
 50

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 22, No 2

Sofia • 2022 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2022-0016

Enhancing Weak Nodes in Decision Tree Algorithm Using Data

Augmentation

Youness Manzali1, Mohamed El Far1, Mohamed Chahhou2, Mohammed

Elmohajir2
1LPAIS Laboratory, Faculty of Sciences, USMBA Fez, Morocco
2Faculty of sciences, UAE, Tetouan, Morocco

E-mails: younes.manzali@usmba.ac.ma mohamed.elfar@usmba.ac.ma mchahhou@hotmail.com

m.elmohajir@ieee.ma

Abstract: Decision trees are among the most popular classifiers in machine learning,

artificial intelligence, and pattern recognition because they are accurate and easy to

interpret. During the tree construction, a node containing too few observations (weak

node) could still get split, and then the resulted split is unreliable and statistically

has no value. Many existing machine-learning methods can resolve this issue, such

as pruning, which removes the tree’s non-meaningful parts. This paper deals with

the weak nodes differently; we introduce a new algorithm Enhancing Weak Nodes in

Decision Tree (EWNDT), which reinforces them by increasing their data from other

similar tree nodes. We called the data augmentation a virtual merging because we

temporarily recalculate the best splitting attribute and the best threshold in the weak

node. We have used two approaches to defining the similarity between two nodes.

The experimental results are verified using benchmark datasets from the UCI

machine-learning repository. The results indicate that the EWNDT algorithm gives

a good performance.

Keywords: Decision tree; virtual merging node; weak nodes; nodes similarity; data

augmentation.

1. Introduction

The Decision Tree (DT) algorithm is a well-known method for representing

classifiers due to its simplicity, interpretation, and ease of use. The decision tree

algorithm starts by using the whole data in the root node, then it divides the data into

two subsets if the tree is binary or more than two otherwise based on the values of

one or more attributes. The DT algorithm recursively divides each subset of examples

into smaller ones, and it continues this process until all subsets contain a single class.

The final subsets form the leaf nodes of the resulting tree. The classification process

starts at the root node and follows the decision nodes' directions until it reaches a leaf.

A weak node can be found during tree construction, with very few observations left;

this confirms that as long as we go down in the tree, the reliability of further splitting

nodes decreases due to the small sample size. To treat this issue, the literature on

 51

decision trees presents several methods. The most well-known among them is

pruning. Pruning is a method that reduces the complexity of the tree by eliminating

the non-useful parts to avoid over-fitting the dataset. Pruning the tree is an effective

way to improve such a model’s efficiency and classification accuracy. There are two

types of pruning:

• Pre-pruning: during the construction, it stops the subdivision of the nodes

based on some stopping criteria.

• Post-pruning: remove some part of the tree structure by recursive partitioning

retrospectively.

Mahmood mentions in [7] that pre-pruning saves time by avoiding creating

branches that will not be used in the final optimal tree. The challenge in this approach

is to find an appropriate stopping rule [15]. Post-pruning consists of two phases: the

construction and pruning phases. First, it allows growth to its full extent and then

post-prunes the overfitted tree. Post-pruning methods require more time to build

additional branches that are subsequently discarded. Still, this cost is offset against

benefits because, in practice, post-pruning methods give better performance than

pre-pruning. Pruning a decision tree is an effective technique to solve the problem of

Overfitting. Pruned decision trees have a more straightforward structure and are

expected to have higher generalization ability at the expense of classification

accuracy. Their advantages have attracted the attention of many researchers, who

have proposed several methods. However, the trade-off between structural simplicity

and classification accuracy has not been well solved. This paper proposes another

technique for dealing with weak nodes; we reinforce them by augmenting their data

from another similar node. The rest of the paper is organized as follows. In

Section 2, we give an overview of the related works. Section 3 presents in detail our

contribution and the decision tree algorithm. In Section 4, we experimentally

compare our algorithm with four state-of-the-art decision tree algorithms and other

learning algorithms for the AUC (Area Under the ROC Curve) metric. Finally,

Section 5 closes the paper and proposes future work.

2. Related work

Merging branches or nodes in decision trees is well-known and has been studied by

several researchers. D. I g n a t o v and A. I g n a t o v [4] propose a new method for

merging similar nodes where the similarity is calculated using two-sample test

statistics. The merging process is executed after each splitting iteration. The test of

similarity between two nodes compares the distribution of labels. The nodes from

different branches are merged if the difference is statistically insignificant. This

procedure resolves the classical problem of decision trees (progressive decrease of

data quantity in the leaf nodes). It produces a more general structure (a directed

acyclic graph), which can be extremely deep. W u and S h i [13] propose merging

identical subtrees. Two subtrees are identical if each subtree’s root has the same

splitting attribute and some corresponding branches of all the subtrees are similar.

The algorithm reduces the size of the tree because it decreases the number of leaves

and the depth of the final tree.

 52

Y a n g, W a n g and Z h u [14] compare the complexity of a decision tree before

and after merging branches, and present an algorithm for merging branches MID

based on the support vector machine margin enlargement. This approach merges the

pairs of nodes with the smallest distance between their data. H u, L i u and Y a n [3]

propose a new merging branches algorithm, EPMID, based on information gain and

predictability. The algorithm is built using the classical decision tree, but it uses the

pre-pruning approach to merge the nodes with equal predictability. Two nodes have

equal predictability if they have the same prediction class and the difference between

their conditional probabilities of belonging to the same class is below a threshold

defined by the user. J o o s t de N i j s [2] seeks to overcome some disadvantages in

the decision tree by replacing it with a graph or DAG (a Directed Acyclic Graph) in

which he merges branches of the tree that have a similar structure. V o l e s u and

U t h e r [11] demonstrate that merging several nodes with a common parent into a

single node could improve model accuracy. T a n and D o w e [10] resolve the

problem of encoding internal repeated structures by introducing dynamic attributes

in decision graphs.

L u n a et al. [27] propose a new algorithm, addTree, that creates a weak learner

at each node, using gradient boosting on the entire dataset rather than using only the

current node data. The algorithm allows the remaining data to influence the choice of

the current split but with a potentially different weight. P f a h r i n g e r, H o l m e s

and K i r k b y [8] propose an algorithm named HOT for Hoeffding Option Trees that

creates optional tree branches simultaneously, replacing the branches with a lousy

performance by optional ones. The algorithm’s time complexity is high due to the

construction of optional tree branches, while the precision has been dramatically

improved. In [12], authors propose a new algorithm, Size Constrained Decision Tree

(SCDT), which constructs a decision tree with a given number of leaf nodes. This

approach allows dealing with the problem of tree complexity while remaining

efficient. C o s t a et al. [23] propose an algorithm named the SVFDT algorithm for

Strict Very Fast Decision Tree, which avoids excessive tree growth by applying

additional rules to hold tree growth like the following assumptions:

1. A leaf node should split only if a minimum uncertainty of class assumption

is associated with the examples.

2. All leaf nodes should observe a similar number of examples to be turned into

split nodes.

3. According to previous statistics, the feature used for splitting should have a

minimum relevance.

G a r c í a-M a r t í n et al. [24] extend the Hoeffding Trees with 𝑛min adaptation.

They propose a new algorithm that defines a unique and adaptive value for 𝑛min on

each leaf to check for possible division. This method allows the tree to grow faster

on branches with clear divisions while delaying divisions on more uncertain

branches. By retarding the growth of those branches with insufficient confidence, the

algorithm saves a significant amount of energy on unnecessary tasks, with only minor

effects on accuracy. G a n a i e, T a n v e e r and S u g a n t h a n [25] present a new

approach for generating the oblique decision trees. At each non-leaf node, they use

Bhattacharyya distance with a randomly selected feature subset to split the training

https://scholar.google.com/citations?user=9LJwmLkAAAAJ&hl=fr&oi=sra

 53

data into two categories. They use a Twin Bounded Support Vector Machine

(TBSVM) to get two clustering hyperplanes so that each hyperplane is closer to the

data points of one group and as far as possible from the data points of the other group.

Each non-leaf node is split to generate the decision tree based on these hyperplanes.

Y a n g and F o n g [26] propose an incremental optimization mechanism to solve

imperfect data stream, Overfitting, and imbalanced class distribution problems. The

mechanism is called Optimized Very Fast Decision Tree (OVFDT). OVFDT is a

pioneer model with an incremental optimization mechanism that seeks to balance

accuracy and tree size for data stream mining. It operates incrementally by a test-

then-train approach. Three types of functional tree leaves improve the accuracy with

which the tree model predicts a new data stream in the testing phase.

3. Proposed method

3.1. Example illustrating the problem of weak nodes

When trained to a significant depth, DT potentially has a high enough model

complexity to achieve near-perfect predictions, and the existence of weak nodes can

explain this. Therefore, these nodes will have a negative impact on the performance

of the tree. So maximizing the contribution of each branch of the decision tree to

optimal decision making becomes of high priority. Let us take an example of a weak

node. During the tree construction, in a high depth, we consider a node containing

three examples, two of them are positively labelled, and one is negatively labelled.

Although this number of examples is very small, this node still needs to be divided;

in reality, this number of examples is not enough to make a good decision. Moreover,

the branch rooted with this node has no value statistically. Below we present an

example of a binary decision tree. Given an input of three examples, the classifier

follows the branch based on the condition satisfied by the splitting attribute until a

leaf is reached, which specifies the prediction.

Fig. 1. Example of a node containing three examples

It seems that the classifier works perfectly since it splits the node into two pure

nodes, but the question to ask is whether if the number of examples three is enough

to make a reliable prediction. These three examples may be outliers, and therefore

this type of node will be of poor quality, and subsequently, it does not generalize

well; therefore, it will harm the tree performance. Here is the graphical representation

in Figs 2-3.

 54

Fig. 2. The graphical representation of the node from Fig. 1

Now suppose an individual with x1= 0.6 is labelled positive so that this classifier

misclassifies this individual.

Fig. 3. Example of misclassification point

This is normal because the number of examples in the node is too low; making

the prediction of class labels of this region is very difficult, since a smaller leaf makes

the model more prone to capturing noise in training data. For this purpose, if we

increase this node’s data from another similar node’s data, the prediction would

become more robust. After the node’s data augmentation, the splitting attribute and

the best threshold for this attribute are recalculated. The threshold can be modified

(Fig. 4), or the splitting attribute can be modified (Fig. 5). Thus, the node becomes

more robust, and the decision becomes reliable.

Fig. 4. The threshold correction of the node after data augmentation

Fig. 5. Changing the splitting attribute after increasing data

 55

3.2. Decision tree algorithm

A decision tree is a classifier that divides data recursively into homogeneous subsets

to form classes. It is a supervised learning algorithm used in discrete or continuous

data for classification or regression. Several algorithms have been presented until

now, but the best known are C4.5, CART, QUEST, and CHAID.

3.2.1. C4.5 Algorithm

C4.5 algorithm [9] recursively splits a dataset of samples using a breadth-first or

depth-first approach until all data subsets belong to one class. DT algorithm would

begin by placing all the samples in the root node; the root node would then be placed

in the fringe. The fringe is the set of nodes that still need to be divided further. We

remove a node from the fringe at each step, and we create his children nodes and add

them to the fringe, and we repeat this process until the fringe becomes empty.

3.2.2. CART

CART [1] stands for Classification and Regression Trees. It is distinguished by the

fact that it constructs binary trees; specifically, each internal node has exactly two

child nodes. The splits are selected using the Twoing criteria [22], which is a measure

that evaluates the goodness of a splitting value. It measures the difference in

probability that a category appears in the left descendant rather than the right

descendant node, and the obtained tree is pruned. CART can handle both numeric

and categorical data, efficiently handling outliers.

3.2.3. QUEST

Loh and Shih proposed QUEST [6] (Quick Unbiased Efficient Statistical Tree) in

1997. It is a tree-based classification algorithm that requires the target variable to be

continuous. The computation speed of this algorithm is higher than this of other

methods. The QUEST tree algorithm is known by the fact that it is not biased in the

selection of split attributes, as opposed to the CART algorithm, which is biased

towards the selection of the splitting attributes that allow more splits and those which

have more missing values. The QUEST algorithm is more suitable for multiple

categorical variables but can only perform binary classification. In the case of

multiclass classification, it merges the classes into two superclasses.

3.2.4. CHAID

Kass proposed CHAID [5] (CHi-square Automatic Interaction Detection) in 1980.

CHAID uses multi-way splits by default (multi-way splits mean that the current node

is split into more than two nodes). It also prevents overfitting problems. A node is

only split if a significance criterion is fulfilled.

3.3. The EWNDT Algorithm

The EWNDT algorithm is a modified version of the C4.5 Algorithm [2] using the

breadth-first approach. Our main contribution is to increase weak node data

(i.e., nodes with a number of examples less than a given threshold𝛽, e.g., 𝛽 = 5)

when building trees. If a node is identified as weak, it should not be placed in the

 56

fringe but in a specific set named 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡, containing all the weak nodes.

Once the initial construction of the tree is finished, we start processing the weak nodes

and iterate over all nodes in the 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡. At each iteration, a node 𝑁 would

be removed from the 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡; then, we search for similar nodes to 𝑁 in the

tree already built. Finally, when similar nodes are identified, we merge their data with

the current node 𝑁 and continue the construction process until the set of weak nodes

becomes empty. The similarity between the two nodes is detailed in the next section.

The exact process of our method is outlined below:

Algorithm EWNDT (𝐷, β)

Input: Training data 𝐷, node’s weakness indicator 𝛽

Output: A tree

Step 1. 𝑓𝑟𝑖𝑛𝑔𝑒, 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡 ← ∅ // Global variables

Step 2. if 𝐷 is pure OR other stopping criteria met

Step 3. return a node with a corresponding class label

Step 4. for all attributes 𝑎 𝜖 𝐷

Step 5. Compute information-theoretic criteria if we split on 𝑎

Step 6. 𝑎best ← the best attribute according to the above computed criteria

Step 7. 𝑟𝑜𝑜𝑡 ← create a new node child with 𝑎best as splitting attribute

Step 8. Add the root to the 𝑓𝑟𝑖𝑛𝑔𝑒

Step 9. while the 𝑓𝑟𝑖𝑛𝑔𝑒 is not empty

Step 10. Pop a node 𝑛 from the fringe

Step 11. 𝑏𝑒𝑠𝑡𝐴 ← the splitting attribute of the node 𝑛

Step 12. for each possible value 𝑣 of 𝑏𝑒𝑠𝑡𝐴

Step 13. 𝐷sub ← a subset of 𝐷 that have value 𝑣 for 𝑏𝑒𝑠𝑡𝐴

Step 14. 𝑐ℎ𝑖𝑙𝑑𝑣 ← BuildNode (𝐷sub , 𝛽)

Step 15. Add 𝑐ℎ𝑖𝑙𝑑𝑣 as a descent from the node 𝑛 and label the edge

{𝑛 → 𝑐ℎ𝑖𝑙𝑑𝑣 } as 𝑣

Step 16. while the 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡 is not empty

Step 17. Pop a node 𝑁 from the 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡

Step 18. Search similar nodes to 𝑁

Step 19. if more than one node is similar to 𝑁

Step 20. Calculate the distance between them and 𝑁

Step 21. if more than one node has the min distance of 𝑁

Step 22. Merge the data of 𝑁 and all these nodes in 𝐷1

Step 23. else

Step 24. CN ← the node that has min distance to 𝑁

Step 25. Merge the data of 𝑁 and CN in 𝐷1

Step 26. Select Attribute 𝐴1, which best classifies 𝐷1

Step 27. Mark the node 𝑁 with 𝐴1 as splitting Attribute

Step 28. Add the node 𝑁 to the 𝑓𝑟𝑖𝑛𝑔𝑒

Step 29. else

Step 30. SN ← the node which has maximum similarity to 𝑁

Step 31. Merge the data of 𝑁 and SN in 𝐷2.

 57

Step 32. Select Attribute 𝐴2, which best classify 𝐷2

Step 33. Mark the node 𝑁 with 𝐴2 as splitting Attribute

Step 34. Add the node 𝑁 to the 𝑓𝑟𝑖𝑛𝑔𝑒

Step 35. return root

Algorithm BuildNode (𝐷, 𝛽)

Input: Training data 𝐷, node's weakness indicator 𝛽

Output: A node,

Step 1. if 𝐷 is pure OR other stopping criteria are met,

Step 2. return a node with a corresponding class label.

Step 3. else

Step 4. 𝑎best ← the best attribute according to the above computed criteria

Step 5. 𝑐ℎ𝑖𝑙𝑑 ← create a new node with 𝑎best as splitting attribute

Step 6. if the number of examples of 𝐷 < 𝛽

Step 7. Add 𝑐ℎ𝑖𝑙𝑑 to the 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡

Step 8. else

Step 9. Add 𝑐ℎ𝑖𝑙𝑑 to the 𝑓𝑟𝑖𝑛𝑔𝑒

Step 10. return 𝑐ℎ𝑖𝑙𝑑

3.3.1. General conditions of the algorithm

The goal of the EWNDT algorithm is to increase the data of nodes marked as weak

by merging their data with other similar nodes. This data merging is done virtually to

determine the splitting attribute and the best threshold. Since this additional data is

not kept in the child nodes, however, before merging, the following conditions must

be verified:

• Two nodes belonging to the same branch (nodes on the same path from the

tree root to a leaf node (Fig. 6)) cannot be merged.

Fig. 6. Example of two nodes belonging to the same branch

• Two sibling nodes (nodes with the same parent node (Fig. 7)) cannot be

merged.

Fig. 7. Example of two sibling nodes

 58

• If we find more than one node similar to the current one, we take the closest

node (e.g., the node with the minimum distance from the current node). The method

to calculate the distance between two nodes is presented in the following sub-section.

• If we find more than one similar node to the current one and these similar

nodes are located at the same distance from the current one, we merge the data from

all of these nodes with the current one to reselect a more reliable splitting attribute.

3.3.2. Distance between two nodes

The distance 𝑑 between two nodes 𝑛1 and 𝑛2 is the minimum number of edges

traversed from 𝑛1 to 𝑛2. It is calculated using the following formula:

(1) 𝑑 = (𝑛1. depth − ca. depth) + (𝑛2. depth − ca. depth),

where ca is the common ancestor of the two nodes (i.e., the common node between

the two branches carrying these two nodes).

The distance between two nodes 𝑛1 and 𝑛2 can be computed as the distance

from 𝑛1 to ca, plus the distance from ca to 𝑛2. Fig. 8 explains the method to calculate

the distance between two nodes.

Fig. 8. The distance between two nodes

3.4. Node similarity

To merge two nodes in the tree, they must be similar, but there are several similarity

criteria. We have used two approaches for comparing the similarity of the nodes:

3.4.1. Threshold approach

Two nodes, 𝑛1 and 𝑛2, in the tree are similar in the case of numerical attributes if they

satisfy the following conditions:

• If they have the same splitting attribute.

• If they are labelled with the same class.

• If (| 𝑛1. thresh − 𝑛2. thresh | ≤ simThresh),

where 𝑛1. thresh and 𝑛2. thresh are the thresholds that give the best distribution of

data in each node. simThresh is a parameter that measures the closeness between

two thresholds (e.g., if simThresh = 0.1, two thresholds are considered equal if their

difference is less than 0.1). The thresholds of every i-th splitting attribute zi are

normalized (i.e., its values are between 0 and 1) using the following formula:

(2) 𝑧𝑖 =
𝑥𝑖−𝑥min

𝑥max−𝑥min
,

where 𝑥 = (𝑥1, . . . , 𝑥𝑛) is the data before normalization, 𝑥max is the maximum

value for the attribute 𝑥𝑖, 𝑥min is the minimum value for the attribute 𝑥𝑖 , and 𝑧𝑖 is now

the i-th normalized data. We normalized the thresholds to facilitate the detection of

 59

similar ones to be generalized for the whole attribute space. In the case where

thresholds are unnormalized, a simThresh value must be determined for each

attribute.

Two nodes, 𝑛1 and 𝑛2, in the tree are similar in the case of categorical attributes if

they satisfy the following conditions:

• If they have the same splitting attribute.

• If they are labelled with the same class.

• The difference between their predictability is less than a threshold 𝛼 [3],

where the predictability of a node 𝑁 is defined as a conditional probability:

(3) predictability (𝑁) = prob(𝑁. splitAttr = 𝑁. thresh | 𝑁. label)

where 𝑁. splitAttr and 𝑁. thresh are the best attribute and threshold values to split

the node 𝑁 while 𝑁. label represents the class label with the majority vote in the node

𝑁. For example, let’s take 𝛼 = 0.1. Two nodes 𝑛1 and 𝑛2 are merged if

(4) | predictability(𝑛1) – predictability(𝑛2)| ≤ 0.1.
We only compute the predictability when the first two conditions are verified,

i.e., we calculate predictability when the two nodes have the same class and the same

splitting attribute.

3.4.2. Probabilistic approach

This approach does not differentiate between the numerical and the categorical

attributes because it uses the predicted class probability, which represents the fraction

of samples of the same class in a node. To better understand the prediction of class

probabilities, we will take an example of a node containing five examples; two of

them are positively labelled, and three examples are negatively labelled. So the

probability of the positive class will be 2/5=0.4 while the probability of the negative

one will be 3/5=0.6. Two nodes in a decision tree are similar if they satisfy the

following conditions:

• If they have the same splitting attribute,

• If (|𝑛1. prob – 𝑛2. prob | ≤ probThresh),
probThresh is a parameter that measures the similarity between two probabilities

(e.g., if probTresh = 0.1, two probabilities are considered similar if their difference

is less than 0.1).

3.5. The strengths and limitations of the proposed method

When the tree is too shallow, there will be a chance that very few data points will be

present at the bottom nodes, so the model could not reliably predict future cases and,

thus, would have low generalizability. Hence, we augment the data of these nodes

from other nodes, which are similar. This new approach allows us to build a reliable

and robust splitting criteria tree. Furthermore, this will reflect on the accuracy of the

tree. Our proposal’s validity is tested; its advantages are demonstrated experimentally

through illustrative examples and comparative analysis. The results discussion

proved its usability and strengths over the existing approaches. However, the

EWNDT algorithm has some weaknesses compared with other methods; the main

drawback of the EWNDT algorithm is that it takes a large time to construct the tree

in all datasets and generates a little more complex trees.

 60

Time complexity of the algorithm. The algorithm builds more complex trees, but

they construct more robust and reliable branches. To evaluate the time complexity of

our algorithm, we start by calculating the complexity of each step. First, we consider

the time complexity of the technique used in searching for the best split in the case

of a numerical attribute. This technique sorts the unique values in the variable and

selects a threshold between each consecutive value, and then it takes the one that

minimizes the entropy. This sorting step takes time 𝑂(𝑛 × log(𝑛)). Where 𝑛 is the

number of examples in the dataset, since we are doing that for all the features whose

number is 𝑚, the total time complexity would be 𝑂(𝑚 × 𝑛 × log(𝑛)). Finally, we will

repeat this process for all weak nodes whose number is 𝑤 then; the final complexity

will be 𝑂(𝑚 × 𝑛 × log(𝑛) × 𝑤).

4. Experimental results

4.1. Datasets

Experiments have been performed using twenty binary classification real-world

datasets from the UCI repository to evaluate the proposed algorithm’s performance.

Table 1 shows the dataset, the size, the number of nominal and numerical attributes,

and the percentage of examples of the minority class.

Table 1. Datasets characteristics

No Datasets Size Attributes % Min class

Num. Cat.

1 transfusion 748 4 0 23.8

2 eighthr 2533 73 0 6.3

3 spambase 4601 57 0 39.4

4 Bank 41190 10 10 11.27

5 Hill_valley 606 100 0 49.7

6 ad 3263 1556 0 13.9

7 Cyl bands 540 18 20 42.2

8 Pima 768 8 0 34.9

9 adult 32561 0 14 24.1

10 caravan 5822 85 0 6.0

11 Connect 2c 67557 0 42 34.2

12 Liver 345 6 0 42.03

13 clean 6598 166 0 15.4

14 sick 2751 6 21 6.1

15 weka 310 6 0 22.3

16 spect 267 44 0 20.6

17 hypothyroid 3163 6 19 4.8

18 numerai 96320 21 0 49.5

19 kobe 25697 12 12 44.6

20 Sick-euth 2000 6 19 8.2

4.2. Parameters tuning

Table 2 summarizes the values obtained with our method and C4.5 in the parameter

optimization process during the dataset training. The parameters of interest for the

optimal parameterization are the max depth, the number of nodes in the constructed

tree, and 𝛽 the node’s weakness indicator. We have used other parameters like the

 61

min sample leaf (the minimum number of samples required to be at a leaf node), but

we show just the most critical parameters. We have used a grid search approach to

find optimal parameters. For 𝛽, we have used the parameter space (10, 20, 30, 50,

and 100), and for the maximum depth, we have used the following interval [3, 9].

 Table 2. Optimal parameters for EWNDT and C4.5 for each dataset

Method Dataset Depth 𝛽
Number
of nodes

Dataset Depth 𝛽
Number
of nodes

C4.5
1

5 – 31
11

9 – 423

EWNDTT 7 20 38 9 10 398

EWNDTP 7 20 37 9 10 403

C4.5
2

3 – 18
12

9 – 39

EWNDTT 4 30 21 9 20 37

EWNDTP 4 30 23 9 20 36

C4.5
3

6 – 45
13

9 – 84

EWNDTT 7 50 48 9 50 82

EWNDTP 7 50 48 9 50 81

C4.5
4

7 – 110
14

8 – 27

EWNDTT 7 50 107 8 50 27

EWNDTP 7 50 106 8 50 27

C4.5
5

8 – 19
15

3 – 6

EWNDTT 9 50 18 3 50 6

EWNDTP 9 50 20 3 50 6

C4.5
6

5 – 31
16

9 – 19

EWNDTT 7 20 38 9 20 21

EWNDTP 7 20 37 9 20 22

C4.5
7

3 – 18
17

9 – 25

EWNDTT 4 30 21 9 50 24

EWNDTP 4 30 23 9 50 26

C4.5
8

5 – 25
18

7 – 293

EWNDTT 5 30 23 7 50 271

EWNDTP 5 30 22 7 50 273

C4.5
9

9 – 193
19

9 – 166

EWNDTT 9 50 171 9 50 171

EWNDTP 9 50 175 9 50 172

C4.5
10

4 – 13
20

9 – 26

EWNDTT 4 50 12 9 50 21

EWNDTP 4 50 12 9 50 24

According to Table 2, those trees generated by EWNDT are much smaller than

those generated by C4.5 in 11 of the 20 datasets; this can be explained by the fact that

the data augmentation in weak nodes by similar data allows the classifier to find pure

nodes faster.

4.3. Comparison with state-of-the-art methods

We have compared our two approaches (EWNDT with Threshold Similarity

(ENWDTT) and EWNDT with Probability Similarity (ENWDTP)) with four state-

of-the-art decision tree methods C4.5 [9], QUEST [6], CHAID [5], and CART [1].

We performed a 10-fold cross-validation. For each dataset, we show the arithmetic

mean and the standard deviation of the ten runs. Table 3 presents the results of our

benchmarks. Each model’s performance has been evaluated using the AUC metric

(area under the roc curve). We have used the AUC as a performance metric because

 62

the datasets have different distributions. Table 4 compares the different algorithms

using accuracy as a performance metric. The best scores for each dataset are

boldfaced.

Table 3. Evaluation of the two proposed approaches vs. four state-of-the-art decision tree

algorithms using AUC score

No C4.5 EWNDTT EWNDTP QUEST CHAID CART

1 70.6 ± 8.5 71.9 ± 8.4 71.9 ± 7.4 71.1 ± 5.1 71.0 ± 6.0 71.5 ± 8.6

2 70.3 ± 5.9 70.3 ± 5.9 70.4 ± 5.9 70.2 ± 5.7 70.1 ± 5.9 70.4 ± 5.8

3 95.5 ± 1.2 95.5 ± 1.2 95.7 ± 1.2 95.8 ± 1.3 95.9 ± 1.2 95.7 ± 1.1

4 83.1 ± 0.7 83.3 ± 0.8 83.7 ± 0.8 84.1 ± 0.7 83.2 ± 0.8 83.7 ± 0.8

5 56.3 ± 6.1 56.6 ± 4.5 56.3 ± 6.1 55.3 ± 5.1 58.6 ± 4.7 57.2 ± 6.1

6 90.9 ± 1.9 91.3 ± 1.6 91.4 ± 1.6 91.8 ± 1.9 91.7 ± 1.6 92.4 ± 1.5

7 77.3 ± 4.2 78.3 ± 4.2 78.0 ± 4.5 77.3 ± 4.1 78.3 ± 4.2 78.0 ± 4.4

8 80.4 ± 5.0 82.4 ± 4.5 82.4 ± 4.0 81.1 ± 5.0 80.9 ± 4.7 81.6 ± 4.0

9 88.1 ± 0.6 88.2 ± 0.6 89.7 ± 0.6 86.1 ± 0.7 85.2 ± 0.9 87.7 ± 0.6

10 73.7 ± 3.2 73.7 ± 3.2 73.7 ± 3.2 73.1 ± 3.2 73.7 ± 3.2 73.2 ± 3.2

11 82.4 ± 0.6 82.4 ± 0.6 82.4 ± 0.6 82.4 ± 0.6 82.4 ± 0.6 82.2 ± 0.6

12 68.5 ± 7.4 72.6 ± 5.7 71.8 ± 7.1 69.8 ± 7.3 70.5 ± 6.7 71.7 ± 7.1

13 89.3 ± 2.5 89.4 ± 2.5 89.8 ± 2.4 89.9 ± 2.7 90.3 ± 2.8 90.7 ± 2.4

14 89.2 ± 5.6 90.4 ± 4.0 90.4 ± 4.0 89.6 ± 4.6 90.1 ± 5.0 90.2 ± 5.2

15 89.0 ± 5.9 89.5 ± 6.0 89.5 ± 6.0 89.1 ± 5.8 88.7 ± 6.1 88.9 ± 6.0

16 60.0 ± 10.3 61.2 ± 10.6 62.3 ± 9.9 63.0 ± 10.1 62.3 ± 10.2 62.5 ± 9.9

17 78.0 ± 4.9 78.0 ± 4.9 79.0 ± 5.0 78.5 ± 4.8 78.2 ± 4.9 79.1 ± 5.0

18 52.2 ± 0.4 52.2 ± 0.4 52.2 ± 0.4 53.0 ± 0.6 51.7 ± 0.5 52.5 ± 0.5

19 68.6 ± 1.0 68.7 ± 1.0 68.7 ± 1.0 68.9 ± 1.2 69.3 ± 1.4 69.6 ± 1.1

20 87.2 ± 4.5 88.9 ± 5.6 89.1 ± 4.9 87.2 ± 4.7 88.9 ± 5.2 89.1 ± 5.9

Mean 77.5 78.2 78.4 77.9 78.0 78.4

Table 4. Evaluation of the two proposed approaches vs. four state-of-the-art decision

tree algorithms using Accuracy

No C4.5 EWNDTT EWNDTP QUEST CHAID CART

1 78.5 ± 4.5 78.9 ± 4.4 78.7± 4.3 78.1 ± 5.1 78.2 ± 5.6 77.9 ± 3.9

2 95.0 ± 3.8 94.7 ± 3.9 94.5 ± 3.6 94.7 ± 3.7 94.9 ± 3.6 95.1 ± 3.5

3 91.9 ± 1.2 92.0 ± 1.2 92.1 ± 1.1 90.8 ± 1.3 91.9 ± 1.4 91.6 ± 1.3

4 90.1 ± 1.5 90.6 ± 1.7 90.7 ± 1.8 89.9 ± 1.6 88.2 ± 1.8 90.0 ± 1.7

5 52.9 ± 3.7 52.8 ± 3.5 52.8 ± 3.8 52.3 ± 3.1 52.5 ± 3.9 52.2 ± 4.1

6 96.9 ± 1.9 97.3 ± 1.6 97.4 ± 1.6 97.5 ± 2.3 94.3 ± 2.0 96.4 ± 1.9

7 73.2 ± 3.6 73.5 ± 3.5 73.3 ± 3.6 73.1 ± 4.2 73.0 ± 4.0 73.2 ± 4.1

8 75.4 ± 4.3 75.7 ± 4.4 76.2 ± 4.3 75.1 ± 4.8 75.6 ± 4.3 75.5 ± 4.4

9 85.1 ± 2.1 85.0 ± 2.3 85.2 ± 2.2 85.3 ± 2.2 85.2 ± 2.0 85.4 ± 1.9

10 93.7 ± 2.8 93.7 ± 2.9 93.7 ± 2.9 93.7 ± 2.7 93.7 ± 2.6 93.8 ± 3.3

11 74.6 ± 5.4 78.6 ± 5.1 78.2 ± 5.2 77.3 ± 5.2 77.9 ± 5.3 76.8 ± 5.0

12 72.5 ± 6.4 73.6 ± 5.7 73.5 ± 6.1 72.8 ± 6.6 70.5 ± 6.7 71.7 ± 7.1

13 93.3 ± 7.5 91.4 ± 7.9 92.0 ± 7.4 91.9 ± 7.7 92.3 ± 7.8 92.7 ± 7.4

14 95.2 ± 3.6 95.4 ± 4.0 95.8 ± 4.0 94.6 ± 3.6 96.1 ± 5.0 95.2 ± 5.2

15 82.1 ± 7.3 83.3 ± 6.8 84.4 ± 6.5 85.1 ± 5.9 84.7 ± 6.1 85.0 ± 6.0

16 71.3 ± 2.5 75.1 ± 2.7 75.0 ± 2.8 73.0 ± 3.1 74.1 ± 2.8 73.9 ± 2.9

17 83.0 ± 3.9 84.4 ± 4.0 84.9 ± 3.9 83.5 ± 4.2 83.1 ± 4.4 83.8 ± 4.0

18 52.8 ± 0.7 53.2 ± 0.6 53.3 ± 0.6 53.0 ± 0.6 53.7 ± 0.5 52.5 ± 0.5

19 69.5 ± 1.1 70.7 ± 1.0 69.7 ± 0.9 69.9 ± 1.1 69.8 ± 1.4 70.6 ± 1.1

20 90.6 ± 4.5 91.4 ± 4.6 92.1 ± 3.9 85.2 ± 4.7 86.7 ± 5.2 87.1 ± 5.1

Ave-
rage

80.9 81.6 81.7 80.8 80.8 81.0

 63

4.4. Comparison with different machine learning algorithms

To exhibit the worthiness of our method, we have compared it with the most well-

known classification methods (Table. 5): Random Forests (RF) [16], Support vector

machine (SVM) [17], k-Nearest Neighbors (KNN)[18], Logistic Regression (LR)

[19] and Naive Bayes (NB) [20] presented in paper [21]. In the experiments, they use

10-fold cross-validation. Each dataset is split into three parts. 80% of the total

examples in each dataset are used for training a classification model. Another 10%

of the dataset examples are used for tuning the parameters of the classification model.

The last 10% of the instances are used for testing only. If a classifier does not need

to tune its parameters, the validation data will be merged into the training data. All

classifiers use the same training and test data. We selected eight binary datasets from

the used datasets and compared our method with the different algorithms.

Table 5. AUC results for different classification algorithms on eight data sets

Data sets RF SVM KNN LR NB EWNDTP EWNDTT

pima 74.68 61.71 57.92 77.38 72.51 82.40 82.40

Ionosphere 91.67 80.56 88.89 88.89 80.56 83.30 82.2

German credit 93.91 64.52 69.39 65.35 74.08 81.50 80.4

splice 87.65 92.59 80.92 89.94 80.91 84.60 85.5

new_thyroid 87.50 100.00 96.88 96.88 96.88 92.40 93.6

spambase 95.94 89.71 66.46 64.42 59.40 95.70 95.5

phoneme 85.86 65.08 85.61 63.99 70.64 75.70 74.1

car 95.08 89.70 83.56 57.45 86.57 86.10 85.9

Average 89.04 80.48 78.70 75.54 77.69 85.21 84.95

4.5. Analysis of results

According to Table 3, the EWNDT algorithm with threshold similarity outperforms

all the other methods with six (transfusion, bands, Pima, sick, weka, and liver) of the

twenty datasets, while the difference between EWNDT and the other method in the

remaining datasets is slight. The second approach that uses Probability's similarity

outperforms all the other methods in seven of the twenty datasets. As we can see, the

common factor between the datasets where our algorithm outperforms the other

methods is that they have a few attributes. The first approach gives the best

performance in numerical data sets, although the second approach does not

differentiate between datasets. However, the second approach generally achieves the

best performance compared to the other methods.

One can first observe from Table 4 that EWNDTP and EWNDTT are more

accurate than the other algorithms. EWNDTT outperforms all the algorithms on five

of the twenty datasets, and EWNDTP outperforms on seven of the twenty datasets.

The differences between the two approaches and the other methods are often minor

regarding the remaining datasets. As a matter of fact, EWNDT mean accuracy is

better than the mean accuracy obtained by all other methods.

According to Table 5, RF has the best performance, followed by EWNDTT and

EWNDTP. Moreover, we observe that EWNDTP and EWNDTP give the best

performance over all other methods for the dataset Pima. In general, our approach

ranks as the top one in most of the datasets.

 64

5. Conclusion

This paper presents a new algorithm based on the Decision Tree model, which

reinforces weak nodes in the tree by augmenting its data from other similar nodes

using two similarity approaches. The first approach uses threshold similarity for the

numerical attribute and conditional probability for the categorical attribute. The

similarity criterion by the second approach uses nodes distribution. First, we have

compared our method with four state-of-the-art decision tree methods (C4.5, CART,

QUEST, and CHAID), which are the most popular ones. Then we have compared it

to other classification algorithms. Therefore, the experimental results demonstrate

that the new algorithm has fewer leaf nodes and higher classification performance.

There are at least two areas for immediate future exploration.

First, we consider only the binary class in our experiment. Moreover, the

problem may be more complicated if a non-binary class is considered. The second

direction is to search for other similarity criteria between nodes. One more direction

is when we find more than one node similar to the current node. We choose the node

with the minimum distance from the current node, while other approaches can be

applied.

R e f e r e n c e s

1. B r e i m a n, L., J e. F r i e d m a n, C. J. S t o n e, R. A. O l s h e n. Classification and Regression

Trees. CRC Press, 1984.

2. J o o s t de N i j s . Decision Dags – a New Approach. Drown University, 1999.

3. H u, D., Q. L i u, Q. Y a n. Decision Tree Merging Branches Algorithm Based on Equal

Predictability. – In: Proc. of International Conference on Artificial Intelligence and

Computational Intelligence, Vol. 3, 2009, pp. 214-218.

4. I g n a t o v, D., A. I g n a t o v. Decision Stream: Cultivating Deep Decision Trees. – In: Proc. of

29th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’17), 2017,

pp. 905-912.

5. G o r d o n, V. K a s s. An Exploratory Technique for Investigating Large Quantities of Categorical

Data. – Journal of the Royal Statistical Society: Series C (Applied Statistics), Vol. 29, 1980,

No 2, pp. 119-127.

6. L o h, W e i-Y i n, Y u-S h a n S h i h. Split Selection Methods for Classification Trees. Sinica

Statistica, 1997, pp. 815-840.

7. G u d a p a t i, P., M. M a h m o o d, V. K a v u l u r u, M. K u p p a. A New Pruning Approach for

Better and Compact Decision Trees. – International Journal on Computer Science and

Engineering, Vol. 2, 2010, pp. 2551-2558.

8. P f a h r i n g e r, B., G. H o l m e s, R. K i r k b y. New Options for Hoeffding Trees. – In: Proc. of

Australasian Joint Conference on Artificial Intelligence, Springer, 2007, pp. 90-99.

9. R o s s Q u i n l a n, J. C 4.5: Programs for Machine Learning. 1993.

10. T a n, P. J., D. L. D o w e. MML Inference of Decision Graphs with Multi-Way Joins. – In: Proc. of

Australian Joint Conference on Artificial Intelligence, 2002, pp. 131-142.

11. U t h e r, W. T. B., M. M. V e l o s o. The Lumberjack Algorithm for Learning Linked Decision

Forests. – In: Proc. of International Symposium on Abstraction, Reformulation, and

Approximation, 2000, pp. 219-232.

12. W u, C h i a-C h i, Y e n-L i a n g C h e n, Y i-H u n g L i u, X i a n g-Y u Y a n g. Decision Tree

Induction with a Constrained Number of Leaf Nodes. – Applied Intelligence, Vol. 45, 2016,

No 3, pp. 673-685.

13. W u, X., B. S h i. New Algorithm of Simplifying the ID3 Decision Tree. – Journal of Hefei

University of Technology, Vol. 27, 2004, pp. 1565-1569.

 65

14. Y a n g, C., X. W a n g, R. Z h u. A Strategy of Merging Branches Based on Margin Enlargement of

SVM in Decision Tree Induction. – In: Proc. of IEEE International Conference on Systems,

Man and Cybernetics, Vol. 1, 2006, pp. 824-828.

15. Y a n g, S., H. F o n g. Incrementally Optimized Decision Tree for Noisy Big Data. – In: Proc. of 1st

International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms,

Systems, Programming Models and Applications, 2012, pp. 36-44.

16. B r e i m a n, L. Random Forests. – Machine Learning, Vol. 45, 2001, No 1, pp. 5-32.

17. C o r t e s, C., V. V a p n i k. Support Vector Machine. – Machine Learning, Vol. 20, 1995, No 3,

pp. 273-297.

18. K e l l e r, J. M., M. R. G r a y, J. A. G i v e n s. A Fuzzy k-Nearest Neighbour Algorithm. – IEEE

Transactions on Systems, Man, and Cybernetics, 1985, No 4, pp. 580-585.

19. W r i g h t, R. E. Logistic Regression. – In: L. G. Grim, P. R. Yarnolol, Eds. Reading and

Understanding Multivariate Statistics, 1995, pp. 217-244.

20. S t o r k, D. G., R. O. D u d a, P. E. H a r t, et al. Pattern Classification. Wiley-Inter Science

Publication, 2001.

21. Z h a n g, C., C. L i u, X. Z h a n g, G. A l m p a n i d i s. An Up-to-Date Comparison of State-of-the-

Art Classification Algorithms. – Expert Systems with Applications, Vol. 82, 2017,

pp. 128-150.

22. S i n g h, S., P. G u p t a. Comparative Study ID3, Cart, and C4.5 Decision Tree Algorithm: A

Survey. – International Journal of Advanced Information Science and Technology (IJAIST),

Vol. 27, 2014, No 27, pp. 97-103.

23. D a C o s t a, V. G. T., A. C. P. de L e o n F e r r e i r a, S. B. J u n i o r et al. Strict Very Fast

Decision Tree: A Memory Conservative Algorithm for Data Stream Mining. – Pattern

Recognition Letters, Vol. 116, 2018, pp. 22-28.

24. G a r c í a-M a r t í n, E., N. L a v e s s o n, H. G r a h n et al. Energy-Aware Very Fast Decision Tree.

– International Journal of Data Science and Analytics, Vol. 11, 2021, No 2, pp. 105-126.

25. G a n a i e, M. A., M. T a n v e e r, P. N. S u g a n t h a n. Oblique Decision Tree Ensemble via Twin

Bounded SVM. – Expert Systems with Applications, Vol. 143, 2020, p. 113072.

26. Y a n g, H., S. F o n g. Incremental Optimization Mechanism for Constructing a Decision Tree in

Data Stream Mining. – Mathematical Problems in Engineering, Vol. 2013, 2013.

27. L u n a, J. M., E. D. G e n n a t a s, L. H. U n g a r et al. Building More Accurate Decision Trees with

the Additive Tree. – Proceedings of the National Academy of Sciences, Vol. 116, 2019, No

40, pp. 19887-19893.

Received: 14.03.2021; Second Version: 05.01.2022; Third Version: 05.04.2022;

Accepted: 21.04.2022

