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Abstract: Learning Vector Quantization (LVQ) is one of the most widely used 

classification approaches. LVQ faces a problem as when the size of data grows large 

it becomes slower. In this paper, a modified version of LVQ, which is called PDLVQ 

is proposed to accelerate the traditional version. The proposed scheme aims to avoid 

unnecessary computations by applying an efficient Partial Distance (PD) 

computation strategy. Three different benchmark datasets are used in the 

experiments. The comparisons have been done between LVQ and PDLVQ in terms of 

runtime and in result, it turns out that PDLVQ shows better efficiency than LVQ. 

PDLVQ has achieved up to 37% efficiency in runtime compared to LVQ when the 

dimensions have increased. Also, the enhanced algorithm (PDLVQ) shows clear 

enhancement to decrease runtime when the size of dimensions, the number of clusters, 

or the size of data becomes increased compared with the traditional one which is 

LVQ. 

Keywords: Classification, LVQ, partial distance computation, PDLVQ, SOM. 

1. Introduction 

In the context of smart cities, smart environments, and smart campus the size of data 

become huge. Nowadays, data science is currently regarded as one of the hottest 

research areas. The massive growth of big data has become a problem that must be 

addressed. Machine learning is one of the most essential methods for gaining value 

from data [1, 2]. Moreover, it has been used in different fields [3, 4]. 

Nowadays, data science is considered as one of the trending hot research areas. 

The huge development of big data becomes an issue that needs to deal with. Machine 
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Learning (ML) is considered as one important way for making benefit from this data. 

Moreover, the rapid technological advancements and large data production need to 

upgrade or change conventional techniques [5]. ML is the study that aims to use the 

computer algorithm that developed its behaviour over time based on the experience. 

Moreover, ML is considered to be a component of artificial intelligence that is used 

to classify or predict future situations [6]. Nowadays, increasing the requirement for 

classifications is considered one of the most frequent tasks in machine learning. The 

research in this field has increased significantly. Thus, during the last few years the 

fast development and increase of the volume of data becomes an important issue [7] 

so, solution of some problem in a reasonable time with a huge dataset is quite an issue 

[8, 9]. 

Classification has been used in many fields such as intrusion detection systems 

and image processing [10, 11]. Even more in the medical field, especially in image 

recognition or disease classification. In medical images, we need to deal with millions 

or billion pixels per picture to recognize or diagnose particular diseases. Thus, a huge 

number of computational processes are needed at the same time and the run time 

should be taken into consideration also [12-15].  

Learning Vector Quantization (LVQ) classifier is one of the most intuitive 

prototypes-based classification models and it is an adaptive data classification 

technique that uses training data with the desired class of information to classify data 

[12, 16]. LVQ has two layers the first layer is a linear layer with supervised training 

and the second layer is a competitive layer that pre-processes the dataset and finds 

cluster centres [17]. Fig.1 shows the architecture of LVQ which uses unsupervised 

data clustering algorithms to adjust weights only on the basis of input patterns when 

no knowledge about the desired outcomes is provided. In this case x represents the 

input dimensions and the y represent the number of label classes. 
 

 
Fig. 1. The architecture of learning vector quantization LVQ [18] 

LVQ is considered severely limited by the high computational complexity that 

makes it extremely slow [19]. This is because of the Euclidian distance that is used 

in calculations, this part of the algorithm takes more time and more complex 

computation especially when the dimensions are increased [19].  

In this paper, a new modified version of LVQ has been presented, which is 

called PDLVQ. The modified version aims to decrease the computation time that has 

been used in traditional LVQ and accelerate the overall runtime. This is done by 

adding a Partial Distance (PD) and selecting the important computations only. 



 38 

The rest of the paper is organized as follows. Section 2 introduces the 

background and some related works. The proposed architecture design and settings 

are presented in the Section 3. Section 4 presents the results and analysis. Finally, we 

conclude the paper in the Section 5. 

2. Background and related works  

A brief background is presented in this section for learning vector quantization and 

partial distance as presented in the subsections below. 

2.1. Learning vector quantization  

LVQ is an extension of the Kohonen neural network method [19], which has been 

moved from an unsupervised neural network in Kohonen Self-Organizing Maps 

(SOM) to a supervised LVQ neural network. LVQ can be viewed as a neural classifier 

paradigm that has the same architecture of SOM without topological structure and 

consists of output layers that are designed for several classification categories  

[22, 23]. The input vector that has been inserted in LVQ to classify is known as the 

reference vector or codebook [24]. 

Nowadays classification is important in the big data world, therefore several 

studies have developed the traditional techniques to cope with massive development 

of these kind of data. In [25] a design is presented of the meta classifier ensemble 

with sampling and feature selection for multiclass imbalanced data has been 

investigated to improve the ensemble classifier through data-level approach 

(sampling and feature selection). Moreover, [26] proposes a new variant of Grey 

Wolf Optimization (GWO), called Inertia Motivated GWO (IMGWO). The aim of 

IMGWO is to establish better balance between exploration and exploitation, 

traditionally an Artificial Neural Network (ANN) with backpropagation. 

The LVQ network works well for many problems, but it has two drawbacks: a 

dead neural that never does anything useful and how the initial weight vectors are 

arranged. The first problem can be solved using a “conscience” mechanism, which 

makes a neuron that wins a lot of times to have the ability to let others win too. 

The second problem is that the LVQ depends on how the initial weight of a 

vector is distributed [24, 27], which may cause the vector to travel through a region 

of a class that it does not represent in order to get to the right region which consumes 

more calculations [27]. Because the weights of such a neuron will be repelled by 

vectors in the region it has to cross, this might never be accomplished. Thus, it may 

never properly classify the region to which it is being attracted. 

In literature, LVQ has been used in different fields such as security, medical, 

agriculture and many others [30, 29]. In [31] an Anomaly based Detection Analysis 

for Intrusion Detection is proposed for big data. The LVQ Algorithm is suggested to 

process a large volume of data to detect the attacks. Moreover, in [32] a multimodal 

biometric based on LVQ analyze the images in two kinds of biometrics which are 

face and fingerprint. Pattern generation and pattern matching is used in their model 

to enhance the result of classification. The comparison result has been done between 
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Gaussian Mixture Model (GMM) and the proposed model, namely LVQ and the LVQ 

shows better performance compared to GMM for different metrics. 

The use of LVQ is widely spread in the image-processing field. In [33] a face 

recognition from the webcam for digital images is proposed. The proposed technique 

is a hybrid of the LVQ-Algorithm with Self Organizing Kohonen. The result of the 

hybrid technique performs better results than using LVQ and Kohonen separately. 

Also, LVQ is used in pattern recognition as [34] an Artificial Neural Network LVQ, 

and Gray Level Co-occurrence Matrix (GLCM) are used as a method to classify the 

real batik. The proposed method extracts textural features and obtains the pattern 

value of batik to recognize the real batik. 

LVQ has an important role in the agriculture field; it has been used for the early 

detection of diseases. In [35] authors present a method for detecting and classifying 

tomato leaf disease using a Convolutional Neural Network (CNN) model and the 

LVQ-Algorithm. The proposed method has been applied on 500 images of tomato 

leaves with four symptoms of diseases. In spite of LVQ limitations, it has been 

noticed that LVQ is used in many images’ classification, image recognition and 

security fields. Therefore, the purpose of this paper concerns a study of slowness 

problem in calculating the Euclidean distance [36] that is used in LVQ when using a 

large number of dimensions. 

2.2. Partial distance  

PD is one of the most popular strategies, which is used to reduce the computational 

complexity in distance calculation and many researchers use PD logic to accelerate 

the algorithm. [37] introduces the effect of ordering the codebook on the efficiency 

of the partial distance search algorithm for Vector Quantization [38] This study shows 

that the algorithm’s computational complexity can be furthermore reduced by 

ordering the code vectors according to the sizes of their related clusters. Vector 

quantization has become very popular in multiple areas but the utilization of the 

vector quantization is strongly limited by the computational complexity of the 

encoding process which makes it exponentially expensive for large-size codebooks 

[39]. 

To reduce the computational complexity of the minimum distortion search in a 

vector quantization encoding process, the code vector can be rejected on the basis of 

partial distance without completing the total distance computation, to maximize the 

savings offered by the partial distance search by ordering the code vectors according 

to the sizes of their related clusters. According to the study, the explicit ordering of 

the code vectors shows more valuable computational savings than the partial distance 

method, the efficiency has improved by arranging the code vectors in the codebook 

in a way that the sizes of their related clusters are in decreasing order [37]. The 

proposed partial strategy accelerates the code search in VQ-based coding technique 

and it can be adopted to save time cost on best-match codeword in a codebook. As 

observed in the experimental results the time required in the proposed scheme of 

encoding an input image is at least twice faster than the speed of a full search. 

The proposed schemes in [40, 41] show a new strategy to accelerate the  

k-Means clustering algorithm in order to utilize the algorithm in clustering and 
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overcome the high computational complexity. This study suggests accelerating the  

k-Means clustering algorithm by avoiding many needless distance calculations by 

utilizing the Partial Distance. PD logic, the PD Algorithm allows early termination 

of the distance calculation between a data point (vector) and a cluster center by 

introducing a premature exit condition in the search process. Based on the 

experimental results the proposed algorithm provides better efficiency when applied 

to different datasets in all cases [41]. 

An accelerating k-Prototypes Algorithm based on partial distance is proposed in 

[42]. The proposed algorithm avoids distance computations in order to find the 

shortest distance between an object and a cluster without computing distances for all 

attributes. The experiment results show the proposed k-Prototypes Algorithm 

outperforms the initial k-Prototypes Algorithm. Moreover, in [43] a neural system 

that solves the problem of fuzzy clustering of distorted observations is shown. 

3. Proposed model 

In this paper, a new modified version of LVQ is proposed, which is called PDLVQ. 

The model being proposed aims to accelerate the LVQ by combining PD computation 

with LVQ in order to decrease unnecessary calculations that are used in LVQ. 

Moreover, these changes have been made to reduce the time taken by LVQ to run 

without affecting its consistency or accuracy of classifications.  

PD uses conditions that allow early termination of distance calculations. 

Moreover, PD computation works efficiently on high dimensional datasets and it 

reduces the exhaustive search and computational complexity. This is done by 

allowing early termination of the distance calculation between a data point and a 

cluster center by providing early exit conditions in the search process [42]. 

Let C = cij where i = 1, ..., N be a set of cluster centers of size N, where  

(cij, j = 1, ..., K) is a K dimensional data point (vector).  

For a given data point X = (xj, j = 1, ..., K), it is required to find the  

cluster center with the minimum distance from the set C under the squared error 

distance measure defined as shown in the next equation where Di represent the 

dimension of the sample. For example, if we have two vectors each one has 4 

dimensions A(x1, x2, x3, x4) and B(y1, y2, y3, y4), then the distance between those two 

vectors will be represented by the Euclidian distance as follows: 

(1)    𝐷𝑖(𝐴, 𝐵) =  √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + (𝑥3 − 𝑦3)2 + (𝑥4 − 𝑦4)2. 

The major challenge is when a vector’s dimension becomes large such as ten, 

sixteen, or even more. Despite the applicability at applying Euclidean distance this 

will also take a long time for computations. The proposed PDLVQ uses one of the 

following three cases to eliminate the unnecessary computations:  

• Best case. This case is used when the calculations of the new data point are 

greater than the Di; in this case not all dimensions will be calculated. The time 

complexity is O(a). 

• Average case. This case is used when the Di is neither the longest nor the 

shortest distance, the estimation of the new data point will be the same as the Di. In 
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this case, half the number of dimensions will be calculated so, the time complexity is 

O(𝑛/2).  

• Worst case. When the Di has been calculated, this takes the longest distance, 

which means that Di will take all dimensions into consideration for new data point 

estimation and the time complexity is O(n).  

Numerical example.This section presents a difference between LVQ and PDLVQ 

using equations.  

Suppose the dataset has three classes which are X, Y and Z,  

X= {a1, a2, a3, a4, a5,…,an}, 

Y= {b1, b2, b3, b4, b5,…,bn}, 

Z= {c1, c2, c3, c4, c5,….,cn}. 

If any record has been entered into the LVQ model the record will be  

determined using Euclidean distance and compared with each class as shown in the 

next equations (2)-(4). On the other hand the competition cost depends on the number 

of classes and the dimension of the input. Let assume that A= {z1, z2, z3, z4, z5,…, zn} 

is an input record need to be classified. Using LVQ the result will be calculated as 

follows: 

(2)   𝐷𝑖 = √(𝑧1 − 𝑎1)2 + (𝑧2 − 𝑎2)2 + (𝑧3 − 𝑎3)2 + (𝑧4 − 𝑎4)2 + … … . +(𝑧𝑛 − 𝑎𝑛)2, 

(3)   𝐷𝑖 = √(𝑧1 − 𝑏1)2 + (𝑧2 − 𝑏2)2 + (𝑧3 − 𝑏3)2 + (𝑧4 − 𝑏4)2 + … … . +(𝑧𝑛 − 𝑏𝑛)2, 

(4)   𝐷𝑖 = √(𝑧1 − 𝑐1)2 + (𝑧2 − 𝑐2)2 + (𝑧3 − 𝑐3)2 + (𝑧4 − 𝑐4)2 + … … . +(𝑧𝑛 − 𝑐𝑛)2. 

However, in the PDLVQ many unnecessary computations will be eliminated 

based on the heuristic function that tunes the parameter α. PDLVQ reduces the 

number of points to be computed in each vector or input based on the assumption of 

α. If α is assumed to be less than Di then PDLVQ will check the value in each point 

so if it finds that (𝑧1 − 𝑎1)2 + (𝑧2 − 𝑎2)2 + (𝑧3 − 𝑎3)2 > α  then … + (𝑧𝑛 − 𝑎𝑛)2 

will be ignored and so on. In this case, the dimension of the vector using Euclidean 

distance will be reduced and this will reduce the computational cost and the run time. 

As shown in the next equations, the calculations depend on the value of α. It can 

be noticed that in each formula the number of points is changed to a lesser number of 

points:  

(5)    𝐷𝑖 = √(𝑧1 − 𝑎1)2 + (𝑧2 − 𝑎2)2 + (𝑧3 − 𝑎3)2, 

(6)    𝐷𝑖 = √(𝑧1 − 𝑏1)2 + (𝑧2 − 𝑏2)2 + (𝑧3 − 𝑏3)2 + (𝑧4 − 𝑏4)2, 

(7)    𝐷𝑖 = √(𝑧1 − 𝑐1)2 + (𝑧2 − 𝑐2)2. 

As shown in the flowchart of PDLVQ in Fig. 2, the model being proposed has 

three major parts, where data are being preprocessed, tuning for Di and PDLVQ 

mode, which is a modified version of LVQ. Irrelevant and redundant data, as well as 

noisy and unreliable data, should be removed during the data-preprocessing step 

because of their effect on the accuracy of the model being built. Also, in this phase, 

cleaning, normalization, transformation, function extraction, and selection should be 

carried out for the examples of data preprocessing being considered. 

Decreasing the computational complexity depends on selecting the best value 

of Di, which helps to reach the first case or at least the second one. This is done based 

on the preprocessing phase after a general look for the classes and the dimensions for 

the entered dataset. Inside the classification model, which is PDLVQ the value of Di 
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will be updated automatically and the learning rate will be enhanced based on the 

dataset records. 
 

 
Fig. 2. Flowchart for PDLVQ Algorithm 

4. Experiments and results 

4.1. Dataset 

In this paper, three benchmark datasets have been collected from UCI Repository of 

Machine Learning Databases [44] which are Iris, Ecoli and Pima. Table 1 shows the 

number of classes and dimensions for each one. The number of classes refers to how 

many classes can the data be classified to. In Iris three classes exist which are Iris 

setosa, Iris virginica and Iris versicolor. Moreover, the number of dimensions 

represents the number of features which are in Iris Sepal length, Sepal width, Petal, 

length and Petal Width. The size of data represents the number of records or the 

number of samples it contains.  
 

Table 1. The characteristics of the three benchmark datasets 

Dataset Number of classes Number of dimension Size 

Iris 3 4 150 

Ecoli 8 7 336 

Pima 2 8 768 
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4.2. Analysis results 

We empirically confirm the efficiency of the modified version PDLVQ compared to 

LVQ. The experiments have been carried out in terms of runtime for each dataset 

based on different scenarios. Table 2 shows the runtime of LVQ and PD LVQ for the 

original datasets without any changes in the number of clusters, dimensions and 

records. The results show that the efficiency of PDLVQ is better and it takes less 

runtime for the three datasets compared to LVQ. It can be noticed that the efficiency 

of PDLVQ is enhanced when the size of the dataset increases. 

Table 2. Runtime for LVQ vs PDLVQ for original datasets 

Dataset LVQ PDVQ Efficiency 

Iris 
C 3 

0.17 0.11 0.05 
D 4 

Ecoli 
C 8 

0.33 0.22 0.11 
D 7 

Pima 
C 2 

0.37 0.23 0.14 
D 8 

The experiments have been carried out using two separate scenarios: the first, 

in which we increased the number of clusters for each dataset and determine the 

runtime in each case, after that a comparison has been done to calculate the efficiency 

of PDLVQ compared to LVQ. In the second scenario, we increased the dimensions 

in each dataset to determine the runtime that is needed in the modified version 

(PDLVQ) and LVQ. Accordingly, a comparison has been done to determine the 

efficiency between PDLVQ and LVQ. 

The evaluation of the proposed model has different scenarios – for example the 

dimensions have been expanded using feature extraction to show the performance of 

our model, how it works when the number of features increase. Moreover, the number 

of classes are expanded to evaluate the performance of the proposed mode. In Iris 

dataset three original clusters are existing and in order to show the efficiency of the 

proposed model when the number of clusters increases, we split the data into several 

clusters. 

Table 3 shows the runtime of LVQ and PD LVQ for different scenarios. It can 

be noticed that PDLVQ shows better efficiency compared with LVQ, when the 

number of clusters and dimensions of the datasets is increased. The efficiency of 

PDLVQ in Iris reached 24% when the number of clusters has been changed to 24 

clusters and reached 32% when the dimensions for Iris have been expanded to be 16 

dimensions. 

PDLVQ shows better performance when the number of clusters, dimensions and 

the size of data is increasing. This has been verified when Ecoli dataset has been 

chosen, where the results show that PDLVQ needs less runtime compared to LVQ. 

Moreover, it can be noticed that when the number of clusters and dimensions of the 

datasets increase or when the size of the database is increased the enhancement for 

PDLVQ gives better efficiency. 

PDLVQ achieved in Ecoli 30% and 35% efficiency compared with LVQ when 

the number of clusters changed to be 32 and the dimensions have been increased to 

be 28. On the other hand, the enhancement in Pima dataset is greater than in Ecoli 
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and Iris where the achieved efficiency is 35% and 37% when the number of clusters 

has been increased to 32 and the dimensions are 34. The higher efficiency has been 

reached in Pima when the dimensions have been changed to 34 and the size of the 

data became larger than the previous ones. 

Table 3. The experimental results for different datasets at different number of clusters and dimensions 

Iris 

Number of 

clusters 
3 6 9 12 24 

Runtime LVQ 0.17 0.33 0.46 0.57 0.81 

Runtime PDLVQ 0.11 0.22 0.30 0.39 0.57 

Efficiency 0.05 0.11 0.16 0.18 0.24 

Dimension 2 4 6 8 16 

Runtime LVQ 0.13 0.27 0.38 0.56 0.89 

Runtime PDLVQ 0.07 0.15 0.21 0.35 0.57 

Efficiency 0.06 0.12 0.17 0.21 0.32 

Ecoli 

Number of 

clusters 
2 4 8 16 32 

Runtime LVQ 0.23 0.35 0.47 0.75 0.98 

Runtime PDLVQ 0.14 0.21 0.33 0.54 0.68 

Efficiency 0.09 0.14 0.16 0.21 0.30 

Dimension 3 7 14 21 28 

Runtime LVQ 0.16 0.31 0.45 0.67 1.12 

Runtime PDLVQ 0.08 0.16 0.26 0.43 0.77 

Efficiency 0.08 0.15 0.19 0.24 0.35 

Pima 

Number of 

clusters 
2 4 8 16 32 

Runtime LVQ 0.25 0.41 0.57 0.84 1.07 

Runtime PDLVQ 0.14 0.24 0.37 0.60 0.72 

Efficiency 0.11 0.17 0.20 0.24 0.35 

Dimension 4 8 16 24 34 

Runtime LVQ 0.36 0.43 0.58 0.91 1.24 

Runtime PDLVQ 0.24 0.25 0.37 0.65 0.87 

Efficiency 0.12 0.18 0.21 0.26 0.37 

It can be noticed that the PDLVQ achieves better efficiency using the same 

dataset when the number of clusters has been increased. Moreover, when the number 

of dimensions has been increased the runtime that is needed in PDLVQ is always less 

than in the traditional version of LVQ. Thus, Our PDLVQ algorithm decreases the 

time complexity by reducing unnecessary distance computation by using partial 

distance computation instead of distance computations of all attributes between an 

object and a cluster center. 

Fig. 3 and Fig. 4 show the runtime for LVQ and PDLVQ in Iris when the number 

of clusters and the dimensions has been increased.  Also, Fig. 5 and Fig. 6 show the 

runtime when Ecoli has been chosen to show the runtime for the LVQ and the 
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modified version which is PDLVQ when the number of cluster and dimensions have 

been increased. Finally, Fig. 7 and Fig. 8 show the runtime for LVQ and PDLVQ in 

Pima dataset. 

 

 
Fig. 3. Runtime for Iris dataset in different number of clusters 

 

 
Fig. 4. Runtime for Iris dataset in different dimensions 

 

 
Fig. 5. Runtime for Ecoli dataset in different number of clusters 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3 6 9 1 2 2 4

R
u

n
ti

m
e 

(m
s)

no.of Cluster

 LVQ  PDLVQ

0

0.2

0.4

0.6

0.8

1

2 4 6 8 1 6

R
u

n
ti

m
e 

(m
s)

Dimension

 LVQ  PDLVQ

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 1 6 3 2

R
u

n
ti

m
e 

(m
s)

no.of Cluster

 LVQ  PDLVQ



 46 

 
Fig. 6. Runtime for Ecoli dataset in different dimensions 

 

 
Fig. 7. Runtime for Pima dataset in different number of clusters 

 

 

Fig. 8. Runtime for Pima dataset in different dimensions  
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5. Conclusion 

LVQ uses Euclidean distance in order to classify any input vector for the 

corresponding appropriate class. These calculations take a long time, which increases 

the computational complexity of the LVQ due to its high dimensionality. This paper 

proposes a modified version of LVQ which is called PDLVQ to speed up LVQ. The 

proposed technique is based on Partial Distance Computation, which uses an effective 

partial distance strategy to prevent many unnecessary distance calculations. When 

used on different datasets these datasets have been chosen based on many differences 

between each other, such as the number of clusters, dimensions and the size of 

datasets. The experiment results show that PDLVQ outperforms the LVQ in all 

scenarios and in all datasets. The runtime of PDLVQ compared to the LVQ 

Algorithm has been enhanced by approximately 37% when the dimensions of Pima 

have been increased to be 32 dimensions. Moreover, when the number of clusters has 

been increased in Pima the runtime that has been taken in PDLVQ outperform LVQ 

by 35%. Also, it has been noticed that when the dataset has a high number of clusters 

or dimensions PDLVQ is giving better results to decrease the runtime than LVQ. 

Also, it can be noticed that when the modified version of LVQ which is PD LVQ is 

used in large data sizes this gives a clear enhancement compared with a smaller data 

size. Finally, we conclude that adding Partial Distance computation to the Learning 

Vector Quantization algorithm improves the algorithm by saving the time that is 

wasted in unnecessary computations in the traditional version.  
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