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Abstract: Predicting human mobility between locations plays an important role in a 

wide range of applications and services such as transportation, economics, sociology 

and other fields. Mobility prediction can be implemented through various machine 

learning algorithms that can predict the future trajectory of a user relying on the 

current trajectory and time, learning from historical sequences of locations 

previously visited by the user. But, it is not easy to capture complex patterns from the 

long historical sequences of locations. Inspired by the methods of the Convolutional 

Neural Network (CNN), we propose an augmented Union ConvAttention-LSTM 

(UCAL) model. The UCAL consists of the 1D CNN that allows capturing locations 

from historical trajectories and the augmented proposed model that contains an 

Attention technique with a Long Short-Term Memory (LSTM) in order to capture 

patterns from current trajectories. The experimental results prove the effectiveness 

of our proposed methodology that outperforms the existing models. 

Keywords: Deep learning, LSTM, attention mechanism, human mobility prediction 

location, trajectory. 

1. Introduction 

Predicting user activity and location preferences is very important in location-based 

services and in the understanding of the human mobility [1-4]. Predicting mobility 

plays an important role in many areas. For example, tourism businesses would like 

to know the journey characteristics of their customers in order to design appropriate 

advertising strategies. Sociologists have conducted extensive research on migration 

in order to identify the general characteristics of human mobility. Police also strive 

to determine the future location of a criminal fleeing a crime scene. In addition to 

these examples, the prediction of the user’s location mobility is used in traffic 

problems. City transport is important for everyday life and many people go to work 
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using different means of transport which causes traffic jams during rush hours. 

Predicting the location of an accurate mobility can help plan routes, vehicles 

distribution, reduce congestion and transfer frequency, which leads to improved 

urban traffic management [5, 6]. 

The prediction of users’ movements [7] is governed by their complexity. Indeed, 

these movements are characterized by a regular appearance for some users, but 

random for others depending on certain parameters such as travel period (day week, 

weekend, vacation, etc.), as well as kind of person who travels (student, wage earner, 

senior citizen, etc.). It should be noted that users’ movements are often underlain by 

socio-economic needs and are governed by the road’s topography and infrastructure 

as well as the different amenities provided in the location area, such as: schools, 

factories, supermarkets, highways, etc. 

To model the human mobility behaviour, several information sources such as 

mobile phones data [8] and Location Based Social Networks (LBSNs) can be 

exploited. Common LBSNs, like Foursquare and Twitter, for instance, can provide 

the number and type of activities existing in a target area, giving an insight on the 

number of people who are likely to visit that zone. In human mobility, the most 

straightforward way to predict the next location is to build a grid over an area of 

interest, then treat the problem as a multiclass classification one, where the aim is to 

predict the next visited cell. In this context, many works have focused on collecting 

the users’ locations and learning their mobility patterns as achieved in [9-16].  

Recently, with the introduction of deep learning neural networks like the 

Recurrent Neural Network (RNN) based methods, many research efforts [17-19] 

have been made in the prediction of the next location. However, the results of these 

efforts have not been flawless since the prediction of human mobility is difficult due 

to the sparsity and heterogeneity of the data and the complex mobility patterns of 

historical trajectories. 

As a solution, the authors in [20] propose the Union ConvGRU Net (UCG) for 

modelling trajectory and human mobility prediction based on historical and current 

trajectory. The CNN architecture is used to track historical trajectory with long 

sequences of locations. While, the Gated Recurrent Unit (GRU) architecture focus on 

sequential transitions of a current trajectory.  

From the above works, it is clear that the prediction of a trajectory does not give 

the best accuracy since a great deal of information is generally neglected. To improve 

the results accuracy and obtain a better performance than previous works, the 

attention mechanism is used. This mechanism makes it possible to focus on specific 

parts of complex data and therefore does not neglect any piece of information. In our 

case, it leads to produce a score for each element of the current input and focuses only 

on particular information from the summary of the inputs.  

Previous works use the attention mechanism with the LSTM model for 

establishing a historical trajectory. However, the historical trajectory length of each 

user cause the LSTM to generate poor performances and results in the inability of the 

mechanism to proceed with long sequences directly due to the vanishing  

gradient [19]. 
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For these reasons, we propose as a solution, the use of the attention mechanism 

combined with the LSTM for long or complex sequences in a current trajectory. In 

this case, an augmented model called Union ConvAttention-LSTM (UCAL) has been 

developed. This model consists of two parts. The first introduce the same existing 1D 

CNN that allows defining the locations from historical trajectories with short 

locations sequences as proposed in [20]. The second part suggests a new proposed 

model that contains an Attention technique combined with the LSTM in order to 

capture and predict the future locations based on the current ones. 

The remaining of this paper is structured as follows: Section 2 reviews the 

related works on human mobility. Section 3 summarizes our methodology based on 

the attention mechanism with the LSTM to capture locations from current 

trajectories. Section 4 is devoted to the experimental results and discussion. A 

comparison with the achieved results in the literature is also provided. The last section 

draw the main conclusions and suggests some future perspectives. 

2. Related works 

The increasing availability of trajectory recordings has led to the mining of a massive 

amount of historical track data, allowing for a better understanding of travel 

behaviours. In the context of human mobility analysis, the problem of next location 

prediction assumes a central role and is beneficial for a wide range of applications 

such as personalized services or targeted recommendations. This prediction may 

suffer from certain drawbacks due to long and complex trajectories. 

As a solution, many existing research efforts have been invested in the 

recognition and prediction of human mobility patterns like neural network-based 

methods [17-19, 21-27]. 

LSTM and GRU are specifically the most commonly used architectures.  

In [17], authors propose a Spatial Temporal RNN (ST-RNN) for the future 

prediction locations. Their experimental results show that the proposed ST-RNN 

model yields significant improvements over the competitive comparable methods on 

two typical datasets, i.e., Global Terrorism Database (GTD) and Gowalla dataset. 

In [18], authors propose a Semantic-Aware Recurrent Model (SERM) that use 

the sequential and semantic influence for the next trajectory prediction. Experiments 

on two real-life semantic trajectory datasets show that the SERM achieves significant 

improvements over state-of-the-art methods. 

More recently, F e n g  et al. [19] has proposed a DeepMove model to capture 

the multi-level periodicity of historical trajectory based on the attentional mechanism. 

Experiments on three representative real-life mobility datasets, and extensive 

evaluation results demonstrate that DeepMove model outperforms the state-of-the-

art models by more than 10%. Moreover, compared to the state-of-the-art neural 

network models, DeepMove provides intuitive explanations into the prediction and 

sheds light on interpretable mobility prediction. 

Since the complication of the DeepMove, the authors in [24] use a generative 

probabilistic model together with neural network and propose a VANext to improve 

it. They are the first to integrate CNN to capture long human trajectories with 
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Graphics Processing Unit (GPU). The experiments conducted on real-world datasets 

prove that VANext and VANext-S outperform the state-of-the-art human mobility 

prediction models. 

The framework of UCG Net, in [20], uses a 1D CNN to capture the user mobility 

from historical trajectory. First, to capture short patterns of trajectory locations, they 

use a Multi-Layer Perceptron (MLP) to integrate the hidden states and encode them 

with a convolutional layer. Then, they use an FC layer to capture locations of 

separated hidden states. Finally, they generate long sequences of locations with a Max 

Pooling layer and concatenate them as inputs of a current trajectory learning Module. 

The last uses the GRU architecture. The experiments have proven that the UCG 

model performs best compared with other architectures. 

3. Methodology 

To obtain better results for the long complex sequence of locations from current 

trajectories, an augmented model called Union ConvAttention-LSTM (UCAL) net 

was proposed (Fig. 1). Its architecture consists of the embedding layer, 1D CNN, 

Attention mechanism, LSTM, Concat and FC layers and the predicted trajectory with 

Softmax layer and a set of locations C. 

 
Fig. 1. Global architecture 

Embedding layer. The current and historical trajectories have been presented 

by three features: location, activity and time. However, these features are categorical. 

So, we have modelled the features with a dense representation vector [28] based on 

an embedding layer. 

1D CNN. In this work, we have used the same model 1D CNN as in [20].  

Attention mechanism. It has been applied to a very wide range of applications, 

such as speech recognition [29], machine translation [30], text summarization [31], 

and image description [30]. This mechanism has been successfully used also for 

human mobility [19], in order to capture the important periodicities that govern 

human movements [29, 33]. The aim of the attention module is to learn which part of 

the trajectory is more important to focus on. This has been achieved by transposing 

the input and feeding it to a dense layer as softmax, which estimates the weight 

distributions that are then combined with the input sequence. 
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Algorithm. Attention (timestamp, features) 

Input: Timestamp, features 

Output: Weighted output sequence 

For each t ∈ timestamp, f ∈ features 

      Input (t, f) 

     Dense layer (t, f) 

      Multiplication (Input (t, f), Dense layer(t, f)) 

End for 

LSTM. Recurrent Neural Networks are dedicated to sequential data processing. 

LSTM is an artificial RNN algorithm used in the deep learning. LSTM networks are 

applied in many fields like classifying, processing and making predictions based on 

time series data. Therefore, the details of our LSTM unit with forget gates are the 

following: 

Input: The LSTM unit takes the current input vector denoted by 𝑥𝑡 and the 

output from the previous time step (through the recurrent edges) denoted by ℎ𝑡−1. 

The weighted inputs are summed and passed through tanh activation, resulting  

in 𝑧𝑡 (1).  

Input gate: Is calculated by taking the 𝑥𝑡 and ℎ𝑡−1, computing the weighted and 

applying the sigmoid activation. The result is multiplied with the 𝑧𝑡 (2).  

Forget gate: Is the mechanism through which an LSTM learns to reset the 

memory contents when these are no longer relevant. This may occur for example 

when the network starts processing a new sequence. Given 𝑥𝑡 and ℎ𝑡−1 a sigmoid is 

applied to compute the inputs weights. The result 𝑓𝑡 is multiplied by the cell state at 

a previous time step, i.e., 𝑠𝑡−1 which allows erasing the memory content which is no 

longer needed (3).  

Memory cell: The current cell state 𝑠𝑡 is computed by forgetting irrelevant 

information from the previous time step and accepting relevant information from the 

current input (4).  

Output gate: Is calculated by taking the weighted sum of 𝑥𝑡 and ℎ𝑡−1 and 

applying the sigmoid activation function (5). 

Output: ℎ𝑡 is calculated by applying the tanh function on 𝑠𝑡 and multiplying 

with the 𝑜𝑡 which is given by Equation (6). 

Therefore, the LSTM is represented by the following set of equations: 
(1)   𝑧𝑡 = tanh(𝑊𝑧𝑥𝑡 + 𝑅𝑧ℎ𝑡−1 + 𝑏𝑧),   
(2)   𝑖𝑡 = sigmoid(𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖), 
(3)    𝑓𝑡 = sigmoid(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓),  

(4)   𝑠𝑡 = 𝑧𝑡 . 𝑖𝑡 + 𝑠𝑡−1. 𝑓𝑡,  
(5)    𝑜𝑡 = sigmoid (𝑊𝑜𝑥𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜),  
(6)    ℎ𝑡 = tanh(𝑠𝑡). 𝑜𝑡 ,  

with 𝑊𝑧, 𝑊𝑖, 𝑊𝑓 , 𝑊𝑜  are input weights, the 𝑅𝑧, 𝑅𝑖 , 𝑅𝑓 , 𝑅𝑜  are recurrent weights and 

𝑏𝑧, 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜  are the biases. 

Concat and FC layers. In this work, concat layer focuses on concatenation of 

the outputs of LSTM and 1D CNN to capture mobility regularities from the historical 

and current trajectories. Afterward, the output of this layer is fed into a fully 

connected layer to capture patterns of separated hidden states. 
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Predicted trajectory. The prediction module is the last step of our proposed 

algorithm. In fact, it resembles the results of the previous modules and closes the 

prediction stage. In particular, it is structured with a softmax layer and a linear layer. 

Having a number of neurons which is equal to the number of clusters C, the softmax 

layer takes the representation generated by the FC layer as its input and generates 𝑃𝑖 

which represents the softmax probability associated to each cluster defined by  

(7)    𝑃𝑖 =  
exp (𝑒𝑖)

∑ exp(𝑒𝑗)𝐶
𝑗=1

.  

Based on the softmax layer, an additional output layer with one neuron that 

represents the predicted trajectory is added. Therefore, its output y is given by the 

probability distribution over all the clusters given by  
(8)   y =∑ 𝑃𝑖𝑐𝑖

𝐶
𝑖=1 .  

4. Experimental configuration 

The main objective set for this research work is to tackle the problem of predicting 

long and complex trajectories. To validate our study, in this section the used dataset 

and the evaluation metrics are detailed. 

4.1. Dataset 

The Foursquare dataset [34] consists of check-in data for different cities. One subset 

contains check-ins in NYC and Tokyo collected over a period of about 10 month 

(from 12 April 2012 to 16 February 2013). It contains 227,428 check-ins in New 

York city and 573,703 check-ins in Tokyo. Each check-in is associated with its time 

stamp, its GPS coordinates and its semantic meaning (represented by fine-grained 

venue-categories). 80% of the datasets has been used for the training and 20% for the 

testing set. 

4.2. Evaluation metrics 

Several evaluation metrics are defined to evaluate the efficiency of a recommender. 

The recommender system produces an item ranking list. Therefore, it is necessary to 

consider how to measure directly the quality of the ranking instead of using other 

proxy measures. 

For example, precision is the portion of relevant elements in all the retrieved 

items. It is used to know the number of correct elements among all recommendations. 

Taking these definitions into account, Precision@k would be the portion of 

relevant elements in the top k recommendations, and recall@k would be the coverage 

of relevant times in the top k. 

In order, to create reasonable comparisons, the assessment execution metrics are 

used such as Top@k. Recall@k, Precision@k and F1-score@k [20]. Particularly, we 

display each user with k areas sorted by the anticipated score based on the classifier, 

i.e., 𝑆𝑢
𝑘. Given a top-k anticipated area list 𝑆𝑢

𝑘 and target area list 𝑙𝑢
∗  of the test set, 

each assessment metric can be characterized as 

(9)   Top@k= 
1

|𝑢|
 ∑ ∑ (

|𝑙𝑢,𝑗
∗  ∩ 𝑆𝑢,𝑗

𝑘  |

|𝑙𝑢
∗ |

)
| 𝑙𝑢

∗ |
𝑗|𝑢| ,  

where j signifies each test. 
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The evaluation metrics are given by the next equations:  

(10)    Recall@k =  
1

|𝑢|
 ∑ ∑ (

|𝑆𝑢,𝑗
𝑘  ∩ 𝑆𝑢,𝑗

visited  |

𝑆𝑢,𝑗
visited )

| 𝑙𝑢
∗ |

𝑗|𝑢| , 

(11)    Precision@k =
1

|𝑢|
 ∑ ∑ (

|𝑆𝑢,𝑗
𝑘  ∩ 𝑆𝑢,𝑗

visited |

𝑘
)

| 𝑙𝑢
∗ |

𝑗|𝑢| , 

where 𝑆𝑢,𝑗
visited represents the list of locations u has visited. At last, the F1-score is the 

consonant cruel of Review and Precision defined by 

(12)   F1-score =  
2∗Precision∗Recall

Precision+Recall
. 

5. Results 

In this section, we revealed the results of the proposed model and compare its 

performance with others models.  

5.1. Proposed model results  

In this work, the objective of the proposed model is to capture the next trajectory 

based on top@k results and output a ranked list of predicted trajectories. It is worth 

noting that we set a scale for k that ranges between 1 and 5. For any value exceeding 

5 (k=5), the predicted trajectories results would be the worst. To simplify entries, we 

consider the notations: Tk= Top@k, T1=Top@1, T5=Top@5, Rk=Recall@k, 

R1=Recall@1, R5=Recall@5, Pk=Precision@k, P1=Precision@1, P5=Precision@5, 

Fk= F1_score @k, F1= F1@1, F5= F1@5. 

Based on our proposed UCAL model and using the two datasets on NYC and 

TKY, the Tk results are given in the Table 1.  
 

Table 1. Tk performances on NYC and TKY datasets 

Our methodology 

NYC TKY 

T1 T5 T1 T5 

0.250 0.480 0.200 0.400 
  

Based on the two datasets on NYC and TKY, tables 2 and 3 give the obtained 

results on the performances of the proposed UCAL model presented by the Rk, the 

Pk and the F1_score @k metrics. 
 

Table 2. Performance of Rk, Pk and Fk based on NYC dataset 

Our methodology 

NYC 

R1 R5 P1 P5 F1 F5 

0.250 0.370 0.250 0.480 0.250 0.417 
 

Table 3. Performance of Rk, Pk and Fk based on TKY dataset 

Our methodology 

TKY 

R1 R5 P1 P5 F1 F5 

0.200 0.300 0.200 0.421 0.200 0.350 
 

The above tables attest for the performance of the proposed UCAL to detect 

the next trajectory. It is worth stating that the NYC dataset allows better results 
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compared to those obtained using the TKY dataset. This is because NYC dataset has 

fewer users which makes the training easier.   

5.2. Comparison with other methods 

To highlight the merits of our proposed UCAL model, this section is devoted to 

comparing its results with others achieved by existing methods (table 4). These are: 

• ST-RNN is a recurrent neural network that predicts locations from 

spatial-temporal inputs [17].  

• SERM represents a long short-term memory architecture which can 

predict the next location of the user based on jointly spatio-temporal context 

and activities as inputs [18].  

• DeepMove is a deep learning method relied on the Attention technique 

which captures historically visited locations from a historical trajectory and is 

able to find out complex sequential transitions from a recent trajectory [19]. 

• UCG Net represents a model for predicting the future trajectories 

relying on historical and current locations with spatio-temporel context [20]. 
Table 4. presents the comparison Tk metric results using the two datasets. 

 

Table. 4. Tk comparison results  

Methods 
NYC TKY 

T1 T5 T1 T5 

ST-RNN [17] 0.162 0.345 0.142 0.303 

SERM [18] 0.170 0.396 0.144 0.298 

DeepMove [19] 0.195 0.378 0.168 0.346 

UCG Net [20] 0.218 0.456 0.186 0.384 

Proposed model 0.250 0.480 0.200 0.400 
 

As shown in Table 4 and in comparison, with the reference approaches, the 

proposed model achieves the best performance, using the two datasets, since it is able 

to exploit the previously used trajectories with more precision. Indeed, compared to 

the UCG which present 21.8% for T1 and 45.6% for T5, the proposed model shows 

an increment since it presents 25% for T1 and 48% for T5 using the NYC dataset. 

For TKY dataset, we can observe a similar increasing trend of results of 20% and 

40% in the T1 and T5 results respectively compared to the UCG model that presents 

18.6 for T1 and 38.4% for T5. 

The above tables evidence the good performance of the proposed UCAL in 

detecting the next trajectory. It should also be noted that the NYC dataset allows 

better results compared to those attained by the TKY dataset with Tk results. This is 

because NYC dataset has fewer users which makes the training easier.   

Similar to Tk metric, the performance comparison results of Rk, Pk and Fk 

metrics are given in tables 5 and 6 using the datasets on NYC and TKY, respectively. 

Based on the tables above, the proposed algorithm achieves the best results 

compared to all the reference algorithms. Indeed, the Rk results show that the UCAL 

performs better to classify the true places.  

Using the NYC dataset and compared to the UCG Net which presents 21.8% 

and 34.8% for R1 and R5, respectively our proposed UCAL model allows an increase 
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since it reaches 25% and 37% for the same metrics. Similarly, the proposed UCAL 

improved the results using the TKY dataset by achieving an increase in R1 and R5.  
 

Table 5. Rk, Pk and Fk results generated on NYC dataset 

Methods 
NYC 

R1 R5 P1 P5 F1 F5 

ST-RNN 0.162 0.297 0.162 0.362 0.162 0.326 

SERM 0.170 0.318 0.170 0.425 0.170 0.364 

DeepMove 0.195 0.299 0.195 0.348 0.195 0.322 

UCG Net 0.218 0.348 0.218 0.455 0.218 0.395 

Proposed model: UCAL 0.250 0.370 0.250 0.480 0.250 0.417 
 

Table 6. Rk, Pk and Fk results generated on TKY dataset 

Methods 
TKY 

R1 R5 P1 P5 F1 F5 

ST-RNN 0.142 0.236 0.142 0.349 0.142 0.282 

SERM 0.144 0.228 0.144 0.341 0.144 0.273 

DeepMove 0.168 0.254 0.168 0.395 0.168 0.309 

UCG Net 0.186 0.274 0.186 0.401 0.186 0.326 

Our model 0.200 0.300 0.200 0.421 0.200 0.350 
 

For the Pk results, our UCAL model ameliorated the results for P1 and P5 by an 

increase that expect 25% and 48%, respectively using the NYC dataset. In addition, 

it provided an increase presented by 20% and 35% in P1 and P5, respectively using 

the TKY dataset. Therefore, the Pk results testify that the UCAL predicts better the 

real place. 

For F1-score, the proposed UCAL presents an increase since it achieved 25% 

and 41.7% in F1 and F5, respectively using the NYC dataset. Similarly, it succeeds 

in increasing the F1 and F5 by 20% and 35%, respectively, using the TKY dataset. 

Taking into account all the results analyzed above, it can be deduced that our 

proposed model achieves a satisfactory classification performance. In summary, it 

allows for the best performance compared with the strong neural network approaches.  

6. Conclusion 

Understanding and predicting human mobility between locations is an important 

issue in complex human behaviors, transportation, economic geography and regional 

economics. It also has several practical applications in urban planning, population 

migration, cargo transportation, traffic engineering, infectious diseases 

epidemiology and emergency management.  

Modelling human behavior mobility requires to uncover valuable knowledge, 

such as daily routine of individuals from historical trajectories and predict their next 

trajectory.  

So, it is not easy to capture long complex patterns from historical trajectories to 

be able to predict the future ones.  

To overcome the problem of long complex sequence of locations, this paper 

propose an augmented model called Union ConvAttention-LSTM. The objective of 

the UCAL is the next location prediction by incorporating historical and current ones. 
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For the historical trajectories, the UCAL use the same existing 1D CNN that allows 

capturing short sequences of locations. However, to define locations from current 

trajectories, the proposed UCAL introduces a new module that contains an Attention 

technique with a Recurrent Neural Network (RNN). The attention mechanism is used 

to improve accuracy since it focuses on specific parts of complex data that leads to 

obtain better performances for the true classification location.  

The experimental results given by the evaluation metrics show several 

improvements using the TKY and the NYC dataset. 

In order to further improve the accuracy of the obtained performances, we think of 

using the theory of beliefs functions as a potential study topic for a future perspective. 
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