
 125

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 22, No 2

Sofia • 2022 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2022-0021

Tunnel Parsing with the Token’s Lexeme

Nikolay Handzhiyski1,2, Elena Somova1
1University of Plovdiv “Paisii Hilendarski”, 24 Tzar Assen Str., 4000 Plovdiv, Bulgaria
2ExperaSoft UG (haftungsbeschraenkt), 10 Goldasse Str., Offenburg 77652, Germany

E-mails: nikolay.handzhiyski@experasoft.com eledel@uni-plovdiv.bg

Abstract: The article describes a string recognition approach, engraved in the

parsers generated by Tunnel Grammar Studio that use the tunnel parsing algorithm,

of how a lexer and a parser can operate on the input during its recognition. Proposed

is an addition of the augmented Backus-Naur form syntax that enables the formal

language to be expressed with a parser grammar and optionally with an additional

lexer grammar. The tokens outputted from the lexer are matched to the phrases in the

parser grammar by their name and optionally by their lexeme, case sensitively or

insensitively.

Keywords: Parsing algorithm, tunnel parsing, lexeme matching, advanced grammar,

phrase state machine.

1. Introduction

To be able to work with data the software systems have to perform the process of the

data recognition. This process is performed by a Parsing Machine (PM) – an abstract

machine that includes all data recognition modules. During the execution of the PM,

various subprocesses work with the data (a stream of bits) to be recognized [1]. The

PM has the following modules:

• Supplier – supplies the input bits (for example by reading them from the file

system of a computer);

• Scanner – decodes the input bits into characters (assigned Unicode

codepoints [2]);

• Lexer – performs the lexical analysis, as during this process the characters

are grouped into lexemes (as each lexeme is a part of a token) based on a formal

grammar (for short a grammar) called later a lexer grammar;

• Parser – performs the syntax analysis (parsing [3, 4]). This process checks

if the sequence of tokens received from the lexer belongs to the data language that is

described by another given grammar – the parser grammar. The output of this

subprocess is a sequence of Syntax Structure Construction Commands (SSCC);

• Builder – a module that explicitly builds syntax structure from the SSCC or

uses the SSCC directly to perform the specific to the PM task.

 126

The data is “flowing” from a supplier, through a scanner, a possible lexer, a

parser and finally to a builder, all in a unique path (this is a singly linked list

communication model described in [1]). The grammars consist of formally defined

rules (the “laws” of the language [5]), later called only rules, and are often described

with a meta syntax such as Augmented Backus-Naur Form (ABNF) [6] (used in this

article) or EBNF [7, 8].

The phrasing “a grammar rule accepts/recognizes an input” later means that by

the use of the rule the parser (or the lexer) accepts the input (recognizes it as valid

according to the rule). The traditional way of working of the lexer, to work while at

least one lexer grammar rule accepts the input data, has a drawback: the input

characters that are not recognized by any lexer grammar rule cannot be used by the

parser, because they are not valid according to the lexer grammar and respectively

according to the lexer. In turn, the traditional way the parser works has a drawback

because only the token name is used for recognition and the lexeme is just baggage

that may not even be available in the token.

The main goal of the article is to propose an appropriate connection between the

lexer and the parser, so that the unrecognized data from the lexer can then be used by

the parser. The recognized tokens from the lexer (made of a name and a lexeme) must

be transmitted entirely to the parser. The parser must be able to parse not only based

on the name of the token but also on its lexeme. The way the parsing is performed

must not significantly impair the speed of the parsing and must allow the usage of the

lexemes with a selectable sensitivity to the capitalization of the characters in it. When

the parser’s input contains all of the characters found in the input stream that enables

it to send them subsequently to the builder module (for error message reporting and

syntax structure building). This is particularly important when the different PM

modules run on different dedicated threads of execution (on different processes

and/or hardware), because the modules can operate without sharing common data

structures.

To achieve this goal, the domain of the tokens created from the input characters

must be divided into two types, and for each of them different formal rules to apply.

One token type must only be created by the lexer, when a lexer grammar rule in the

lexer grammar accepts the current input characters, and to consist of at least one

character. The article will describe how the characters in this token type can be used

for parsing based on a new type of grammar, case-sensitivity or insensitively. The

other type of tokens must be created by the scanner or by the lexer (when no rule

accepts the current input characters) and to consist of a single character. The formal

definition of this token will allow its use to recognize character ranges from the

module that receives the token.

Section 2 presents the related work in the process of recognizing a string of

characters and briefly explains the Tunnel Parsing (TP) algorithm that uses the

recognition approach presented in this article. Section 3 addresses the problem, to

which the article is dedicated. Section 4 shows a solution to the problem. Section 5

gives the application of the proposed recognition approach in the TP algorithm.

Section 6 focuses on the contributions of the article and its possible future

development.

 127

2. Related work

The traditional problem with the lexers is that the input that is not recognized by any

lexer grammar rule cannot be used by the parser, because they are not valid

(considered an error) according to the lexer grammar and respectively according to

the lexer.

To overcome this problem an additional rule named X can be added to the lexer

grammar, which recognizes all possible input characters that are no longer recognized

by the existing grammar rules. Accordingly, X has the lowest priority over the other

rules in order to be applied last. Thus, the parser will receive tokens with a name X,

and will be able to process them according to the parsing grammar when none of the

other lexer grammar rules recognize the current input characters. If a token named X

is not expected then when it is received by the parser it will be processed as an error.

This article discusses a similar approach to solving the problem. The difference

is that rule X is not required (which needs attention from the grammar developer) and

this functionality is part of the formal definition of the lexer. We will call a lexer that

works in this way a Continuous Lexer (CL).

CL works without detecting errors based on the lexer grammar, because all input

characters in one way or another will be grouped into lexemes and will form tokens.

The X rule is sometimes used to skip input characters directly [9], as some call them

“meaningless characters” [10]. When this is done, the parser does not receive the

missing characters, and therefore cannot perform logic based on them. Some systems

process the lexemes to calculate the location of individual tokens in a text file (text

line and column numbers, called locator). If this is done in the lexer [10, 11] then the

omitted characters that the lexer does not send to the parser do not interfere with this

calculation. However, this assumes that the lexer and the parser share their runtime

data structures so that the parser can use the locator (calculated by the lexer) when

needed, for example, to display error messages with it.

The lexer must not calculate the locators if the modules are considered separate

and do not share common data structures. In this case, the calculation is best done by

the builder. To do that, the builder must receive all of the lexemes to count accurately.

Additionally, the symbol tables must not be created by the lexer at the time of the

discovery of the lexeme [11], but by the builder upon receiving the tokens. The

approach of gathering additional information in symbol tables is called

“bookkeeping” in [4]. When each token is sent to the parser then the length of the

token matters for technical reasons, for example limited memory. In some cases, the

token can be assumed to be always short [11]. However, a multi-line comment in a

given programming language source file, in the form of a lexeme, can be in thousands

or more characters, therefore, special attention should be paid to this situation. It is

possible that there are nested comments, which further suggests even longer lexemes.

Some lexers have special processing of the nested comments [10, 12], because the

nested comments are not regular in nature and cannot be recognized by a finite state

machine [13], which is usually used by the lexer.

One possibility [14] is the lexer to be “context-aware”. This means that the lexer

outputs a set of token types, taking into account the current state of the parser, and if

 128

none of the currently acceptable tokens is recognized, an empty set is returned. This

is used for the embedding of one language in another to avoid certain problems when

mixing two separate pairs of lexer and parser. This approach makes the lexer as a

subroutine of the parser [15]. A similar definition of context-aware is given in [4],

where the lexer operates “directly”, when it recognizes the set of token types

according to the following input characters, and “indirectly” when checking whether

the input characters are a specific token type.

The context-aware technique (called “lexical feedback” in [16] and “backdoor

approach” in 17) prevents [16] the lexer and the parser to be in separate threads of

execution [18]. It is possible for separate threads to be used, but it will probably be

ineffective, due to the threads synchronization time. The synchronization takes time

with the modern hardware and popular operating systems, but it is possible to imagine

that due to the growing number of cores in the processors (the AMD Ryzen™

Threadripper™ 3990X has 64 cores and 128 threads), there may come a time when

the synchronization will be with an acceptable speed in more scenarios. For example,

[19] executes one lexical analyzer in different threads on different processors, as the

speedup is linear (which can be for a variety of reasons, including the threads

synchronization).

When the lexer and the parser are in different threads (potentially in different

processes), special attention should be paid to when the tokens will be sent from the

lexer to the parser. One possible implementation of this is the lexer to collect a certain

number of tokens before sending them, but then the lexer can recognize more tokens

than the parser would accept before finding an error. On the other hand, the parser

will not do any work if the lexer fails to recognize the required number of tokens

before sending them to the parser (in case of an error in the input data stream). This

approach, known as buffering, is a standard way of modern software development,

and has long been described [14]. There, the division of responsibilities for data

recognition between the lexer and the parser, working in the form of augmented

transition networks, is discussed.

Once the lexer converts the input characters into tokens, they will become the

input data of the parser. The traditional way the parser works with tokens is to use

them for recognition by automata [20], generated from the rules of the parser

grammar. Going through an automaton transition, from one automaton state to

another, is done with the use of the name of the tokens, and the lexeme is just a

baggage that may not even be available in the token if a syntax tree is not generated.

Another possibility is to use regular expressions of conditions for each automaton

transition [21].

Different parser generators generate parsers for languages described differently.

Sometimes the language is described by one grammar, which consists of the mixture

of the lexer and the parser grammars, as the rules having capital letters (or start with

a capital letter) are part of the lexer grammar, and the rules that have lowercase letters

(or start with a lowercase letter) are part of the parsing grammar [22, 23]. Some parser

generators require that everything that does not exist in the grammar as a terminal

token, is a rule [10]. Another option for describing a language is to have no lexer

grammar (but only a parser grammar) and therefore no lexical analysis [24]. The

 129

parsing of this kind of language is called “single-phase” parsing in [25]. There is also

the claim that “scannerless parsing does not need to make any assumptions about the

lexical syntax of a language and is therefore more generically applicable for language

engineering” [26] and the extra ambiguity that occurs because of this, can be tackled

by disambiguation filters. However, the term “scannerless” is hard to be accepted

instead of “lexerless”, because the scanning is a primary machine operation [1, 27].

The regular expressions (with an initial idea in [20] based on [28], where are the

first definitions of the two popular types of repetitions – star (from zero to infinity)

[28], and plus (from one to infinity) [28]) are often used to describe lexical constructs

instead of formal grammars. One of the first compilers of regular expressions to

machine code is described in [29].

Some argue [30] that it is better to write a lexer by hand than to write regular

expressions in the syntax of a lexer generator, because complex regular expressions

are not easily understood by everyone. Others prefer BNF syntax over regular

expressions [12]. When the lexer uses a deterministic finite state machine to

recognize the lexemes [13], it can also be made minimal (which is often done in

practice [31]) through Brzozowski’s algorithm [32]. This transformation has an

exponential time (in the worst case) according to the number of initial automaton

states. The resulting automaton is “much bigger” [12] than the original automaton. If

an acyclic automaton is already available, it can be minimized with a linear algorithm

[33] to occupy less memory and to be processed faster. There are other algorithms

for minimization of automata [34]. The parser generators that make this

transformation often resolve conflicts between rules according to the priority coming

from their definitions’ order [35]. A conflict between rules exists when more than

one rule can recognize a sequence of characters. It is also possible to create a lexer

only when the rules have no conflicts [10].

It is a good idea to use an algorithm to inform the developer if there are lexical

ambiguities in relation to the order of the lexemes in the tokens. The criterion for

ambiguity in this case is for one token to be a prefix of another, which, if not taken

care of during the development of the grammar, may lead to unexpected (wrong)

behavior of the lexer [36].

2.1. Tunnel parsing

The TP algorithm is in use by the PMs generated by Tunnel Grammar Studio (TGS).

The modules in these PMs are considered to be separated (operating in parallel in

different threads) and are described in detail in [37]. The modules can be developed

in different programming languages and work on different hardware. As defined so

far the TP algorithm is applicable mainly to domain-specific languages [38].

All symbols that can be matched by the algorithm from a given automaton state

directly or by recursively entering into the referenced rules are called reachable.

To create a PM that is based on the TP algorithm, the following five steps are

performed [37].

1. Designing of automata – an automaton is created for each rule in the

grammar.

 130

2. Extraction of tunnels – for each start state, each state after a rule reference

and each terminal state (an automaton state after a transition that matches a terminal

symbol) of each automaton (all together called key positions), all transitions to the

next reachable terminal states (or to the end of the rule) are collected into tunnels in

a depth-first search manner. A tunnel is a group of operations for changing the

internal state of the PM and the related commands for the syntax tree building.

3. Construction of routers – all reachable terminal states for all key positions in

the automata are collected. They are stored sorted (by the value of the transition's

terminal symbol that led to each terminal state) in a static read-only memory to speed

up the search for a next state of the PM at runtime. The object that contains the sorted

terminal states reachable from a given key position in the automata is called a router

and each of its elements – a path.

4. Creation of a control layer – to control the execution of the PM, a set of

objects is created, which are using the tunnels and the routers to form a control layer,

with the specific functionality. Each control object can be in one of several control

states. The control objects signify the information to “where” in the automata the PM

has reached, and the control states – “which” operations must be performed.

5. Parsing – a direct parsing is performed, or a parser is generated to a source

code for a target programming language that can be integrated in other software tools.

In TGS there is a visual debugger that performs the parsing and builds a syntax tree

directly, in forward and backward steps, for a given grammar and an input.

In addition to the possibilities to strictly define for a PM whether there is a lexer

or not, a third option is possible: the recognition language to be described by two

separate grammars, lexer and parser grammars [39], as the capitalization of the names

of the rules in the grammars to be without special significance. Then, the functionality

that the not recognized characters by the lexer’s grammar are converted into tokens

(as how a CL works, which is described in [1]), allows the lexer grammar to possibly

be without rules. That will practically make the recognition of the input data for the

given language only on the basis of the parsing grammar [39]. It effectively combines

the previous two strict options, because the number of grammars becomes the choice

of the language developer, not a strict definition of how the PM works.

3. Problem

The problem addressed in the article is to make an appropriate connection between

the lexer and the parser, in such a way that the parser performs the parsing not only

by using the tokens names, but also their lexemes, in a way that does not significantly

change the speed of the parsing, but adds useful functionality.

The meta syntax ABNF (Internet standard #68) is widely used to describe the

syntax of various popular Internet protocols, standards, and data structures [40, 41].

The terminal grammar elements in the ABNF standard are described by terminal

values. By definition, each terminal value consists of characters, as the matching is

defined as not sensitive to the capitalization of the individual characters in the value

[7] (later called only sensitivity). Due to the need to make the meta syntax more

expressive, it has been upgraded [42] with a richer syntax that enables the writing of

 131

grammars with explicitly selected sensitivity for each terminal value. The grammars

described in the meta syntax of ABNF are context-free, although element repetitions

and the selectable sensitivity give more expressive power in this direction than BNF

[43] and the variants of EBNF [7, 8]. Some tools have a setting that is used during

the generation of the PM, whether the parser will work sensitively or not regarding

the characters found in the input [10].

Despite its great expressive power, the ABNF standard does not have a syntax

that enables the writing of grammar rules that accept tokens based on their names and

lexemes. In order for this functionality to be possible, an addition to the standard is

needed. The addition (which is a better choice than creating a completely new meta

syntax) shall be minimal so as not to create too many difficulties in its use.

4. Solution

We propose a solution by assuming that the PM is generated automatically, the

architecture of the PM is according to [1], and the parsing algorithm is TP. The

section describes the working with tokens in a way that is more limited in

functionality than the recognition by regular expressions of conditions [21], but

which in turn preserves the linear rate of parsing while offering sensitive and

insensitive matching of the lexemes in the tokens. All relevant definitions from [1]

are transferred into this article and are formally defined. The formal definitions of an

advanced grammar follow with the note that a character might not be a Unicode code

point, because the proposal in [1] that the alphabet of the parser is made of characters

(that are Unicode code points) might not be accepted by a given parsing machine

architecture.

4.1. Formal definitions

A module is classified as an emitter, when it emits tokens to another module that in

turn is classified as a receiver. For two modules, one emitter and one receiver, the

following is defined:

• Φ is the alphabet set of characters that the emitter uses internally.

• G is the grammar that is used by the emitter.

• Θ is the set of rules names in G. If ∄ G then Θ = ∅, where ∅ is an empty set.

• A lexeme is a sequence (en) 𝑛=0
∞ , where en ∈ Φ.

• An attribute is a tuple (l, v), where l is a label, v – a value, as their meanings

and domains are defined separately per attribute.

• A token is a tuple (t, n, e, a), where t ∈ {t-character, t-sequence, t-limit,

t-eof} is the token’s type, n – the token’s name (its domain is denoted by the token

type later), e – the token’s lexeme, and a – the token’s attributes set.

• A token with a t-character type is the tuple (t-character, φ, (φ), a), where

φ ∈ Φ.

• |e| denotes the number of elements in e.

 132

• A token with a t-sequence type is the tuple (t-sequence, c, e, a), where c ∈ Θ,

e is a lexeme, and |e| > 0. The unbounded length of e makes the t-sequence tokens

elements of an unbounded set.

• A token with a t-limit type is the tuple (t-limit, h, e, a), where h is a sequence

(hn) 𝑛=1
|𝛩|

, hn ∈ Θ, and |e| > 0.

• A token with a t-eof type is the tuple (t-eof, null, (), a), where null means that

no value is available.

• Φ ≠ ∅ is assumed from now on, because if Φ = ∅ then the emitter would not

be able to emit any of the hereby defined token types, except t-eof.

After the tokens are emitted from the emitter they will be received by the

receiver that has its own grammar, defined as follows.

• An advanced grammar is the tuple (C, N, Σ, Ω, R, S), where:

o C is a finite set of categories, where a category is a rule name that

could be in the emitter’s grammar as an actual rule name;

o N is a non-empty and finite set of rule names;

o Σ is a finite set of characters;

o Ω is a finite set of advanced symbols, defined as follows:

▪ Ωc is a set of character symbols (called s-character for

short);

▪ Ωp is a set of phrase symbols (called s-phrase for short);

▪ Ωе is a set of eof symbols (called s-eof for short);

▪ Ωc ⋂ Ωp = ∅, Ωc ⋂ Ωe = ∅, and Ωp ⋂ Ωe = ∅;

▪ Ω = Ωc ⋃ Ωp ⋃ Ωe.

o R is a non-empty and finite set of all grammar rules; the rules of а

not advanced grammar use an alphabet of Σ, but the rules in R use an

alphabet of Ω instead; the form of the rules is defined later;

o S is a non-empty set of all rules that each of them could be a starting

rule, S ⊆ R.

• A set M = {Ms, Mi}, where Ms indicates case-sensitive matching (binary

equality operation), and Mi – case-insensitive matching.

• An s-character is a tuple (σf, σt, m), where σf ∈ Σ, σt ∈ Σ, σf ≤ σt, and m ∈ M.

The name of a t-character input token matches with the s-character’s character range

[σf .. σt] sensitively when m = Ms and insensitively when m = Mi.

• A phrase is a finite sequence (en)n∈ℕ, where en ∈ Σ.

• An s-phrase is a tuple (c, m, p), where category c ∈ C, m ∈ M, and p is a

phrase. During the parsing, the name of a t-sequence input token matches with the

category of the s-phase. The t-sequence’s lexeme matches (character by character)

with the s-phrase’s phrase sensitively when m = Ms and insensitively when m = Mi.

If |p| = 0 then only the t-sequence’s name and the s-phrase’s category match

(the t-sequence’s lexeme is accepted as is). If |p| = 0 then the element is called s-any

else each s-phrase element that has m = Ms is called an s-sensitive element and when

m = Mi – s-insensitive.

The unadvanced context-free, context-sensitive and unrestricted grammars [5]

are special cases of the advanced context-free, advanced context-sensitive and

 133

advanced unrestricted grammars respectively when C = Ωp = Ωe = ∅, |S| = 1, and

each s-character has σf = σt and m = Ms. The different grammar types are advanced

as follows:

• The advanced context-free grammar has its rules in the form: r → α, where

r ∈ N, α ∈ (N ∪ Ω)*, and the asterisk represents the Kleene star operation. The

previously used context-free grammars by the TP algorithm from now on change to

advanced context-free grammars.

• The advanced context-sensitive grammar has its rules in the form:

αrβ → αqβ, where α,β ∈ (N ∪ Ω)*, r ∈ N, q ∈ (N ∪ Ω)+, and the plus represents the

Kleene plus operation.

• The advanced unrestricted grammar has its rules in the form: α → β, where

α ∈ (N ∪ Ω)+, and β ∈ (N ∪ Ω)*.

The following conclusions can be made:

• One advanced grammar generates a set of languages, one per starting rule,

each with its own set of strings.

• If Θ ≠ ∅ and Θ ⊆ C then all of the received t-sequence tokens can be

recognized by the receiver.

• If Θ ≠ ∅ and Θ ⋂ C = ∅ then none of the received t-sequence tokens can be

recognized by the receiver. Upon receiving them, the receiver will simply account

them as an input error.

• If Θ ≠ ∅ and Θ – (Θ ⋂ C) ≠ ∅ then some t-sequence tokens can be recognized,

but not all.

• If Φ ⊆ Σ then all of the received characters (in the t-character tokens and in

each lexeme inside the t-sequence tokens), can be recognized by the receiver.

• If Φ ⋂ Σ = ∅ then only the t-eof tokens can be recognized by the receiver.

• If Φ – (Φ ⋂ Σ) ≠ ∅ then some tokens can be recognized, but not all.

• A perfect configuration (the receiver expects exactly the tokens that could

possibly be emitted from the emitter) is when Θ = C and Φ = Σ.

• A flawless configuration (all tokens emitted from the emitter can be used

for matching by the receiver; the receiver expects a wider range of tokens and/or

characters) between the emitter and the receiver is when (C – Θ) ∪ (Σ – Φ) ≠ ∅. Such

a configuration is assumed from now on.

The advanced grammar is a finite grammar with a finite set of s-phrases (not as

powerful as a grammar with infinite terminal symbols), but still allows the matching

of a token’s lexeme with an explicitly chosen lexeme content (case-sensitively or

insensitively) or a lexeme with any content.

In relation to the formal definitions some informal notes can be made:

• A receiver module should not use advanced grammars with Ωp ≠ ∅ when it

directly receives its input from a scanner (the scanner has no grammar (Θ = ∅ when

∄ G) and the expected categories in the receiver’s grammar (C ≠ ∅ when Ωp ≠ ∅) will

never be matched, because no t-sequence token will ever be emitted from the

scanner).

 134

• If there is more then one lexer, one after another, then the lexers after the first

might use advanced grammars, because the previous lexer might output t-sequence

tokens.

• The same is valid for the parser grammar – it should not be advanced when

there are no lexers before the parser module, but only a scanner.

• One module that uses an advanced grammar must know its previous

module’s grammar rules set and alphabet, to be able to handle the received tokens.

4.2. Advanced grammar meta syntax

The ABNF standard adequately describes the syntax for grammars that accept

characters, and there is no need for a change in this direction. The addition to

recognize t-sequence tokens is that a new ABNF element must be introduced, with

which to be possible the writing of grammar elements that will match to this type of

tokens. For the purpose of this article, the terminal values (defined in the ABNF

standard) in a parsing grammar will be a string of s-character tokens (and according

to the formal definitions match to the names of the tokens received by the receiver,

when the tokens are of t-character type). The base ABNF standard is used to describe

context-free grammars where the matching is insensitive by default. This means that

m = Mi for each element in an ABNF grammar. The ABNF case-sensitive upgrade

of the base standard applies to the matching of the t-character tokens, by allowing the

grammar to have a matching type (m ∈ M) explicitly selected for each s-character

element.

The matching of a t-sequence token must be possible only with its name, and

optionally with its lexeme. The addition to the standard [6] shown in Fig. 1 is

sufficiently expressive for this purpose (the case-sensitive string support from [42] is

required). The addition also contains a way to describe an s-eof token with the syntax

in rule eof-val.

element =/ phrase-val / eof-val
phrase-val = "{" rulename 0*1 phrase-content "}"
phrase-content = "," (char-val / num-val / prose-val)
eof-val = "{" %s"$EOF" "}"

Fig. 1. An advanced grammar meta syntax as an ABNF meta syntax addition

Rule phrase-val in Fig. 1 describes the syntax of one s-phrase grammar element.

If a hypothetical language is described with lexer and parser grammars then the parser

grammar can reference the names (the ABNF standard has the rulename rule) of the

t-sequence tokens (received from the lexer) and possibly the lexemes in the tokens

(with the syntax of rule phrase-content in Fig. 1).

word = 1*(%x41-5A / %x61-7A)

Fig. 2. Example of a lexer grammar

document = {word} SP some-hello SP large-world "!"
some-hello = {word, %i"Hello"}
large-world = {word, %s"WORLD"}

Fig. 3. Example of a parser grammar

 135

The lexer grammar in Fig. 2 and the parser grammar in Fig. 3 describe an

exemplary language. The lexer grammar has a rule with a name word, which accepts

one or more lowercase (ASCII codes in hexadecimal format from 61 to 7A inclusive)

or uppercase (ASCII codes in hexadecimal format from 41 to 5A inclusive) latin

characters. For each input sequence of t-characters that the lexer receives from the

scanner one t-sequence token will be generated. The parsing grammar has a start rule

document, which first accepts a t-sequence token named word, then a space

(s-character advanced symbol that matches with a t-character token with name “”

(rule SP is defined in ABNF [6] and recognizes exactly one space – hexadecimal

format 20)), followed by an insensitively matched t-sequence token with a name word

and lexeme “Hello”, then another space, followed by a sensitively matched lexeme

“WORLD”, followed by an exclamation mark (that in order to be matched the lexer

must emit a t-character token with a name “!”, as this will happen when the input

character is not recognized by rule word in the lexer grammar, in the same way as the

two spaces).

4.3. Conflicts

As a result of defining the whole recognition process not only for terminal symbols

but for advanced symbols, in addition to the well-known conflicts between terminal

symbols (simultaneously reachable during execution), additional conflicts are formed

in the parser grammar – conflicts between s-phrase elements, as well as conflicts

between s-eof tokens. Possible conflicts are visualized with a Venn diagram in

Fig. 4 and are as follows:

• two s-eof elements are in conflict with each other;

• two s-sensitive elements are in conflict when they have the same names and

exactly the same phrase;

• two s-insensitive elements are in conflict when they have the same names

and their phrases are the same if the capitalization is ignored;

• two s-any elements are in conflict when they have the same names;

• s-sensitive and s-insensitive elements are in conflict when they have the same

names and the phrase in the s-sensitive element differs only in the capitalization of

the characters from the phrase in the s-insensitive element;

• s-sensitive and s-any elements are in conflict when they have the same

names;

• s-insensitive and s-any elements are in conflict when they have the same

names;

• s-sensitive and s-insensitive and s-any elements are in conflict when they all

have the same names, and the phrase in the s-sensitive element differs only in the

capitalization of the letters from the phrase in the s-insensitive element.

Fig. 4. Possible conflicts in an advanced grammar

 136

Parser grammar with different conflicts is shown in Fig. 5. If a PM has a parser

(using the grammar of Fig. 5) and a lexer (using the grammar of Fig. 2), then during

parsing the following conflicts are possible:

• elements {word}, {word, %i“json”} and {word, %s“JSON”} are in conflict

for a t-sequence token with a name word and a lexeme “JSON” (capital letters);

• elements {word} and {word, %i“json”} are in conflict for a t-sequence token

with a name word and a lexeme “JsОn” (for the different capitalizations of the

letters);

• the s-character elements (concatenations from 4 to 7 inclusive in Fig. 5) will

never create a conflict during parsing, because the lexer will emit t-sequence tokens

(with names word) rather than individual t-character tokens.

If there is no lexer (the grammar of Fig. 2 is not used for lexing or the lexer

grammar is empty), then each input character will be sent directly from the scanner

to the parser. The tokens will be of type t-character with names and lexemes that

consist of the respective characters. Then the following conflicts are possible:

• elements %i“json”, %s“JSON”, %x4A (the hexadecimal code of capital

letter “J”) and the character range %x41-5А (capital letters from “A” to “Z”

inclusive) are in conflict for a capital letter “J”;

• the s-phrases (concatenations from 1 to 3 inclusive in Fig. 5) will never create

a conflict during parsing, because there is no lexer that emits t-sequence tokens.

main = {word} / {word, %i"json"} / {word, %s"JSON"}

 / %i"json" / %s"JSON" / %x4A / %x41-5A

Fig. 5. An advanced grammar with conflicts

4.4. Phrase state machine

A Phrase State Machine (PSM) is an abstract machine that can be in exactly one

(current) state of a finite number of states at any given time. The information needed

to change the current state, from one state to another, is stored in a transition. To be

able a PSM to use a transition, to change its current state, an input is needed (a non-

empty sequence of characters). PSM is a tuple (Φ, Σ, M, Q, δ, F, q0), where:

• Φ is the alphabet set of characters that the emitter uses internally (denoted

previously);

• Σ is the alphabet of the advanced grammar used by the receiver (denoted

previously);

• M is the matching set of the advanced grammar (denoted previously);

• Q is a non empty and finite set of states;

• δ is a set of transitions in the form:〈σ, qs → qd, m〉, where σ ∈ Σ is a

character that has to match exactly to the current input character, qs ∈ Q is the source

state (the current state before the matching of σ), qd ∈ Q is the destination state (the

current state after the matching of σ), and m ∈ M is the reason for which the transition

is created (by the use of a sensitive (then m = Ms) or an insensitive (then m = Mi)

s-phrase, explained later);

 137

• F is non empty set of final states, F ⊆ Q, in the form: f(q) = [n, m], where

f(q) ∈ F, q ∈ Q, n is a natural number (an index for the recognized lexeme), and

m ∈ M;

• q0 is the starting state, q0 ∈ Q, and f(q0) ∉ F.

Invariants for the PSM are as follows:

a) there are no sequence of transitions that lead from one state to itself;

b) no two transitions have the same σ and qs values;

c) if there are two transitions with the same qs values, both have m = Mi, and

their σ characters differ only in their character case variants then both of the

transitions must have the same qd;

d) every sequence of transitions from q0 to another state is made of zero or more

transitions that have m = Ms followed by zero or more transitions that have m = Mi.

Fig. 6. Insensitive phrase state machine execution

A PSM is deterministically processing its input one character at a time. After

each change of its current state, the next input character, if any, becomes the current

input character. The current state of a PSM is denoted as qc and is changed on the

basis of the PMS’s input by the use of its transitions. The execution starts with

qc = q0. The PSM has two different modes of execution, as follows:

• sensitive – executes as a traditional finite state machine. After all of the

PSM’s input characters are used, the result is f(qc) when f(qc) ∈ F and null otherwise;

• insensitive – executes similarly to the sensitive mode, but by taking into

account the different case variants of the PSM’s input characters. This execution is

formally described with the pseudocode in Fig. 6, where the uppercase and lowercase

functions return the respective case variants of the character (or the character itself,

if it has only one variant). Тhe notation a.b means that b is a member of a.

 138

4.5. Phrase to lexeme matching

From a practical point of view, if one compares the characters in a token with the

expected characters from the reachable s-phrase elements in a router, this will take

time in the worst case O(p*max(k, n)), where p is the number of s-phrase elements in

the advanced grammar (p = |Ωp|) involved in the search, k is the length of the longest

phrase in any s-phrase, n is the length of the lexeme that is used for the match, once

it is recognized (which is a finite number at runtime, and might not be predictable in

advance), and max is a function that returns the greater of two arguments.

The following is a description of an algorithm that allows the use of the lexeme

e for time O(1), as for each created t-sequence token, |e| operations are required. This

means that the run time is O(1) for each individual character of the input data, or O(n)

operations in the worst case, with n being the number of input characters (if known).

Because the lexeme is used as a functional part of the token (it is used for recognition)

and it is unlimited in size, this changes the accepted definition that the input of the

parser is made of elements from a finite set.

To have the functionality described up the following has to be done during the

compilation of the PM:

• All s-phrase elements from the parser grammar are placed in two lists, based

on the s-phrase matching types: a list with s-sensitive elements (s-list), and a list with

s-insensitive elements (i-list). These lists could be sorted in any way.

• А PSM (as the one shown in Fig. 7) is created from these two lists, iteratively,

as follows:

o create the single starting state q0;

o merge (create PSM states and transitions) each s-list phrase in turn,

one character at a time; maintain a current qc state during the merging

of each phrase, starting from qc = q0. For the current character

σ ∈ Σ in the current phrase, any state qd, and transition a =〈σ, qc →

qd, Ms〉: if a ∉ δ, then create a new state qd and add the missing

transition a to δ; this ensures that invariant b in the formal definitions

of the PSM is maintained; continue the merging from the next state

(qc = qd) for the next phrase’s character. After all characters are

merged and the current state is not a final state (f(qc) ∉ F) then qc

must be made a final state for the PSM, and a unique index i be set

to it: add f(qc) = [Ms, i] to F;

o merge all i-list phrases in turn, one character at a time, by starting

from q0, but simultaneously with a lower-case and upper-case

variants for each phrase character, in the same way as for the s-list

phrases, but use Mi instead of Ms; the new states that are created (or

reused) in this step must be on at most one new transition sequence,

as for example are the gray states in Fig. 7; this ensures that invariant

d in the formal definitions of the PSM is maintained;

o each unique index in a final state is called phrase index, and when

the final state has m=Ms then the phrase index will be called

sensitive phrase index.

 139

• Create a one based array of natural numbers (called later filter array). Iterate

again the s-list elements and for each: a) execute the PSM insensitively with an input

equal to the phrase of the s-list element, and b) push into the filter array the phrase

index from the result of the PSM execution. For the grammar in Fig. 5, the PSM is in

Fig. 7 and the filter array have one element at array index 1 with a value of 2.

Fig. 7. Phrase state machine created from the grammar in Fig. 5

During the execution of the PM in each token of type t-sequence is added an

attribute labeled “phrase index” and a value. This value is equal to the result of the

execution of the built PSM sensitively with an input equal to the lexeme in the

t-sequence token. The attribute can be added by the lexer creating the token or by the

parser at the time the tokens are received by the lexer.

When the parser module is parsing, it uses the t-sequence token’s name and its

associated phrase index value. Although this value is used, which belongs to a set,

upper bounded by the number of unique s-phrase elements, the possible tokens are

an infinite number, due to the infinite number of lexemes that can be inside. In other

words, the parser accepts tokens by name and with an infinite lexeme length,

recognizing only a finite number of them, as they are explicitly written in the parser

grammar as s-phrases with their adjacent phrase, and tokens with any lexeme, when

the phrase in an s-phrase element has zero characters. However, this is only a function

of the parser, how to process the infinite tokens, and is not necessarily known to the

lexer when it is creating the t-sequence tokens.

5. Integration into the Tunnel Parsing Algorithm (TP Algorithm)

To improve the TP Algorithm with the functionality described in this article, the

routers used by the algorithm must be able to search not only for t-character tokens,

but also for t-sequence and t-eof tokens. For this purpose, four new router types are

added to the already existing single type of router – the one for s-characters (called

r-character in this article). The types of routers are as follows:

• r-character – this router has only paths for the reachable s-character

elements. For this reason it accepts a search only for t-character tokens that could

eventually match with some s-character element;

• r-sensitive – this router has only paths for the reachable sensitive s-phrase

elements. The sensitive phrase index of each s-phrase element is calculated by

executing the PSM sensitively and it is used as a sorting criteria of the paths in the

router; the router accepts searches for a t-sequence token that has a sensitive phrase

index; if there is a reachable s-phrase element then the particular control state (of the

PM’s control layer) in the found path is the search result;

• r-insensitive – this router has only paths for the reachable insensitive

s-phrase elements. The phrase index of each element is calculated by executing the

 140

PSM insensitively and it is used as a sorting criteria of the paths in the router; this

router accepts a search for a t-sequence token by using its name and a phrase index;

if the token used for the search has а sensitive phrase index then the index is first

filtered through the filter array; the search in the r-insensitive router is performed

after the search in the r-sensitive, if no control state is found there;

• r-any – this router has paths for all of the reachable s-phrase elements, sorted

only by their name; the router accepts a search only for a token’s name, without the

use of the phrase index; the search in this router is performed last if no control state

is found in the r-sensitive and r-insensitive routers;

• r-eof – this router accepts search only for t-eof tokens, because it has paths

only for the reachable s-eof elements.

The number of searches in routers from a given position in the automata created

from the parser grammar, for one t-sequence token can be from one to three (one

search in r-insensitive, r-sensitive and r-any routers in the worst case), as this is a

linear increase only for those places in the grammar where there is such a need and

does not change the linearity of the TP Algorithm. The search for t-character and

t-eof tokens is only in their respective routers: r-character and r-eof. For those

languages that are described by only one parsing grammar that is not advanced, the

search during the execution of the parsing machine will be only once per reachable

advanced symbol, because there will be only r-character routers.

To search for a path in a router (based on a token) that accepts s-phrases (these

are r-sensitive, r-insensitive, and r-any), the phrase value index is used (calculated

from the token’s lexeme), and there is no direct comparison of the characters in the

lexeme with the phrases characters during the execution of the parsing algorithm. The

size of the tokens has a constant influence on the execution time of the parser as a

module of the PM, and should not increase the complexity of other parsing algorithms

that use advanced grammars and PSM as defined here. If the lexer creates the tokens

attributes with the phrase value index, then the length of the lexemes adds no

overhead on the parser during their usage for the search of a path in a router, because

the search uses the phrase value index directly, and PSM will not be used by the

parser. However, this means that the lexer must know the set of s-phrase elements of

the parser grammar in order to create and use the PSM.

When the tokens that a parser recognizes are described as in Section 4, it

becomes possible:

• Only one grammar to describe a language, when the lexer grammar is

considered empty and the scanner creates one t-character token for each character.

For example, the grammar of the JavaScript Object Notation data exchange format

[40] can be used directly for parsing from Tunnel Grammar Studio [39], which

generates parsers to program source code from ABNF grammars that process the

input data in the manner described in this article.

• The parser has access to the input characters. That enables the writing of

character ranges, as defined in the ABNF standard, directly in the parsing grammar:

for example, the declaration %×30-39 in a parser grammar, declares an s-character

element that can match with the following tokens: (t-character, “0”, (“0”), ()),

(t-character, “1”, (“1”), ()), ... , and (t-character, “9”, (“9”), ()). In a similar way the

 141

declaration %i“A” declares a s-character element that can match with tokens:

(t-character, “а”, (“а”), ()) and (t-character, “А”, (“А”), ()).

• The grammar developer may completely ignore the order of the rules in the

parsing grammar, because their arrangement does not affect the language.

• Thanks to the way tokens are used, languages that are already described with

one grammar can be used directly, and there is no need to extract the terminal symbols

in another (lexer) grammar, which can be a very time consuming and error prone

process. For large grammars, the developer may be forced to develop the parser by

hand, rather than using a parser generator, because with a large number of changes,

it becomes more likely for the language to be changed by the developer by mistake

without this to be immediately evident.

6. Conclusion

This article has described an approach of how a PM processes an input. A minimal

addition to the ABNF standard has been proposed that enables the use of the

presented approach. It is shown that a formal language can be described with only a

parser grammar and optionally (by the opinion of the grammar developer) with an

additional lexer grammar. The tokens received by the parser can be matched not only

by their name, but by their lexemes’ characters (case sensitively or insensitivеly) as

well. This is done by having more than one type of token. The t-character token has

a name made from a single character and is emitted by a scanner or by the lexer

(because there is no full lexeme to be matched based on the lexer grammar). The

t-sequence token has a name from the lexer grammar rule used to recognize the

token’s lexeme. Its lexeme can be subsequently matched in the parser grammar by

the addition to the ABNF meta syntax in this article. If a specific grammar formalism

can be transformed to an advanced CFG then the TP algorithm can perform on the

basis of this transformation, and by this support the source formalism indirectly.

The main contributions of the article are six.

• A formal description of an advanced grammar is made and is used for formal

advancement of the three grammar types: the context-free, the context-sensitive, and

the unrestricted grammars. The advanced grammar formalism, as defined in the

article, might be used for an advancement of other grammar types as well.

• The advanced phrase symbol is presented as a part of an advanced grammar

– a new type of symbol that matches with the token’s lexeme case sensitively or

insensitively.

• Character range elements can be directly written into a parser’s grammar,

because the lexer’s input character sequences that are not accepted by any lexer’s

grammar rule are directly sent to the parser. Тhis means that the lexer always (if its

technical limits are not exceeded) emits tokens to the parser.

• Eight new conflict cases between different combinations of advanced

symbols, inside an advanced grammar, are shown. They are an addition to the popular

conflicts between terminal symbols that are characters.

• A new specially designed PSM is formally defined, its runtime pseudo code

is given, and its iterative building algorithm on the base of an advanced grammar is

 142

described in steps. Each t-sequence’s lexeme is classified by the PSM (built for the

particular advanced grammar), and is used with a O(1) time during the t-sequence to

phrase symbol matching (the same amount of time as a character to character

matching). The classification by the PSM takes at most O(k) time, where k is the

lexeme’s length. The classification is done only one time per t-sequence type of

token, because the result of the classification is stored inside the token’s attributes.

That makes the total runtime overhead of the PSM classification O(n) for an input of

length n. If the grammar used by the TP algorithm is not advanced (there are no phrase

symbols, but only character symbols), then there will be no overhead at all, because

no classification will ever be performed.

• New routers for the Тunnel parsing algorithm are defined that enable it to use

an advanced context-free grammar.

As a future extension of the presented approach we shall explore the possibility

that after the token’s lexeme is fully used the t-sequence token to disassemble in the

module’s input to t-character tokens, one per each lexeme character, and then they to

be subsequently used for matching with the reachable character symbols. That means

that the token to be divisible, instead of indivisible [44]. However, this kind of change

shall be carefully examined, because it impacts the formally defined advanced

grammars determinism.

Contribution. Nikolay Handzhiyski developed the concept, the theoretical formalism (based on his

previously existing software implementation in Tunnel Grammar Studio) and the initial draft under the

thorough supervision, encouragement and critical feedback of Elena Somova. Both authors performed

substantial revisions, verified the formal definitions, and contributed to the final draft.

R e f e r e n c e s

1 . H a n d z h i y s k i, N., E. S o m o v a. A Parsing Machine Architecture Encapsulating Different

Parsing Approaches. – International Journal on Information Technologies and Security

(IJITS), Vol. 13, 2021, No 3, pp. 27-38.

2. Unicode Standard.

https://www.unicode.org/

3. D e r e m e r, F. L. Practical Translators for LR(K) Languages. Massachusetts Institute of

Technology, USA, 1969.

4 . A h o, A., J. U l l m a n. The Theory of Parsing, Translation, and Compiling. Prentice-Hall, USA,

1972.

5 . C h o m s k y, N. Three Models for the Description of Language. – IRE Transactions on Information

Theory, Vol. 2, 1956, No 3, pp. 113-124.

6 . D. Crocker, P. Overell, Eds. ABNF RFC 5234. Network Working Group, 2008.

7. W i r t h, N. What Can We Do About the Unnecessary Diversity of Notation for Syntactic

Definitions? – Communications of the ACM, Vol. 20, 1977, No 11, pp. 822-823.

8. ISO/IEC 14977:1996(E) Information Technology – Syntactic Metalanguage – Extended BNF.

http://standards.iso.org/ittf/PubliclyAvailableStandards/

9 . D o s R e i s, A. J. Compiler Construction Using Java, JavaCC, and Yacc. Wiley-IEEE Computer

Society Pr, 2011.

10. M o e s s e n b o e c k, H. Coco/R – A Generator for Fast Compiler Front Ends. Zurich, ETH, 1990.

11. A h o, A. V., M. S. L a m, R. S e t h i, J. D. U l l m a n. Compilers: Principles, Techniques, and Tools.

Addison-Wesley Longman Publishing, Co., USA, 2006.

12. S z a f r o n, D., R. N g. LexAGen: An Interactive Incremental Scanner Generator. – Software:

Practice and Experience, Vol. 20, 1990, No 5, pp. 459-483.

https://www.unicode.org/
https://ieeexplore.ieee.org/author/37087815990
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4547527
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4547527
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=22738
https://dl.acm.org/toc/cacm/1977/20/11
https://www.wiley.com/en-au/search?pq=%7Crelevance%7Cauthor%3AAnthony+J.+Dos+Reis
https://www.semanticscholar.org/author/Hanspeter-Moessenboeck/2065851823

 143

13. R a b i n, M. O., D. S. S c o t t. Finite Automata and Their Decision Problems. – IBM Journal of

Research and Development, Vol. 3, 1959, No 2, pp. 114-125.

14. V a n W y k, E. R., A. C. S c h w e r d f e g e r. Context-Aware Scanning for Parsing Extensible

Languages. – In: Proc. of 6th International Conference on Generative Programming and

Component Engineering, October 2007, pp. 63-72.

15. A h o, A. V., R. S e t h i, J. D. U l l m a n. Compilers: Principles, Techniques, and Tools. Addison-

Wesley Longman Publishing, Co., USA, 1986.

16. A y c o c k, J., R. H o r s p o o l. Schrödinger’s Token. – Software: Practice and Experience, Vol. 31,

2001, No 8, pp. 803-814.

17. J o h n s o n, S. C. YACC: Yet Another Compiler-Compiler. CiteSeer, 2001.

18. S a l t z e r, J. H. Traffic Control in a Multiplexed Computer System. Massachusetts Institute of

Technology, USA, 1966.

19. B a r v e, A., B. K. J o s h i. Parallel Lexical Analysis of Multiple Files on Multi-Core Machines. –

International Journal of Computer Applications, Vol. 96, 2014, No 16, pp. 22-24.

20. K l e e n e, S. Representation of Events in Nerve Nets and Finite Automata. – Annals of Mathematics

Studies, Vol. 34, 1956, pp. 3-41.

21. R u s, T., T. H a l v e r s o n. A Language Independent Scanner Generator. CiteSeer, 1999, pp. 1-35.

22. ANTLR.

https://www.antlr.org/

23. JavaCC.

https://javacc.github.io/javacc

24. V i s s e r, E. Scannerless Generalized-LR Parsing. University of Amsterdam, Netherlands, 1997.

25. A f r o o z e h, A., A. I z m a y l o v a. One Parser to Rule Them All. – In: ACM International

Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software

(Onward!), October 2015, Chicago, USA, pp. 151-170.

26. V a n d e n B r a n d, M., J. S c h e e r d e r, J. V i n j u, E. V i s s e r. Disambiguation Filters for

Scannerless Generalized LR Parsers. – In: Proc. of 11th International Conference of Compiler

Construction, April 2002, pp. 1-17.

27. T u r i n g, A. On Computable Numbers, with an Application to the Entscheidungs Problem. – In:

Proc. of the London Mathematical Society. Vol. 41. 1937, pp. 230-265.

28. K l e e n e, S. Representation of Events in Nerve Nets and Finite Automata. US Air Forse, USA,

1951.

29. T h o m p s o n, K. Programming Techniques: Regular Expression Search Algorithm. –

Communications of the ACM, Vol. 11, 1968, No 6, pp. 419-422.

30. K ü h l, B., A.-T. S c h r e i n e r. Objects for Lexical Analysis. – ACM SIGPLAN Notices, Vol. 37,

2002, No 2, pp. 45-52.

31. S a r a i v a, J. HaLeX: A Haskell Library to Model, Manipulate and Animate Regular Languages.

– In: Proc. of ACM Workshop on Functional and Declarative Programming in Education

(FDPE/PLI’02), October 2002.

32. B r z o z o w s k i, J. A. Canonical Regular Expressions and Minimal State Graphs for Definite

Events. – In: Proc. of Symposium on Mathematical Theory of Automata, MRI Symposia

Series. Vol. 12. 1963, pp. 529-561.

33. R e v u z, D. Minimisation of Acyclic Deterministic Automata in Linear Time. – Theoretical

Computer Science, Vol. 92, 1992, No 1, pp. 181-189.

34. B e r s t e l, J., L. B o a s s o n, O. C a r t o n, I. F a g n o t. Minimization of Automata. – In:

Automata: From Mathematics to Applications. European Mathematical Society, 2006.

35. L e s k, M., E. S c h m i d t. Lex – A Lexical Analyzer Generator. 1990.

36. Y a n g, W., C.-W. T s a y, J.-T. C h a n. On the Applicability of the Longest-Match Rule in Lexical

Analysis. – Computer Languages Systems & Structures, Vol. 28, 2002, No 3, pp. 273-288.

37. H a n d z h i y s k i, N., E. S o m o v a. Tunnel Parsing with Countable Repetitions. – Computer

Science, Vol. 21, 2020, No 4, pp. 441-462.

38. V a n D e u r s e n , A . , P . K l i n t , J . V i s s e r . Domain-Specific Languages. – ACM

SIGPLAN Notices, Vol. 35, 2000, No 6, pp. 26-36.

39. Tunnel Grammar Studio.

https://www.experasoft.com/products/ tgs/

https://www.researchgate.net/scientific-contributions/Michael-O-Rabin-8183161?_sg%5B0%5D=MAWvb932NvrNDo4XeXuJGcg8iMJdlbaW8gVg1EhxfMYYBmHB3yXqwfLurTkjAvHjkARj-oE.AyZlMqGbqETiz2waDJLLzn6tFTynNZq-fE7lxcP7bcUH0lESMKyiCLYDpsbhaubEwPe6k4zbmQQR8YOWo2OUqQ.WO_i5C8-YKrEkU4lcFw7Gk0yNHLE-pmZr3p00xwZzoJkRr7lMXzMO2HjWYoCosr9PtTiiWzWsqbTw_FaKL2PRw&_sg%5B1%5D=IjPJQRpcPcCjfadrHabPJHL9MjrkNBAOznXcOtQ9TRoaxSz6zLiP-YdCRVQesNU0uItSUDs.gp6gO3nsHYCKPMLDUu_MhHQPvCND4Yk1LZdua6YUm75XzyKsvf0dsFPs2415_8DFAFaSo3h1OgTGzXAyasvt-g
https://www.researchgate.net/profile/Dana-Scott-3?_sg%5B0%5D=MAWvb932NvrNDo4XeXuJGcg8iMJdlbaW8gVg1EhxfMYYBmHB3yXqwfLurTkjAvHjkARj-oE.AyZlMqGbqETiz2waDJLLzn6tFTynNZq-fE7lxcP7bcUH0lESMKyiCLYDpsbhaubEwPe6k4zbmQQR8YOWo2OUqQ.WO_i5C8-YKrEkU4lcFw7Gk0yNHLE-pmZr3p00xwZzoJkRr7lMXzMO2HjWYoCosr9PtTiiWzWsqbTw_FaKL2PRw&_sg%5B1%5D=IjPJQRpcPcCjfadrHabPJHL9MjrkNBAOznXcOtQ9TRoaxSz6zLiP-YdCRVQesNU0uItSUDs.gp6gO3nsHYCKPMLDUu_MhHQPvCND4Yk1LZdua6YUm75XzyKsvf0dsFPs2415_8DFAFaSo3h1OgTGzXAyasvt-g
javascript:void(0);
javascript:void(0);
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/1289971
https://dl.acm.org/doi/proceedings/10.1145/1289971
https://www.researchgate.net/scientific-contributions/Stephen-C-Johnson-2031534469?_sg%5B0%5D=FumbcZWRkFcLFbtNqom_aB2FHPocXWWZ-w_WWH9p3Cq0D7XWUs9AkVz74BrWczTNMPWzhm0.EcDhw0f0bFxwf9WUtTkh1DK644wZuIyerpLCapBleExqut_WIsL3t6MoPCo4EQEK5GMDRZYhctA_yXQ3JeVEnA.1SX2BTz4VWlp2V9lVG0Cd_Mf7D_VlujdhmfFBI74hJPuIg0VUgEF5R-rvqmfISZsG6JT8gtPREJG8zjuGJjO-A&_sg%5B1%5D=ob9e0y6LjWbO_b0jt99EIaiaVQhnjqSz2Y2ZI0xV_-_5cnLnrmE12yckLPjRBdKeM0S7uF8.Jg7NWEiA72vRHRaJDW64sdo5GsL3jdtd4w757rs2f12GsQHJ1zXrpva9vbtc2ZqEAg1XsmK8kTxKnxuhVKGyvg
https://www.researchgate.net/deref/http%3A%2F%2Fciteseer.ist.psu.edu%2F465697.html
https://dl.acm.org/profile/81100595102
https://www.researchgate.net/profile/Amit-Barve-3?_sg%5B0%5D=unCgCx7zt3G7vbcEx7nncoeFcKRLUBM8M1-AJvxrCnXmDTIKo8p09nBOggNY-Jr5_RPaZ1A.AJwDQ78Z5qkPVbuXciw0lrszXoziISQlEoaUEVCj5twEH7Ivr18iBxxamWLakUWyuVmVoU9_GKPTPmSL5XhHkw.5ZTiVUHEFsM1b7uawCPByuLUruCgeQ8BpL2Lpn6B9PPdr4syeErW55vbFSs2kIIkXJeRFGawJDDJbjPGnJUvVw&_sg%5B1%5D=jWotRZ2DGNbcTnSv7eMOa71j5QIdHejnwViypmTvVkx2ZXTlo3BnYLS3_rnaYTekH8eVttM.PyY9HwvVZpBG8ZvWewJOPw0vU5ZORzvRe-Erb9hgcKiz45NM_xCMqehd4qf2jKJKFQmnlesusIGPV0NDXG8TXQ
https://www.researchgate.net/profile/Brijendra-Joshi?_sg%5B0%5D=unCgCx7zt3G7vbcEx7nncoeFcKRLUBM8M1-AJvxrCnXmDTIKo8p09nBOggNY-Jr5_RPaZ1A.AJwDQ78Z5qkPVbuXciw0lrszXoziISQlEoaUEVCj5twEH7Ivr18iBxxamWLakUWyuVmVoU9_GKPTPmSL5XhHkw.5ZTiVUHEFsM1b7uawCPByuLUruCgeQ8BpL2Lpn6B9PPdr4syeErW55vbFSs2kIIkXJeRFGawJDDJbjPGnJUvVw&_sg%5B1%5D=jWotRZ2DGNbcTnSv7eMOa71j5QIdHejnwViypmTvVkx2ZXTlo3BnYLS3_rnaYTekH8eVttM.PyY9HwvVZpBG8ZvWewJOPw0vU5ZORzvRe-Erb9hgcKiz45NM_xCMqehd4qf2jKJKFQmnlesusIGPV0NDXG8TXQ
javascript:void(0);
javascript:void(0);
https://dl.acm.org/doi/proceedings/10.1145/2814228
https://dl.acm.org/doi/proceedings/10.1145/2814228
https://dl.acm.org/doi/proceedings/10.1145/2814228
https://www.researchgate.net/profile/M-Brand?_sg%5B0%5D=SrpZtCdnwHiDldgDnD6ldncsm9GD-yPwFgXjbdmZtsiMaO57QLjkSdfzRKN5q8ASRbqVCrg.YCEND-8XXRTCgac7lkwJfvUCL1cB4YO_IoJxQ5eRxsjjYOdV2ihxK6UGIIDabT5H4piBS0LxwzXdXdIUNlOhbw.hz0BmmyjjeKWWVZqSSFuuyRdTr0zQ5xJV760vFS_e6FPKhS0SudpvpXM3OvH3QOp9aBpXeJQhRVMYJZrz7ZVIQ&_sg%5B1%5D=bH0sa-j_UDI3-CZbz2gm8xv_Dq0U7owzF3QJkWjAJBmldaBuxhYaJllHQW0-1DfUIA7IcVU.tYeqSy6rygbXpdXGZ-kUnzOt9pvff-X564U9GFfx6oN-bcGWhJyCKJGAer4Tec4TgCghbtnSc7lBqdJ7xH6ZQg
https://www.researchgate.net/profile/Jeroen-Scheerder-2?_sg%5B0%5D=SrpZtCdnwHiDldgDnD6ldncsm9GD-yPwFgXjbdmZtsiMaO57QLjkSdfzRKN5q8ASRbqVCrg.YCEND-8XXRTCgac7lkwJfvUCL1cB4YO_IoJxQ5eRxsjjYOdV2ihxK6UGIIDabT5H4piBS0LxwzXdXdIUNlOhbw.hz0BmmyjjeKWWVZqSSFuuyRdTr0zQ5xJV760vFS_e6FPKhS0SudpvpXM3OvH3QOp9aBpXeJQhRVMYJZrz7ZVIQ&_sg%5B1%5D=bH0sa-j_UDI3-CZbz2gm8xv_Dq0U7owzF3QJkWjAJBmldaBuxhYaJllHQW0-1DfUIA7IcVU.tYeqSy6rygbXpdXGZ-kUnzOt9pvff-X564U9GFfx6oN-bcGWhJyCKJGAer4Tec4TgCghbtnSc7lBqdJ7xH6ZQg
https://www.researchgate.net/profile/Jurgen-Vinju?_sg%5B0%5D=SrpZtCdnwHiDldgDnD6ldncsm9GD-yPwFgXjbdmZtsiMaO57QLjkSdfzRKN5q8ASRbqVCrg.YCEND-8XXRTCgac7lkwJfvUCL1cB4YO_IoJxQ5eRxsjjYOdV2ihxK6UGIIDabT5H4piBS0LxwzXdXdIUNlOhbw.hz0BmmyjjeKWWVZqSSFuuyRdTr0zQ5xJV760vFS_e6FPKhS0SudpvpXM3OvH3QOp9aBpXeJQhRVMYJZrz7ZVIQ&_sg%5B1%5D=bH0sa-j_UDI3-CZbz2gm8xv_Dq0U7owzF3QJkWjAJBmldaBuxhYaJllHQW0-1DfUIA7IcVU.tYeqSy6rygbXpdXGZ-kUnzOt9pvff-X564U9GFfx6oN-bcGWhJyCKJGAer4Tec4TgCghbtnSc7lBqdJ7xH6ZQg
https://www.researchgate.net/profile/Eelco-Visser?_sg%5B0%5D=SrpZtCdnwHiDldgDnD6ldncsm9GD-yPwFgXjbdmZtsiMaO57QLjkSdfzRKN5q8ASRbqVCrg.YCEND-8XXRTCgac7lkwJfvUCL1cB4YO_IoJxQ5eRxsjjYOdV2ihxK6UGIIDabT5H4piBS0LxwzXdXdIUNlOhbw.hz0BmmyjjeKWWVZqSSFuuyRdTr0zQ5xJV760vFS_e6FPKhS0SudpvpXM3OvH3QOp9aBpXeJQhRVMYJZrz7ZVIQ&_sg%5B1%5D=bH0sa-j_UDI3-CZbz2gm8xv_Dq0U7owzF3QJkWjAJBmldaBuxhYaJllHQW0-1DfUIA7IcVU.tYeqSy6rygbXpdXGZ-kUnzOt9pvff-X564U9GFfx6oN-bcGWhJyCKJGAer4Tec4TgCghbtnSc7lBqdJ7xH6ZQg
javascript:void(0);
javascript:void(0);
https://dl.acm.org/toc/cacm/1968/11/6
https://dl.acm.org/toc/cacm/1968/11/6
https://dl.acm.org/toc/cacm/1968/11/6
javascript:void(0);
javascript:void(0);
https://dl.acm.org/toc/sigplan/2002/37/2
https://dl.acm.org/toc/sigplan/2002/37/2
https://dl.acm.org/toc/sigplan/2002/37/2
https://www.researchgate.net/scientific-contributions/Dominique-Revuz-73283792?_sg%5B0%5D=EuLFENTlolxkFDnD7ldOJwOwTQMRoao2IB2yl_oHbkKvcYizVhMvtscX7Kz6m2elyTsUa70.8FpwdC-R6CayiOQW65SnQC6ulxbJKpSyZDTM8kl9R7a7OXWjLkLtccwhhOBHzwC6ifS2dSWSVuUh6lLy4yA5IA.z2XiZ7B4qm3-NOZsRkZThGjxeLZ-T0iZ0pVf4R65Zlo_7UOc2ENPYYtuKKpwKCTTRWnrfr__T1pjOfjil-9jvQ&_sg%5B1%5D=bm4uDt_6r1hL8_Nr5aRXX5QaDudGVhxUMm2rIMCB0KLtd678xnjhNfuH7ZBb7_hKmd5shMs.LnqaSFOajKgJ4krmG9KPs7qXbdCpJ0MwlNCgoKybYRd8HkOVkmpverVbzYn1VzF0SG62LBjKDRfNcFh9wqrf0Q
https://arxiv.org/search/cs?searchtype=author&query=Berstel%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Boasson%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Carton%2C+O
https://arxiv.org/search/cs?searchtype=author&query=Fagnot%2C+I
https://www.researchgate.net/scientific-contributions/Wuu-Yang-14510917?_sg%5B0%5D=ZKysDY8kHpHO2MlmOctwPT_uJ1NaRO_Cg6xJAwh8fhNUpCR2kfjy7gbSQjRBx9oWhDQ1RPo.TVL8-hv_7vgE9GNkZHtXAJM7n8A32ISTGg9lv9zHoMIPlBHSMqPd0dGIEYrRNMZvMHT6ZoiZfZ9xMf2KuVKNpA.x5iMk03R9FQ-c5Jyng5csFx1JKE4j_X9Th2nnX04vzETa6DiLTgnqkiB4_PExCqfr7Z4o4lV9nqCeVgSjGnnMQ&_sg%5B1%5D=rTk6zxCHxjXq6AwZRisPF0e1xKBrNrVzhJzky_OH8UpMnDAGwdkVxw48wXK4oOPxZ197nH0.nMbwJENuZ6orXhlxZ2fnEN894YR0s0-syiAqUwKSpPAXEi9Agyv6uUsvucUR9HrwsnZC7rB-_wcEPq19AZcimg
https://www.researchgate.net/profile/Chey-Woei-Tsay?_sg%5B0%5D=ZKysDY8kHpHO2MlmOctwPT_uJ1NaRO_Cg6xJAwh8fhNUpCR2kfjy7gbSQjRBx9oWhDQ1RPo.TVL8-hv_7vgE9GNkZHtXAJM7n8A32ISTGg9lv9zHoMIPlBHSMqPd0dGIEYrRNMZvMHT6ZoiZfZ9xMf2KuVKNpA.x5iMk03R9FQ-c5Jyng5csFx1JKE4j_X9Th2nnX04vzETa6DiLTgnqkiB4_PExCqfr7Z4o4lV9nqCeVgSjGnnMQ&_sg%5B1%5D=rTk6zxCHxjXq6AwZRisPF0e1xKBrNrVzhJzky_OH8UpMnDAGwdkVxw48wXK4oOPxZ197nH0.nMbwJENuZ6orXhlxZ2fnEN894YR0s0-syiAqUwKSpPAXEi9Agyv6uUsvucUR9HrwsnZC7rB-_wcEPq19AZcimg
https://www.researchgate.net/scientific-contributions/Jien-Tsai-Chan-7010622?_sg%5B0%5D=ZKysDY8kHpHO2MlmOctwPT_uJ1NaRO_Cg6xJAwh8fhNUpCR2kfjy7gbSQjRBx9oWhDQ1RPo.TVL8-hv_7vgE9GNkZHtXAJM7n8A32ISTGg9lv9zHoMIPlBHSMqPd0dGIEYrRNMZvMHT6ZoiZfZ9xMf2KuVKNpA.x5iMk03R9FQ-c5Jyng5csFx1JKE4j_X9Th2nnX04vzETa6DiLTgnqkiB4_PExCqfr7Z4o4lV9nqCeVgSjGnnMQ&_sg%5B1%5D=rTk6zxCHxjXq6AwZRisPF0e1xKBrNrVzhJzky_OH8UpMnDAGwdkVxw48wXK4oOPxZ197nH0.nMbwJENuZ6orXhlxZ2fnEN894YR0s0-syiAqUwKSpPAXEi9Agyv6uUsvucUR9HrwsnZC7rB-_wcEPq19AZcimg
https://www.researchgate.net/scientific-contributions/Arie-van-Deursen-3213358?_sg%5B0%5D=X5UbUMTLypsbIgc3whBMlwd7sPhOlpSBH9BUDWIFhUmSOxEB8MTwjuLF6Vdo7Nm8Amu5oCI.t8BSN-a8H5I3pGPmiGOUXmAUezkii6PjEuvcDzwsDFLNsWPrb1bR6AGkPjdOR7G9RCNA5S_LxEI8M_6LiJL-1g.LrmLc07wEHy4dMfCvIx48W53EFwggWA874zoVjySTixyERr9CFICAXA-bLvcITDi1LJFC44uwzOPqbqD3uw7LA&_sg%5B1%5D=fWnAWcQQ6klQ4Ggd2oS4_cZZgOsGhG8go3LysK1Pz9T_cF-yqXBg_MZkQNkVO8S_GbSYEQs.DY-c08cIIVTrb3xE6OhKlHzT6PI9SiZcEMne85cM3kj2NtfgmrT6WH_o4OXQT-oTnXLEhnWLGYGauIx-x2DvvA
https://www.researchgate.net/profile/Paul-Klint?_sg%5B0%5D=X5UbUMTLypsbIgc3whBMlwd7sPhOlpSBH9BUDWIFhUmSOxEB8MTwjuLF6Vdo7Nm8Amu5oCI.t8BSN-a8H5I3pGPmiGOUXmAUezkii6PjEuvcDzwsDFLNsWPrb1bR6AGkPjdOR7G9RCNA5S_LxEI8M_6LiJL-1g.LrmLc07wEHy4dMfCvIx48W53EFwggWA874zoVjySTixyERr9CFICAXA-bLvcITDi1LJFC44uwzOPqbqD3uw7LA&_sg%5B1%5D=fWnAWcQQ6klQ4Ggd2oS4_cZZgOsGhG8go3LysK1Pz9T_cF-yqXBg_MZkQNkVO8S_GbSYEQs.DY-c08cIIVTrb3xE6OhKlHzT6PI9SiZcEMne85cM3kj2NtfgmrT6WH_o4OXQT-oTnXLEhnWLGYGauIx-x2DvvA
https://www.researchgate.net/profile/Joost-Visser?_sg%5B0%5D=X5UbUMTLypsbIgc3whBMlwd7sPhOlpSBH9BUDWIFhUmSOxEB8MTwjuLF6Vdo7Nm8Amu5oCI.t8BSN-a8H5I3pGPmiGOUXmAUezkii6PjEuvcDzwsDFLNsWPrb1bR6AGkPjdOR7G9RCNA5S_LxEI8M_6LiJL-1g.LrmLc07wEHy4dMfCvIx48W53EFwggWA874zoVjySTixyERr9CFICAXA-bLvcITDi1LJFC44uwzOPqbqD3uw7LA&_sg%5B1%5D=fWnAWcQQ6klQ4Ggd2oS4_cZZgOsGhG8go3LysK1Pz9T_cF-yqXBg_MZkQNkVO8S_GbSYEQs.DY-c08cIIVTrb3xE6OhKlHzT6PI9SiZcEMne85cM3kj2NtfgmrT6WH_o4OXQT-oTnXLEhnWLGYGauIx-x2DvvA

 144

40. T. Bray, Ed. The JavaScript Object Notation (JSON) Data Interchange Format. Internet Engineering

Task Force (IETF), 2017.

41. T. Berners-Lee, R. Fielding, L. Masinter, Eds. Uniform Resource Identifier (URI): Generic Syntax.

Network Working Group, 2005.

42. P. Kyzivat, Ed. Case-Sensitive String Support in ABNF. Internet Engineering Task Force (IETF),

2014.

43. B a c k u s , J . W . The Syntax and Semantics of the Proposed International Algebraic Language

of the Zurich ACM-GAMM Conference. – In: IFIP Congress, 1959, pp. 125-132.

44. H o l u b , A . Compiler Design in C. Prentice Hall, USA, 1990.

Received: 17.01.2022; Second Version: 30.03.2022; Accepted: 12.04.2022

