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Abstract: Decision trees are among the most popular classifiers in machine learning, 

artificial intelligence, and pattern recognition because they are accurate and easy to 

interpret. During the tree construction, a node containing too few observations (weak 

node) could still get split, and then the resulted split is unreliable and statistically 

has no value. Many existing machine-learning methods can resolve this issue, such 

as pruning, which removes the tree’s non-meaningful parts. This paper deals with 

the weak nodes differently; we introduce a new algorithm Enhancing Weak Nodes in 

Decision Tree (EWNDT), which reinforces them by increasing their data from other 

similar tree nodes. We called the data augmentation a virtual merging because we 

temporarily recalculate the best splitting attribute and the best threshold in the weak 

node. We have used two approaches to defining the similarity between two nodes. 

The experimental results are verified using benchmark datasets from the UCI 

machine-learning repository. The results indicate that the EWNDT algorithm gives 

a good performance.  

Keywords: Decision tree; virtual merging node; weak nodes; nodes similarity; data 

augmentation. 

1. Introduction  

The Decision Tree (DT) algorithm is a well-known method for representing 

classifiers due to its simplicity, interpretation, and ease of use. The decision tree 

algorithm starts by using the whole data in the root node, then it divides the data into 

two subsets if the tree is binary or more than two otherwise based on the values of 

one or more attributes. The DT algorithm recursively divides each subset of examples 

into smaller ones, and it continues this process until all subsets contain a single class. 

The final subsets form the leaf nodes of the resulting tree. The classification process 

starts at the root node and follows the decision nodes' directions until it reaches a leaf. 

A weak node can be found during tree construction, with very few observations left; 

this confirms that as long as we go down in the tree, the reliability of further splitting 

nodes decreases due to the small sample size. To treat this issue, the literature on 
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decision trees presents several methods. The most well-known among them is 

pruning. Pruning is a method that reduces the complexity of the tree by eliminating 

the non-useful parts to avoid over-fitting the dataset. Pruning the tree is an effective 

way to improve such a model’s efficiency and classification accuracy. There are two 

types of pruning: 

• Pre-pruning: during the construction, it stops the subdivision of the nodes 

based on some stopping criteria. 

• Post-pruning: remove some part of the tree structure by recursive partitioning 

retrospectively.  

Mahmood mentions in [7] that pre-pruning saves time by avoiding creating 

branches that will not be used in the final optimal tree. The challenge in this approach 

is to find an appropriate stopping rule [15]. Post-pruning consists of two phases: the 

construction and pruning phases. First, it allows growth to its full extent and then 

post-prunes the overfitted tree. Post-pruning methods require more time to build 

additional branches that are subsequently discarded. Still, this cost is offset against 

benefits because, in practice, post-pruning methods give better performance than  

pre-pruning. Pruning a decision tree is an effective technique to solve the problem of 

Overfitting. Pruned decision trees have a more straightforward structure and are 

expected to have higher generalization ability at the expense of classification 

accuracy. Their advantages have attracted the attention of many researchers, who 

have proposed several methods. However, the trade-off between structural simplicity 

and classification accuracy has not been well solved. This paper proposes another 

technique for dealing with weak nodes; we reinforce them by augmenting their data 

from another similar node. The rest of the paper is organized as follows. In  

Section 2, we give an overview of the related works. Section 3 presents in detail our 

contribution and the decision tree algorithm. In Section 4, we experimentally 

compare our algorithm with four state-of-the-art decision tree algorithms and other 

learning algorithms for the AUC (Area Under the ROC Curve) metric. Finally, 

Section 5 closes the paper and proposes future work. 

2. Related work 

Merging branches or nodes in decision trees is well-known and has been studied by 

several researchers. D. I g n a t o v  and A. I g n a t o v  [4] propose a new method for 

merging similar nodes where the similarity is calculated using two-sample test 

statistics. The merging process is executed after each splitting iteration. The test of 

similarity between two nodes compares the distribution of labels. The nodes from 

different branches are merged if the difference is statistically insignificant. This 

procedure resolves the classical problem of decision trees (progressive decrease of 

data quantity in the leaf nodes). It produces a more general structure (a directed 

acyclic graph), which can be extremely deep. W u  and S h i  [13] propose merging 

identical subtrees. Two subtrees are identical if each subtree’s root has the same 

splitting attribute and some corresponding branches of all the subtrees are similar. 

The algorithm reduces the size of the tree because it decreases the number of leaves 

and the depth of the final tree. 
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Y a n g, W a n g  and Z h u  [14] compare the complexity of a decision tree before 

and after merging branches, and present an algorithm for merging branches MID 

based on the support vector machine margin enlargement. This approach merges the 

pairs of nodes with the smallest distance between their data. H u, L i u  and Y a n  [3] 

propose a new merging branches algorithm, EPMID, based on information gain and 

predictability. The algorithm is built using the classical decision tree, but it uses the 

pre-pruning approach to merge the nodes with equal predictability. Two nodes have 

equal predictability if they have the same prediction class and the difference between 

their conditional probabilities of belonging to the same class is below a threshold 

defined by the user. J o o s t  de N i j s  [2] seeks to overcome some disadvantages in 

the decision tree by replacing it with a graph or DAG (a Directed Acyclic Graph) in 

which he merges branches of the tree that have a similar structure. V o l e s u  and 

U t h e r  [11] demonstrate that merging several nodes with a common parent into a 

single node could improve model accuracy. T a n  and D o w e  [10] resolve the 

problem of encoding internal repeated structures by introducing dynamic attributes 

in decision graphs.  

L u n a  et al. [27] propose a new algorithm, addTree, that creates a weak learner 

at each node, using gradient boosting on the entire dataset rather than using only the 

current node data. The algorithm allows the remaining data to influence the choice of 

the current split but with a potentially different weight. P f a h r i n g e r, H o l m e s  

and K i r k b y  [8] propose an algorithm named HOT for Hoeffding Option Trees that 

creates optional tree branches simultaneously, replacing the branches with a lousy 

performance by optional ones. The algorithm’s time complexity is high due to the 

construction of optional tree branches, while the precision has been dramatically 

improved. In [12], authors propose a new algorithm, Size Constrained Decision Tree 

(SCDT), which constructs a decision tree with a given number of leaf nodes. This 

approach allows dealing with the problem of tree complexity while remaining 

efficient. C o s t a  et al. [23] propose an algorithm named the SVFDT algorithm for 

Strict Very Fast Decision Tree, which avoids excessive tree growth by applying 

additional rules to hold tree growth like the following assumptions: 

1. A leaf node should split only if a minimum uncertainty of class assumption 

is associated with the examples. 

2. All leaf nodes should observe a similar number of examples to be turned into 

split nodes. 

3. According to previous statistics, the feature used for splitting should have a 

minimum relevance. 

G a r c í a-M a r t í n  et al. [24] extend the Hoeffding Trees with 𝑛min adaptation. 

They propose a new algorithm that defines a unique and adaptive value for 𝑛min on 

each leaf to check for possible division. This method allows the tree to grow faster 

on branches with clear divisions while delaying divisions on more uncertain 

branches. By retarding the growth of those branches with insufficient confidence, the 

algorithm saves a significant amount of energy on unnecessary tasks, with only minor 

effects on accuracy. G a n a i e, T a n v e e r  and S u g a n t h a n  [25] present a new 

approach for generating the oblique decision trees. At each non-leaf node, they use 

Bhattacharyya distance with a randomly selected feature subset to split the training 

https://scholar.google.com/citations?user=9LJwmLkAAAAJ&hl=fr&oi=sra
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data into two categories. They use a Twin Bounded Support Vector Machine 

(TBSVM) to get two clustering hyperplanes so that each hyperplane is closer to the 

data points of one group and as far as possible from the data points of the other group. 

Each non-leaf node is split to generate the decision tree based on these hyperplanes. 

Y a n g  and F o n g  [26] propose an incremental optimization mechanism to solve 

imperfect data stream, Overfitting, and imbalanced class distribution problems. The 

mechanism is called Optimized Very Fast Decision Tree (OVFDT). OVFDT is a 

pioneer model with an incremental optimization mechanism that seeks to balance 

accuracy and tree size for data stream mining. It operates incrementally by a test-

then-train approach. Three types of functional tree leaves improve the accuracy with 

which the tree model predicts a new data stream in the testing phase. 

3. Proposed method 

3.1. Example illustrating the problem of weak nodes 

When trained to a significant depth, DT potentially has a high enough model 

complexity to achieve near-perfect predictions, and the existence of weak nodes can 

explain this. Therefore, these nodes will have a negative impact on the performance 

of the tree. So maximizing the contribution of each branch of the decision tree to 

optimal decision making becomes of high priority. Let us take an example of a weak 

node. During the tree construction, in a high depth, we consider a node containing 

three examples, two of them are positively labelled, and one is negatively labelled. 

Although this number of examples is very small, this node still needs to be divided; 

in reality, this number of examples is not enough to make a good decision. Moreover, 

the branch rooted with this node has no value statistically. Below we present an 

example of a binary decision tree. Given an input of three examples, the classifier 

follows the branch based on the condition satisfied by the splitting attribute until a 

leaf is reached, which specifies the prediction. 

 
Fig. 1. Example of a node containing three examples 

It seems that the classifier works perfectly since it splits the node into two pure 

nodes, but the question to ask is whether if the number of examples three is enough 

to make a reliable prediction. These three examples may be outliers, and therefore 

this type of node will be of poor quality, and subsequently, it does not generalize 

well; therefore, it will harm the tree performance. Here is the graphical representation 

in Figs 2-3. 
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Fig. 2. The graphical representation of the node from Fig. 1 

Now suppose an individual with x1= 0.6 is labelled positive so that this classifier 

misclassifies this individual. 

 
Fig. 3. Example of misclassification point 

This is normal because the number of examples in the node is too low; making 

the prediction of class labels of this region is very difficult, since a smaller leaf makes 

the model more prone to capturing noise in training data. For this purpose, if we 

increase this node’s data from another similar node’s data, the prediction would 

become more robust. After the node’s data augmentation, the splitting attribute and 

the best threshold for this attribute are recalculated. The threshold can be modified 

(Fig. 4), or the splitting attribute can be modified (Fig. 5). Thus, the node becomes 

more robust, and the decision becomes reliable. 
 

 
Fig. 4. The threshold correction of the node after data augmentation 

 
Fig. 5. Changing the splitting attribute after increasing data 
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3.2. Decision tree algorithm 

A decision tree is a classifier that divides data recursively into homogeneous subsets 

to form classes. It is a supervised learning algorithm used in discrete or continuous 

data for classification or regression. Several algorithms have been presented until 

now, but the best known are C4.5, CART, QUEST, and CHAID. 

3.2.1. C4.5 Algorithm 

C4.5 algorithm [9] recursively splits a dataset of samples using a breadth-first or 

depth-first approach until all data subsets belong to one class. DT algorithm would 

begin by placing all the samples in the root node; the root node would then be placed 

in the fringe. The fringe is the set of nodes that still need to be divided further. We 

remove a node from the fringe at each step, and we create his children nodes and add 

them to the fringe, and we repeat this process until the fringe becomes empty. 

3.2.2. CART 

CART [1] stands for Classification and Regression Trees. It is distinguished by the 

fact that it constructs binary trees; specifically, each internal node has exactly two 

child nodes. The splits are selected using the Twoing criteria [22], which is a measure 

that evaluates the goodness of a splitting value. It measures the difference in 

probability that a category appears in the left descendant rather than the right 

descendant node, and the obtained tree is pruned. CART can handle both numeric 

and categorical data, efficiently handling outliers. 

3.2.3. QUEST 

Loh and Shih proposed QUEST [6] (Quick Unbiased Efficient Statistical Tree) in 

1997. It is a tree-based classification algorithm that requires the target variable to be 

continuous. The computation speed of this algorithm is higher than this of other 

methods. The QUEST tree algorithm is known by the fact that it is not biased in the 

selection of split attributes, as opposed to the CART algorithm, which is biased 

towards the selection of the splitting attributes that allow more splits and those which 

have more missing values. The QUEST algorithm is more suitable for multiple 

categorical variables but can only perform binary classification. In the case of 

multiclass classification, it merges the classes into two superclasses. 

3.2.4. CHAID 

Kass proposed CHAID [5] (CHi-square Automatic Interaction Detection) in 1980. 

CHAID uses multi-way splits by default (multi-way splits mean that the current node 

is split into more than two nodes). It also prevents overfitting problems. A node is 

only split if a significance criterion is fulfilled. 

3.3. The EWNDT Algorithm 

The EWNDT algorithm is a modified version of the C4.5 Algorithm [2] using the 

breadth-first approach. Our main contribution is to increase weak node data  

(i.e., nodes with a number of examples less than a given threshold𝛽, e.g., 𝛽 = 5) 

when building trees. If a node is identified as weak, it should not be placed in the 
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fringe but in a specific set named 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡, containing all the weak nodes. 

Once the initial construction of the tree is finished, we start processing the weak nodes 

and iterate over all nodes in the 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡. At each iteration, a node 𝑁 would 

be removed from the 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡; then, we search for similar nodes to 𝑁 in the 

tree already built. Finally, when similar nodes are identified, we merge their data with 

the current node 𝑁 and continue the construction process until the set of weak nodes 

becomes empty. The similarity between the two nodes is detailed in the next section. 

The exact process of our method is outlined below: 
 

Algorithm EWNDT (𝐷, β ) 

Input: Training data 𝐷, node’s weakness indicator 𝛽 

Output: A tree 

Step 1.   𝑓𝑟𝑖𝑛𝑔𝑒, 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡 ← ∅                             // Global variables 

Step 2.   if  𝐷 is pure OR other stopping criteria met 

Step 3.         return a node with a corresponding class label 

Step 4.   for all attributes 𝑎 𝜖 𝐷 

Step 5.         Compute information-theoretic criteria if we split on 𝑎 

Step 6.   𝑎best  ← the best attribute according to the above computed criteria   

Step 7.   𝑟𝑜𝑜𝑡 ← create a new node child with 𝑎best as splitting attribute  

Step 8.   Add the root to the 𝑓𝑟𝑖𝑛𝑔𝑒 

Step 9.   while the 𝑓𝑟𝑖𝑛𝑔𝑒 is not empty 

Step 10.         Pop a node 𝑛 from the fringe 

Step 11.         𝑏𝑒𝑠𝑡𝐴  ← the splitting attribute of the node 𝑛 

Step 12.         for each possible value 𝑣 of 𝑏𝑒𝑠𝑡𝐴 

Step 13.             𝐷sub ← a subset of 𝐷 that have value 𝑣 for 𝑏𝑒𝑠𝑡𝐴 

Step 14.             𝑐ℎ𝑖𝑙𝑑𝑣 ← BuildNode (𝐷sub , 𝛽) 

Step 15.             Add 𝑐ℎ𝑖𝑙𝑑𝑣  as a descent from the node 𝑛 and label the edge 

{𝑛 → 𝑐ℎ𝑖𝑙𝑑𝑣  } as 𝑣 

Step 16.   while the 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡 is not empty 

Step 17.         Pop a node 𝑁 from the 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡 

Step 18.         Search similar nodes to 𝑁 

Step 19.         if more than one node is similar to 𝑁 

Step 20.               Calculate the distance between them and 𝑁 

Step 21.               if more than one node has the min distance of 𝑁 

Step 22.                     Merge the data of 𝑁 and all these nodes in 𝐷1 

Step 23.               else 

Step 24.                     CN ← the node that has min distance to 𝑁 

Step 25.                     Merge the data of 𝑁 and CN in 𝐷1 

Step 26.               Select Attribute 𝐴1, which best classifies 𝐷1 

Step 27.               Mark the node 𝑁 with 𝐴1 as splitting Attribute 

Step 28.               Add the node 𝑁 to the 𝑓𝑟𝑖𝑛𝑔𝑒 

Step 29.         else 

Step 30.               SN ← the node which has maximum similarity to 𝑁 

Step 31.               Merge the data of 𝑁 and SN in 𝐷2. 
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Step 32.               Select Attribute 𝐴2, which best classify 𝐷2 

Step 33.               Mark the node 𝑁 with 𝐴2 as splitting Attribute 

Step 34.               Add the node 𝑁 to the 𝑓𝑟𝑖𝑛𝑔𝑒 

Step 35.   return root 
 

Algorithm BuildNode (𝐷, 𝛽 ) 

Input: Training data 𝐷, node's weakness indicator 𝛽 

Output: A node,  

Step 1.      if  𝐷 is pure OR other stopping criteria are met,  

Step 2.            return a node with a corresponding class label. 

Step 3.      else 

Step 4.       𝑎best  ← the best attribute according to the above computed criteria 

Step 5.            𝑐ℎ𝑖𝑙𝑑 ← create a new node with 𝑎best as splitting attribute  

Step 6.      if the number of examples of 𝐷 <  𝛽 

Step 7.            Add 𝑐ℎ𝑖𝑙𝑑 to the 𝑝𝑎𝑢𝑠𝑒𝑑𝑁𝑜𝑑𝑒𝑆𝑒𝑡 

Step 8.      else 

Step 9.            Add 𝑐ℎ𝑖𝑙𝑑 to the 𝑓𝑟𝑖𝑛𝑔𝑒 

Step 10.      return 𝑐ℎ𝑖𝑙𝑑  

3.3.1. General conditions of the algorithm 

The goal of the EWNDT algorithm is to increase the data of nodes marked as weak 

by merging their data with other similar nodes. This data merging is done virtually to 

determine the splitting attribute and the best threshold. Since this additional data is 

not kept in the child nodes, however, before merging, the following conditions must 

be verified: 

• Two nodes belonging to the same branch (nodes on the same path from the 

tree root to a leaf node (Fig. 6)) cannot be merged. 

 
Fig. 6. Example of two nodes belonging to the same branch 

 

• Two sibling nodes (nodes with the same parent node (Fig. 7)) cannot be 

merged. 

 
Fig. 7. Example of two sibling nodes 
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• If we find more than one node similar to the current one, we take the closest 

node (e.g., the node with the minimum distance from the current node). The method 

to calculate the distance between two nodes is presented in the following sub-section. 

• If we find more than one similar node to the current one and these similar 

nodes are located at the same distance from the current one, we merge the data from 

all of these nodes with the current one to reselect a more reliable splitting attribute.  

3.3.2. Distance between two nodes 

The distance 𝑑 between two nodes 𝑛1 and 𝑛2 is the minimum number of edges 

traversed from 𝑛1 to 𝑛2. It is calculated using the following formula: 

(1)   𝑑 =  (𝑛1. depth − ca. depth) + (𝑛2. depth − ca. depth), 

where ca is the common ancestor of the two nodes (i.e., the common node between 

the two branches carrying these two nodes). 

The distance between two nodes 𝑛1 and 𝑛2 can be computed as the distance 

from 𝑛1 to ca, plus the distance from ca to 𝑛2. Fig. 8 explains the method to calculate 

the distance between two nodes. 

 
Fig. 8. The distance between two nodes 

3.4. Node similarity 

To merge two nodes in the tree, they must be similar, but there are several similarity 

criteria. We have used two approaches for comparing the similarity of the nodes: 

3.4.1. Threshold approach 

Two nodes, 𝑛1 and 𝑛2, in the tree are similar in the case of numerical attributes if they 

satisfy the following conditions:  

• If they have the same splitting attribute. 

• If they are labelled with the same class. 

• If ( | 𝑛1. thresh −  𝑛2. thresh |  ≤  simThresh), 

where 𝑛1. thresh and 𝑛2. thresh are the thresholds that give the best distribution of 

data in each node. simThresh is a parameter that measures the closeness between 

two thresholds (e.g., if simThresh = 0.1, two thresholds are considered equal if their 

difference is less than 0.1). The thresholds of every i-th splitting attribute zi are 

normalized (i.e., its values are between 0 and 1) using the following formula:  

(2)   𝑧𝑖 =  
𝑥𝑖−𝑥min

𝑥max−𝑥min
, 

where 𝑥 =  (𝑥1, . . . , 𝑥𝑛) is the data before normalization, 𝑥max  is the maximum 

value for the attribute 𝑥𝑖, 𝑥min is the minimum value for the attribute 𝑥𝑖 , and 𝑧𝑖 is now 

the i-th normalized data. We normalized the thresholds to facilitate the detection of 
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similar ones to be generalized for the whole attribute space. In the case where 

thresholds are unnormalized, a simThresh value must be determined for each 

attribute. 

Two nodes, 𝑛1 and 𝑛2, in the tree are similar in the case of categorical attributes if 

they satisfy the following conditions: 

• If they have the same splitting attribute. 

• If they are labelled with the same class. 

• The difference between their predictability is less than a threshold 𝛼 [3], 

where the predictability of a node 𝑁 is defined as a conditional probability: 

(3)   predictability (𝑁) = prob(𝑁. splitAttr = 𝑁. thresh | 𝑁. label) 

where 𝑁. splitAttr and 𝑁. thresh are the best attribute and threshold values to split 

the node 𝑁 while 𝑁. label represents the class label with the majority vote in the node 

𝑁. For example, let’s take 𝛼 = 0.1. Two nodes 𝑛1 and 𝑛2 are merged if 

(4)   | predictability(𝑛1) –  predictability(𝑛2)|  ≤  0.1. 
We only compute the predictability when the first two conditions are verified, 

i.e., we calculate predictability when the two nodes have the same class and the same 

splitting attribute. 

3.4.2. Probabilistic approach 

This approach does not differentiate between the numerical and the categorical 

attributes because it uses the predicted class probability, which represents the fraction 

of samples of the same class in a node. To better understand the prediction of class 

probabilities, we will take an example of a node containing five examples; two of 

them are positively labelled, and three examples are negatively labelled. So the 

probability of the positive class will be 2/5=0.4  while the probability of the negative 

one will be 3/5=0.6. Two nodes in a decision tree are similar if they satisfy the 

following conditions: 

• If they have the same splitting attribute, 

• If ( |𝑛1. prob – 𝑛2. prob | ≤  probThresh), 
probThresh is a parameter that measures the similarity between two probabilities 

(e.g., if probTresh =  0.1, two probabilities are considered similar if their difference 

is less than 0.1). 

3.5. The strengths and limitations of the proposed method 

When the tree is too shallow, there will be a chance that very few data points will be 

present at the bottom nodes, so the model could not reliably predict future cases and, 

thus, would have low generalizability. Hence, we augment the data of these nodes 

from other nodes, which are similar. This new approach allows us to build a reliable 

and robust splitting criteria tree. Furthermore, this will reflect on the accuracy of the 

tree. Our proposal’s validity is tested; its advantages are demonstrated experimentally 

through illustrative examples and comparative analysis. The results discussion 

proved its usability and strengths over the existing approaches. However, the 

EWNDT algorithm has some weaknesses compared with other methods; the main 

drawback of the EWNDT algorithm is that it takes a large time to construct the tree 

in all datasets and generates a little more complex trees. 
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Time complexity of the algorithm. The algorithm builds more complex trees, but 

they construct more robust and reliable branches. To evaluate the time complexity of 

our algorithm, we start by calculating the complexity of each step. First, we consider 

the time complexity of the technique used in searching for the best split in the case 

of a numerical attribute. This technique sorts the unique values in the variable and 

selects a threshold between each consecutive value, and then it takes the one that 

minimizes the entropy. This sorting step takes time 𝑂(𝑛 × log(𝑛)). Where 𝑛 is the 

number of examples in the dataset, since we are doing that for all the features whose 

number is 𝑚, the total time complexity would be 𝑂(𝑚 × 𝑛 × log(𝑛)). Finally, we will 

repeat this process for all weak nodes whose number is 𝑤 then; the final complexity 

will be 𝑂(𝑚 × 𝑛 × log(𝑛) × 𝑤).  

4. Experimental results 

4.1. Datasets 

Experiments have been performed using twenty binary classification real-world 

datasets from the UCI repository to evaluate the proposed algorithm’s performance. 

Table 1 shows the dataset, the size, the number of nominal and numerical attributes, 

and the percentage of examples of the minority class. 

Table 1. Datasets characteristics 

No Datasets Size Attributes % Min class 

Num. Cat. 

1 transfusion 748 4 0 23.8 

2 eighthr 2533 73 0 6.3 

3 spambase 4601 57 0 39.4 

4 Bank 41190 10 10 11.27 

5 Hill_valley 606 100 0 49.7 

6 ad 3263 1556 0 13.9 

7 Cyl bands 540 18 20 42.2 

8 Pima 768 8 0 34.9 

9 adult 32561 0 14 24.1 

10 caravan 5822 85 0 6.0 

11 Connect 2c 67557 0 42 34.2 

12 Liver 345 6 0 42.03 

13 clean 6598 166 0 15.4 

14 sick 2751 6 21 6.1 

15 weka 310 6 0 22.3 

16 spect 267 44 0 20.6 

17 hypothyroid 3163 6 19 4.8 

18 numerai 96320 21 0 49.5 

19 kobe 25697 12 12 44.6 

20 Sick-euth 2000 6 19 8.2 

4.2. Parameters tuning 

Table 2 summarizes the values obtained with our method and C4.5 in the parameter 

optimization process during the dataset training. The parameters of interest for the 

optimal parameterization are the max depth, the number of nodes in the constructed 

tree, and 𝛽 the node’s weakness indicator. We have used other parameters like the 
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min sample leaf (the minimum number of samples required to be at a leaf node), but 

we show just the most critical parameters. We have used a grid search approach to 

find optimal parameters. For 𝛽, we have used the parameter space (10, 20, 30, 50, 

and 100), and for the maximum depth, we have used the following interval [3, 9]. 

      Table 2. Optimal parameters for EWNDT and C4.5 for each dataset 

Method Dataset Depth 𝛽 
Number 
of nodes 

Dataset Depth 𝛽 
Number 
of nodes 

C4.5  
1 

5 – 31  
11 

9 – 423 

EWNDTT 7 20 38 9 10 398 

EWNDTP 7 20 37 9 10 403 

C4.5  
2 

3 – 18  
12 

9 – 39 

EWNDTT 4 30 21 9 20 37 

EWNDTP 4 30 23 9 20 36 

C4.5  
3 

6 – 45  
13 

9 – 84 

EWNDTT 7 50 48 9 50 82 

EWNDTP 7 50 48 9 50 81 

C4.5  
4 

7 – 110  
14 

8 – 27 

EWNDTT 7 50 107 8 50 27 

EWNDTP 7 50 106 8 50 27 

C4.5  
5 

8 – 19  
15 

3 – 6 

EWNDTT 9 50 18 3 50 6 

EWNDTP 9 50 20 3 50 6 

C4.5  
6 

5 – 31  
16 

9 – 19 

EWNDTT 7 20 38 9 20 21 

EWNDTP 7 20 37 9 20 22 

C4.5  
7 

3 – 18  
17 

9 – 25 

EWNDTT 4 30 21 9 50 24 

EWNDTP 4 30 23 9 50 26 

C4.5  
8 

5 – 25  
18 

7 – 293 

EWNDTT 5 30 23 7 50 271 

EWNDTP 5 30 22 7 50 273 

C4.5  
9 

9 – 193  
19 

9 – 166 

EWNDTT 9 50 171 9 50 171 

EWNDTP 9 50 175 9 50 172 

C4.5  
10 

4 – 13  
20 

9 – 26 

EWNDTT 4 50 12 9 50 21 

EWNDTP 4 50 12 9 50 24 
 

According to Table 2, those trees generated by EWNDT are much smaller than 

those generated by C4.5 in 11 of the 20 datasets; this can be explained by the fact that 

the data augmentation in weak nodes by similar data allows the classifier to find pure 

nodes faster. 

4.3. Comparison with state-of-the-art methods 

We have compared our two approaches (EWNDT with Threshold Similarity 

(ENWDTT) and EWNDT with Probability Similarity (ENWDTP)) with four state-

of-the-art decision tree methods C4.5 [9], QUEST [6], CHAID [5], and CART [1]. 

We performed a 10-fold cross-validation. For each dataset, we show the arithmetic 

mean and the standard deviation of the ten runs. Table 3 presents the results of our 

benchmarks. Each model’s performance has been evaluated using the AUC metric 

(area under the roc curve). We have used the AUC as a performance metric because 
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the datasets have different distributions. Table 4 compares the different algorithms 

using accuracy as a performance metric. The best scores for each dataset are 

boldfaced. 

Table 3. Evaluation of the two proposed approaches vs. four state-of-the-art decision tree 

algorithms using AUC score 

No C4.5 EWNDTT EWNDTP QUEST CHAID CART 

1 70.6 ± 8.5 71.9 ± 8.4 71.9 ± 7.4 71.1 ± 5.1 71.0 ± 6.0 71.5 ± 8.6 

2 70.3 ± 5.9 70.3 ± 5.9 70.4 ± 5.9 70.2  ± 5.7 70.1 ± 5.9 70.4 ± 5.8 

3 95.5 ± 1.2 95.5 ± 1.2 95.7 ± 1.2 95.8 ± 1.3 95.9 ± 1.2 95.7 ± 1.1 

4 83.1 ± 0.7 83.3 ± 0.8 83.7 ± 0.8 84.1 ± 0.7 83.2 ± 0.8 83.7 ± 0.8 

5 56.3 ± 6.1 56.6 ± 4.5 56.3 ± 6.1 55.3 ± 5.1 58.6 ± 4.7 57.2 ± 6.1 

6 90.9 ± 1.9 91.3 ± 1.6 91.4 ± 1.6 91.8 ± 1.9 91.7 ± 1.6 92.4 ± 1.5 

7 77.3 ± 4.2 78.3 ± 4.2 78.0 ± 4.5 77.3 ± 4.1 78.3 ± 4.2 78.0 ± 4.4 

8 80.4 ± 5.0 82.4 ± 4.5 82.4 ± 4.0 81.1 ± 5.0 80.9 ± 4.7 81.6 ± 4.0 

9 88.1 ± 0.6 88.2 ± 0.6 89.7 ± 0.6 86.1 ± 0.7 85.2 ± 0.9 87.7 ± 0.6 

10 73.7 ± 3.2 73.7 ± 3.2 73.7 ± 3.2 73.1 ± 3.2 73.7 ± 3.2 73.2 ± 3.2 

11 82.4 ± 0.6 82.4 ± 0.6 82.4 ± 0.6 82.4 ± 0.6 82.4 ± 0.6 82.2 ± 0.6 

12 68.5 ± 7.4 72.6 ± 5.7 71.8 ± 7.1 69.8 ± 7.3 70.5 ± 6.7 71.7 ± 7.1 

13 89.3 ± 2.5 89.4 ± 2.5 89.8 ± 2.4 89.9 ± 2.7 90.3 ± 2.8 90.7 ± 2.4 

14 89.2 ± 5.6 90.4 ± 4.0 90.4 ± 4.0 89.6 ± 4.6 90.1 ± 5.0 90.2 ± 5.2 

15 89.0 ± 5.9 89.5 ± 6.0 89.5 ± 6.0 89.1 ± 5.8 88.7 ± 6.1 88.9 ± 6.0 

16  60.0 ± 10.3 61.2 ± 10.6 62.3 ± 9.9 63.0 ± 10.1 62.3 ± 10.2 62.5 ± 9.9 

17 78.0 ± 4.9 78.0 ± 4.9 79.0 ± 5.0 78.5 ± 4.8 78.2 ± 4.9 79.1 ± 5.0 

18 52.2 ± 0.4 52.2 ± 0.4 52.2 ± 0.4 53.0 ± 0.6 51.7 ± 0.5 52.5 ± 0.5 

19 68.6 ± 1.0 68.7 ± 1.0 68.7 ± 1.0 68.9 ± 1.2 69.3 ± 1.4 69.6 ± 1.1 

20 87.2 ± 4.5 88.9 ± 5.6 89.1 ± 4.9 87.2 ± 4.7 88.9 ± 5.2 89.1 ± 5.9 

Mean 77.5 78.2 78.4 77.9 78.0 78.4 

Table 4. Evaluation of the two proposed approaches vs. four state-of-the-art decision 

tree algorithms using Accuracy 

No C4.5 EWNDTT EWNDTP QUEST CHAID CART 

1 78.5 ± 4.5 78.9 ± 4.4 78.7± 4.3 78.1 ± 5.1 78.2 ± 5.6 77.9 ± 3.9 

2 95.0 ± 3.8 94.7 ± 3.9 94.5 ± 3.6 94.7 ± 3.7 94.9 ± 3.6 95.1 ± 3.5 

3  91.9 ± 1.2  92.0 ± 1.2  92.1 ± 1.1  90.8 ± 1.3  91.9 ± 1.4  91.6 ± 1.3 

4  90.1 ± 1.5 90.6 ± 1.7 90.7 ± 1.8 89.9 ± 1.6 88.2 ± 1.8 90.0 ± 1.7 

5  52.9 ± 3.7 52.8 ± 3.5 52.8 ± 3.8 52.3 ± 3.1 52.5 ± 3.9 52.2 ± 4.1 

6    96.9 ± 1.9 97.3 ± 1.6 97.4 ± 1.6 97.5 ± 2.3 94.3 ± 2.0 96.4 ± 1.9 

7  73.2 ± 3.6 73.5 ± 3.5 73.3 ± 3.6 73.1 ± 4.2 73.0 ± 4.0 73.2 ± 4.1 

8  75.4 ± 4.3 75.7 ± 4.4 76.2 ± 4.3 75.1 ± 4.8 75.6 ± 4.3 75.5 ± 4.4 

9  85.1 ± 2.1 85.0 ± 2.3 85.2 ± 2.2 85.3 ± 2.2 85.2 ± 2.0 85.4 ± 1.9 

10  93.7 ± 2.8 93.7 ± 2.9 93.7 ± 2.9 93.7 ± 2.7 93.7 ± 2.6 93.8 ± 3.3 

11  74.6 ± 5.4 78.6 ± 5.1 78.2 ± 5.2 77.3 ± 5.2 77.9 ± 5.3 76.8 ± 5.0 

12  72.5 ± 6.4 73.6 ± 5.7 73.5 ± 6.1 72.8 ± 6.6 70.5 ± 6.7 71.7 ± 7.1 

13  93.3 ± 7.5 91.4 ± 7.9 92.0 ± 7.4 91.9 ± 7.7 92.3 ± 7.8 92.7 ± 7.4 

14  95.2 ± 3.6 95.4 ± 4.0 95.8 ± 4.0 94.6 ± 3.6 96.1 ± 5.0 95.2 ± 5.2 

15  82.1 ± 7.3 83.3 ± 6.8 84.4 ± 6.5 85.1 ± 5.9 84.7 ± 6.1 85.0 ± 6.0 

16  71.3 ± 2.5 75.1 ± 2.7 75.0 ± 2.8 73.0 ± 3.1 74.1 ± 2.8 73.9 ± 2.9 

17  83.0 ± 3.9 84.4 ± 4.0 84.9 ± 3.9 83.5 ± 4.2 83.1 ± 4.4 83.8 ± 4.0 

18  52.8 ± 0.7 53.2 ± 0.6 53.3 ± 0.6 53.0 ± 0.6 53.7 ± 0.5 52.5 ± 0.5 

19  69.5 ± 1.1 70.7 ± 1.0 69.7 ± 0.9 69.9 ± 1.1 69.8 ± 1.4 70.6 ± 1.1 

20  90.6 ± 4.5 91.4 ± 4.6 92.1 ± 3.9 85.2 ± 4.7 86.7 ± 5.2 87.1 ± 5.1 

Ave- 
rage 

80.9 81.6 81.7 80.8 80.8 81.0 
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4.4. Comparison with different machine learning algorithms 

To exhibit the worthiness of our method, we have compared it with the most well-

known classification methods (Table. 5): Random Forests (RF) [16], Support vector 

machine (SVM) [17], k-Nearest Neighbors (KNN)[18], Logistic Regression (LR) 

[19] and Naive Bayes (NB) [20] presented in paper [21]. In the experiments, they use 

10-fold cross-validation. Each dataset is split into three parts. 80% of the total 

examples in each dataset are used for training a classification model. Another 10% 

of the dataset examples are used for tuning the parameters of the classification model. 

The last 10% of the instances are used for testing only. If a classifier does not need 

to tune its parameters, the validation data will be merged into the training data. All 

classifiers use the same training and test data. We selected eight binary datasets from 

the used datasets and compared our method with the different algorithms. 

Table 5. AUC results for different classification algorithms on eight data sets 

Data sets RF SVM KNN LR NB EWNDTP EWNDTT 

pima 74.68 61.71 57.92 77.38 72.51 82.40 82.40 

Ionosphere 91.67 80.56 88.89 88.89 80.56 83.30 82.2 

German credit 93.91 64.52 69.39 65.35 74.08 81.50 80.4 

splice 87.65 92.59 80.92 89.94 80.91 84.60 85.5 

new_thyroid 87.50 100.00 96.88 96.88 96.88 92.40 93.6 

spambase 95.94 89.71 66.46 64.42 59.40 95.70 95.5 

phoneme 85.86 65.08 85.61 63.99 70.64 75.70 74.1 

car 95.08 89.70 83.56 57.45 86.57 86.10 85.9 

Average 89.04 80.48 78.70 75.54 77.69 85.21 84.95 

4.5. Analysis of results 

According to Table 3, the EWNDT algorithm with threshold similarity outperforms 

all the other methods with six (transfusion, bands, Pima, sick, weka, and liver) of the 

twenty datasets, while the difference between EWNDT and the other method in the 

remaining datasets is slight. The second approach that uses Probability's similarity 

outperforms all the other methods in seven of the twenty datasets. As we can see, the 

common factor between the datasets where our algorithm outperforms the other 

methods is that they have a few attributes. The first approach gives the best 

performance in numerical data sets, although the second approach does not 

differentiate between datasets. However, the second approach generally achieves the 

best performance compared to the other methods. 

One can first observe from Table 4 that EWNDTP and EWNDTT are more 

accurate than the other algorithms. EWNDTT outperforms all the algorithms on five 

of the twenty datasets, and EWNDTP outperforms on seven of the twenty datasets. 

The differences between the two approaches and the other methods are often minor 

regarding the remaining datasets. As a matter of fact, EWNDT mean accuracy is 

better than the mean accuracy obtained by all other methods. 

According to Table 5, RF has the best performance, followed by EWNDTT and 

EWNDTP. Moreover, we observe that EWNDTP and EWNDTP give the best 

performance over all other methods for the dataset Pima. In general, our approach 

ranks as the top one in most of the datasets. 
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5. Conclusion 

This paper presents a new algorithm based on the Decision Tree model, which 

reinforces weak nodes in the tree by augmenting its data from other similar nodes 

using two similarity approaches. The first approach uses threshold similarity for the 

numerical attribute and conditional probability for the categorical attribute. The 

similarity criterion by the second approach uses nodes distribution. First, we have 

compared our method with four state-of-the-art decision tree methods (C4.5, CART, 

QUEST, and CHAID), which are the most popular ones. Then we have compared it 

to other classification algorithms. Therefore, the experimental results demonstrate 

that the new algorithm has fewer leaf nodes and higher classification performance. 

There are at least two areas for immediate future exploration.  

First, we consider only the binary class in our experiment. Moreover, the 

problem may be more complicated if a non-binary class is considered. The second 

direction is to search for other similarity criteria between nodes. One more direction 

is when we find more than one node similar to the current node. We choose the node 

with the minimum distance from the current node, while other approaches can be 

applied. 
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