymmetric distribution  of 𝑝𝑖 between the leaded and its competitors; 

d) cumulative Mean Working Hierarchy, formed by the arithmetic mean of 

“minimal and sub-minimal hierarchies” and the “maximal working hierarchy”. 

 
Fig. 2. Modeling of individual and cumulative Logistic Hierarchy functions (Minimal, Maximal and 

Mean Working levels): variant lh(log:0.001;0.25) 

2.3. Power function model: novel adjustment for Hierarchy 

As a next step, it is possible to define a model with a profile similar to 

lh(log:0.001;0.25) in the popular traditional “power function model”: 

(7)   𝑓(𝑝𝑖) = 𝑎(𝑝𝑖)𝑏 + 𝑐. 
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A very simplified variant of this popular power function concept with a=1, b=2, 

and c=0 is used in the basic function of the Herfindahl Concentration defined as 

hc(𝑝𝑖) = 𝑝𝑖
2 which has the disadvantage of producing very unbalanced results at 

micro and macro-level [35, 36]. To make the model simpler and similar to the format 

of Herfindahl Concentration the experiments have shown that such approximation 

can be achieved with a=1, b=1.3, and c=0: 

(8)   ph(pf = 1.3) = (𝑝𝑖)1.3. 

Fig. 3 includes the graphics of the following functions: 

a) basic transform function in the variant ph(pf=1.3); 

b) cumulative Minimal Hierarchy in the “Equalization in each population” 

scenario, formed by the sets of points for symmetric and sub-symmetric system 

configurations; 

c) cumulative Maximal Working Hierarchy in the “Single leader domination 

decreasing in all populations” scenario, formed by system configurations with 

maximal asymmetric distribution of 𝑝𝑖 between the leaded and its competitors; 

d) cumulative Mean Working Hierarchy, formed by the arithmetic mean of 

“minimal and sub-minimal hierarchies” and the “maximal working hierarchy”. 

 
Fig. 3. Modeling of individual and cumulative Power Hierarchy functions (Minimal, Maximal and 

Mean Working levels): variant ph(pf=1.3)  

To our knowledge, clear and balanced rules for universal framing of information 

space and classifying system complexity have not yet been defined in the context of 

Shannon Entropy. The integral values and the graphical profiles of the cumulative 

minimal and maximal function for lh(log:0.001; 0.25) and ph(pf=1.3) are similar and 

fit closely in the “Harrington scale”, which in our more detailed variant contains 6 

intervals and represents an adapted version of classical E. Harrington’s preference 

function for psycho-physical classification [37], as shown in Table 1. 
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Table 1. Harrington scale: adaptation with six quantitative intervals and six hierarchy phase labels  

Hierarchy phases labels Harrington scale (quantitative values) Traditional qualitative labels 

Concentrated oligopoly 0.80-1.00 Extremely high 

Classic oligopoly 0.63-0.80 Very high 

Enlarged oligopoly 0,50-0,63 High 

Polipoly 0.37-0.50 Low 

Multipoly 0.20-0.37 Very low 

Hyperpoly 0.00-0.20 Extremely low 

 The central value of 0.5 in the Harrington classification scale is meant to 

correspond to the official competition law regulations in the EU, Japan, Russia, and 

other countries (incl.  USA until 2010) for a fully symmetrical market with 10 

competitors when all of them have equal shares of 𝑝𝑖 = 0.1 = 10% [38, 39]. 

Fig. 4 displays the Level-2 aggregation for “symmetric + sub-symmetric” 

configurations, which define the cumulative “maximum + sub-maximum” levels of 

entropy (normalized Shannon Entropy in the three most popular logarithmic formats 

(log2 𝑝𝑖, ln 𝑝𝑖 , log10 𝑝𝑖), and the “minimum + sub-minimum” levels of hierarchy for 

three different concepts: the traditional Herfindahl Concentration (HC) indicator and 

the novel hierarchy indicators in the variants lh(log:0.001;0.25) and ph(pf=1.3). 

 
Fig. 4. System complexity Indicators: Minimal Hierarchy and Maximal Entropy 

At the micro-level, the transformation of 𝑝𝑖 = 0.1 results in lh(log:0.001; 

0.25)≈0.0501, the minimal cumulative Logistic Hierarchy for the system with  

10 equal components (all equal to  𝑝𝑖 = 0.1) is 𝑙ℎ(log: 0.001; 0.25) =
(∑ 0.0501𝑛=10

𝑖=1 =10×.0501≈0,5. At the same time, the minimal cumulative hierarchy 

for the same type of symmetric configuration with the same 10 equal components  

in the case of the Power Hierarchy concept in the variant ph(pf = 1.3) is: 

∑ (0.1)1.3𝑛=10
𝑖=1 =10×0.0501≈0,50. At the same time, the cumulative Minimal 

Herfindahl Concentration produces a very unbalanced profile – the cumulative 

concentration for the symmetric configuration with 10 equal components is far from 
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the central point of 0.5: HC(pf = 2) = ∑ (0.1)2𝑛=10
𝑖=1 =10×0.01=0.1. In the case  

of the Shannon Entropy, such comparisons with other methods are possible only  

after normalization with a higher level of maximal cumulative entropy. The 

normalization is made with a maximal cumulative entropy for a system with 1024 

components (n=1024) is SEmax(𝑛 = 1024) = − ∑
1

1024
log2

1

1024

𝑛=1024
𝑖=1 ≈ 10. 

Consequently, the normalized maximal cumulative entropy value for a system  

with 10 equal components is:  

SEmax(n=10; norm: n=1024)=
1

10
(– ∑

1

10
log2

1

10
n=10
i=1 )=0.332. 

Unfortunately, the result of such normalization will be different for any different 

value of maximal entropy selected as a reference for normalization. For example, in 

the case of normalization with a maximal cumulative entropy for a system with 256 

components (n=256) the maximal cumulative value for a system with 10 equal 

components is: SEmax(n=10; norm: n=256) = 0.37. These values are also far 

away from the central point 0.5 in the Harrington classification scale, and, therefore, 

cannot be considered as an intuitive and balanced border between high and low 

cumulative entropy. 

The logistic hierarchy in the variant lh(log:0.001; 0.25) has been successfully 

applied to assess system complexity, market evolution, and competition interactions 

in the energy sector since 2015 [40, 41].  

3. Case study: assessment of information systems reliability in entropy 

and hierarchy 

Under conditions of economic and technical constraints, the risk analysis of 

information systems performance allows for optimizing the allocation of resources 

and improving the reliability of their functioning [42, 43]. Entropy-based measures 

have been used successfully in computing technology – predominantly for 

cryptography, software reliability, and other areas [44, 45]. Logically, entropy is 

relatively low in systems characterized by high reliability and high in systems with 

low reliability and conformance. On the opposite, higher levels of hierarchy 

characterize systems with high reliability, while low levels – systems with low 

reliability and conformance. An important preliminary condition for performing 

effective entropy and hierarchy assessment and analysis is the usage of reliable 

empiric statistical data which has to be systematically collected and well structured. 

In this respect, a logical and thorough list of system components represents the first 

step in assessing the reliability and conformity of information systems.  

In the analysis of information systems, users’ requirements can be linked to 

respective system components with two possible realizations – positive (order or 

conformance) and negative (defect or non-conformance). In this context, the 

functioning of information systems can be regarded as a Markov process in which 

the realization of subsequent probabilities depends on the realization of previous 

events. In other words, the present and future distribution of resources or probabilities 

among individual components are related to previous micro-states and distributions.  
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The building of understandable and reliable statistics for any system 

traditionally starts with framing the procedures for collecting and treating the raw 

data. In this case, the number of all negative events n (defects or non-conformance 

incidents) in an information system is distributed among a finite number of 

components. To simplify the calculations, all individual events (incidents) are 

attributed equal importance – in other words, equal relative weights or probabilities 
(𝑝𝑖 = 1 𝑛⁄ ). 

Since the process is of Markov type, the sum of all discrete probabilities about 

individual incidents or respective components is equal to 1 (100%). In such an 

egalitarian framework and in terms of entropy, the most sensitive and risky 

component of the system performance is related to the highest number of individual 

incidents. If all components are out of conformance with an equal number of 

incidents, the level of entropy (disorder) in the system is at the highest level for this 

number of components. In other words, the maximal uniform distributions of 

individual incidents among components result in maximum uncertainty and this 

reflects “the principle of maximum entropy” [46, 47]. Naturally, if all incidents are 

linked to only one component the probability of its defectiveness (non-conformance) 

is equal to 1 and the cumulative Shannon Entropy is zero. This “information paradox” 

is part of specific entropy logic in which “more entropy” means “less information”. 

In the context of hierarchy and concentration, the most sensitive and risky 

component in system performance is also related to the highest number of individual 

incidents. If all components are out of order by an equal number of incidents, the 

hierarchy and order in the system are at the lowest level for that number of 

components. In other words, the maximal uniform distribution of incidents results in 

minimum certainty and reliability. If all incidents are linked with only one 

component, the hierarchy (certainty) of defects is maximal and equal to 1. The 

cumulative system hierarchy is 0 only when all events probabilities are 0. Naturally, 

this kind of logic is more intuitive, straightforward, and non-ambiguous – “more 

hierarchy” means more information, more order, and more certainty. 

Such arrangements are useful in two main aspects about the information in the 

system: 

1) The increase in the value of cumulative entropy reflects an increasing disorder 

in the system; on the opposite – the increase in the value of hierarchy indicates the 

increase of order and certainty in the system. 

2) The values of individual entropy and hierarchy can be used to estimate and 

adjust eventual Intervention Costs (IC) for each defective component. This can 

improve the quality of analysis and provide more objective criteria for the 

prioritization of alternatives optimization of the decision process under conditions of 

uncertainty and different resource constraints. Such an approach adds valuable 

economic and efficiency dimensions to the common technical assessment. 

To compare the effectiveness of the traditional entropy and the novel hierarchy, 

this paper presents a case study with two different information systems. For 

performing the assessments in a more structured way this research uses a list of 

system components that do not have the pretension to be exhaustive but still tries to 

consider the main items that could be affected by some kind of reliability incident. 
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A typical approach for classification in information systems contains usually 3 

main groups of components – computing, peripherals, and networks. This traditional 

triad of technical subsystems may be enlarged with two important elements: the 

passive element “data” and the active element “staff”. To collect reliable statistics, 

the frequency of negative events for reliability (defects) can be recorded as 

“incidents” for some reasonable periods of time (week, month, etc.). In real 

conditions, the length of this period will depend on the system characteristics and the 

needs of the users. Obviously, if during the observation period there is no incident, 

then all components and the system as a whole are in optimal operational condition 

(“zero defect” status). Situations without incidents are very rare and therefore, this 

research explores more realistic cases – with different types and number of incidents. 

Table 2 contains the comparative results for the cases of User A and User B. 

Table 2. Comparative analysis of information systems reliability in entropy and hierarchy 
Users User A User B 

Components Incidents 𝑝𝑖 se(log2) lh(𝑝𝑖) ph(𝑝𝑖) Incidents 𝑝𝑖 se(log2) lh(𝑝𝑖) ph(𝑝𝑖) 

Computing           

CPU           

PSU      1 0.02 0.11 0.005 0.006 

RAM      3 0.06 0.24 0.024 0.026 

HDD 4 0.5 0.5 0.46 0.41 7 0.14 0.40 0.080 0.078 

GPU      1 0.02 0.11 0.005 0.006 

OS 1 0.125 0.375 0.07 0.07 5 0.10 0.33 0.050 0.050 

Software      2 0.04 0.19 0.013 0.015 

Firmware      1 0.02 0.11 0.005 0.006 

Staff      1 0.02 0.11 0.005 0.006 

Subtotal 5 0.625 0.875 0.53 0.48 21 0.42 1.60 0.192 0.194 

Peripherals           

Printer 1 0.125 0.375 0.07 0.07 9 0.18 0.45 0.110 0.108 

Staff      1 0.02 0.11 0.005 0.006 

Subtotal 1 0.125 0.375 0.07 0.07 10 0.2 0.56 0.115 0.114 

Network           

Switch 2 0.25 0.5 0.18 0.16 10 0.20 0.46 0.130 0.128 

Routers      4 0.08 0.29 0.060 0.048 

Cables      1 0.02 0.11 0.005 0.006 

WiFi      1 0.02 0.11 0.005 0.006 

Firmware           

Staff      1 0.02 0.11 0.005 0.006 

Subtotal 2 0.25 0.5 0.18 0.16 19 0.38 1.08 0.205 0.194 

Total 8 1 1.75 0.78 0.72 52 1 3.24 0.512 0.502 

For simplification purposes in this paper, the occurrences of all types of 

incidents are attributed with the same value of importance. In other words, all single 

incidents n have equal weights (𝑝𝑖=1/n). Consequently, the importance of each 

component in the reliability analysis is defined by the number of its incidents. Also, 

the information systems of the two users have identical configurations from a 

technical point of view – in other words, they contain the same type and number of 

components. 

The case of User A refers to a recently installed information system that faces a 

limited number of incidents with four exceptions related to the following 

components: a) data storage on HDD – four incidents; b) Operating System (OS) – 

one incident; c) printer/scanner overloading – one incident; d) an insufficient number 
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of Switch ports – two incidents. Total of incidents is eight. The cumulative nominal 

Shannon Entropy is ∑ se (
1

8
) = 8 × 0.21875 =𝑛=8

𝑖=1 1.75. However, without 

normalization, it is difficult to consider “how low” or “how high” this nominal value 

is. The other disadvantage discussed above in Section 2.1 (Traditional Entropy and 

Information theory) is that for very different values of primary data about weights 

(probabilities) the basic function se(𝑝𝑖) produces the same transformed values of 

individual entropy. Actually, for HHD – 𝑝𝑖= 0.5 results in se(0.5)=0.50 as well as for 

Switch – 𝑝𝑖=0.25 results in se(0.25)=0.50. Such “ambiguous pairs” are produced by 

the non-monotonic convex parabola profile of the basic transform function that 

creates uncertainty for using the Shannon Entropy as a stand-alone method. In these 

situations, further analysis would require to return to primary data or to use other 

measuring tools, such as “dispersion” or “variance” which, however, have another 

peculiarity – for all distributions with equal components they produce 

undistinguishable “zero results”. In the novel concepts for logistic hierarchy 

lh(log:0.001;0.25) and power hierarchy ph(pf=1.3) the transformation and 

normalization issues are treated consistently and effectively thanks to their 

monotonically increasing basic functions. On the micro-level, all transformed output 

results are ranked in strict accordance with the ranks of their respective input values 

for the relative weights or probabilities event (𝑝𝑖).  

For the system of User A, the value of the cumulative system hierarchy 

lh(log:0.001;0.25) is 0.78 and for ph(pf=1.3) is 0.72. These values are different but 

still very similar, and considerably higher than the central value of 0.5 on the 

universal scale (0, 1).  In the Harrington classification scale with a set of 6 quantitative 

intervals and, respectively, 6 qualitative phase labels (Table 1, above) both values 

belong to the phase of Classic oligopoly (0.63-0.80). Such a level of cumulative 

hierarchy indicates that urgent interventions are needed for some limited number of 

components in the system – the priorities are clearly identified and ranked by the 

different values of individual hierarchy: 

 for HHD: 𝑝𝑖=0.5 results in lh(0.5)=0.46 and ph(0.5)=0.41;  

 for Switch: 𝑝𝑖 = 0.25 results in lh(0.25)=0.18 and ph(0.25)=0.16;  

 for OS and Printer/Scanner: 𝑝𝑖 = 0.125 results in lh and ph in a very similar 

value of approximately 0.07. 

Naturally, in situations when two or more components register equal numbers 

of incidents which result in equal defect probabilities and equal individual hierarchy 

values the analysis and prioritization will need further investigation. It can be refined 

by taking into account the respective “Intervention Costs” and “Impact Damages” for 

each of the items. This paper presents only the first step – a non-linear entropy and 

hierarchy assessment for obtaining a holistic view of the system and the influence of 

individual components on the reliability of IS. It does not take into account the type 

and the level of priorities, and the costs related to them. For example, a defective 

HDD causes, in general, the same type of problem in servers, storage equipment, and 

a home system. However, the role and the quality of these components are very 

different and their costs will vary substantially. The priority and cost issues are very 

important and will be addressed in future publications.  
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The case of User B is more complicated: 50 incidents are distributed unevenly 

between 16 affected components and across the three sub-systems. The cumulative 

Shannon Entropy is calculated  ∑ se(𝑝𝑖) = 3.24𝑛=16
𝑖=1 . This value is 1.85 times higher 

than the result in User A (1.75), and without normalization cannot fit in the universal 

interval (0, 1). In the context of hierarchy, the cumulative results for the novel 

indicators are very similar: lh(log:0.001;0.25)=0.512 and ph(pf=1.3)=0.502. 

Compared to User A they reflect a substantial decrease in terms of order or increase 

of disorder, respectively, 27 and 21 “basic points”. In the novel hierarchy approaches, 

the structural evolution seems much smaller than in the format of Shannon Entropy. 

However, here the assessment is produced directly on the universal scale of (0, 1) – 

in other words, the structural space is denser and contains more information per unit. 

From a quantitative point of view, the cumulative value of 

lh(log:0.001:0.25)=0.512 and ph(pf=1.3)=0.502 are insignificantly higher than the 

central value 0.5. From a qualitative point of view, according to the Harrington scale 

(Table 1), these values are slightly higher than the central point of 0.5 and the 

boundary between the phases of Enlarged Oligopoly and Polipoly. In other words – 

at the formal border between “high” and “low” levels of hierarchy, and more general 

– between “order/certainty” and “disorder/uncertainty”. These values indicate that 

the system of User B is in a more vulnerable status. Therefore, User B should 

undertake more active and urgent measures in several directions: inspecting, 

replacing or upgrading hardware, updating soft and firmware, inspecting network 

equipment and cabling, reviewing information flows, and considering sensitive staff 

issues. 

4. Limitations, conclusions, future work 

This article presents a comparison application for assessing the reliability of 

information systems with the traditional indicator for entropy and the novel indicators 

for hierarchy. Even the limited volume of this publication and simplified case study 

with only two different numerical examples allows for comparing the efficiency of 

traditional and new approaches.  

In particular, the traditional Shannon Entropy concept contains an inherent 

ambiguity when  assessing small and big components or probabilities, and therefore 

is suitable for assessing systems in which the distributions include components with 

individual weights and probabilities lower than the value 𝑝𝑖 = 0.37 at which the basic 

transform functions for entropy reach their maximums in the format with any 

logarithm bases.  

The complicated issues about the ambiguity of individual entropy of 

components and the normalization of cumulative entropy of the system can be 

mitigated with the proposed hierarchy concepts. The variants of logistic hierarchy 

lh(log:0.001;0.25) and power hierarchy ph(pf=1.3) produce comprehensive models 

including basic and cumulative functions with monotonically increasing profiles that 

ensure fewer information losses and better-balanced profiles with very similar 

integral values. These findings allow for enlarging the methodology and improving 

the accuracy of analysis of information systems’ complexity and reliability. The 
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novel hierarchy indicators can find application in a large number of areas, where 

dynamic systems are in constant evolution concerning the access, distribution, and 

competition for material and non-material resources, such as computer science and 

technologies, health care and biology, industry (energy, computer, and 

communication, food, etc.), services (finance, banking, insurance, tourism, trade,  

e-Trade), leisure and sports, science (innovations, artificial intelligence). 

Future studies can be oriented on more detailed reliability and conformity 

analysis taking into account very important issues like intervention costs and priority 

of incidents in different information systems. In this respect, it is feasible to improve 

the hierarchy approaches by introducing additional methods and tools for considering 

the specific needs of the users and their information systems in the area of multi-

criteria analysis and decision support systems. 
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