
 26 

BULGARIAN ACADEMY OF SCIENCES 

 

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 22, No 2 

Sofia • 2022 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2022-0014 

 

 

Development of a Scheme for Correcting Arbitrary Errors  

and Averaging Noise in Quantum Computing 

Sergey Gushanskiy, Maxim Polenov, Viktor Potapov 

Department of Computer Engineering, Southern Federal University, Taganrog, Russia  

E-mails: smgushanskiy@sfedu.ru      mypolenov@sfedu.ru      vpotapov@sfedu.ru  

Abstract: Intensive research is currently being carried out to develop and create 

quantum computers and their software. This work is devoted to study of the influence 

of the environment on the quantum system of qubits. Quantum error correction is a 

set of methods for protecting quantum information and quantum state from unwanted 

interactions of the environment (decoherence) and other forms and types of noise. 

The article discusses the solution to the problem of research and development of 

corrective codes for rectifying several types of quantum errors that occur during 

computational processes in quantum algorithms and models of quantum computing 

devices. The aim of the work is to study existing methods for correcting various types 

of quantum errors and to create a corrective code for quantum error rectification. 

The scientific novelty is expressed in the exclusion of one of the shortcomings of the 

quantum computing process.  
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quantum error, phase amplitude. 

1. Introduction 

Within this paper the basic types of quantum noises are presented. Their fundamental 

features and their influence on description of density matrices with a certain size and 

a set of functions are considered. The field of quantum error correction is poorly 

studied. One of the promising works in this area is [1]. It considers a method-protocol 

of quantum noise correlation similar to that described in the paper in terms of its 

basis. It allows visualizing the correlations between pairs of qubits, which helps in 

detecting two-qubit correlations. The method proposed in this paper eliminates these 

limitations and allows one to find and eliminate certain types of errors in n-qubit 

correlations on any number of qubits. An increase of uncorrected data value as a 

result of the simulation process in accordance with the size of quantum circuit and 

number of quantum bits [2] is determined. A direct correlation of known types of 

quantum noise effects on quantum gates and on the result of quantum algorithms [3] 

is reflected. Successful development of quantum information technologies is 
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impossible without achievement of accuracy of quantum calculations. This requires 

solving the problem of execution of quantum gates [4] and wired circuits in 

interaction with various variations of quantum noise types. Next aim – carrying out 

subsequent analysis of accuracy of performed quantum computing process.  

2. Types of quantum noise 

Depolarizing noise. A quantum depolarizing channel is a model for quantum noise 

in quantum systems. The d-dimensional depolarizing channel can be viewed as a 

completely positive trace-preserving map  , depending on one parameter  . This 

parameter maps a state р onto a linear combination of itself and the maximally mixed 

state and d – number of qubits, I is a unit matrix 
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This type of noise has an effect on the density matrix p of dimension s*s: 
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where I is a unit matrix. With some probability p the base state is replaced with an 

absolutely random one, and with probability 1–p a unitary transformation is 

performed using the matrix U. 

Amplitude and phase relaxations. A relaxations usually means the return of a 

perturbed system into equilibrium. Each relaxation process can be categorized by a 

relaxation time τ. The simplest theoretical description of relaxation as function of 

time t is an exponential law exp (–t/τ) (exponential decay). Krauss operators in terms 

of dephasing are represented as the matrices: 
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The density matrix applied has the form 
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where a is an arbitrary real value, b is an arbitrary complex value under this 

transformation will be equal to 1. The procedure for dephasing quantum states has 

ben first studied in spin-spin relaxation of spins of several nuclei. Next, the amplitude 

relaxation procedure is performed. Krauss operators are represented in the form: 
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The index γ characterizes the relaxation probability, which is related to the 

transition from |1 to |0. Probabilistic relaxation is an iterative and parallel process, 

which can be regarded as a recurrent dynamical system. A dynamic system is a set of 

elements for which a functional relationship between time and the position in the 
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phase space of each element of the system is specified. This mathematical abstraction 

allows you to study and describe the evolution of systems in time. The state of a 

dynamical system at any moment of time is described by a set of real numbers (or 

vectors) corresponding to a certain point in the state space. The evolution of a 

dynamic system is determined by a deterministic function. The system will assume a 

specific state, depending on the current one.  

3. Averaging noise to reduce errors 

We can say that ECC (Error Code Corrections) [5] works by “noise averaging”. Since 

each bit of data affects many transmitted symbols, noise-distorting some symbols 

usually allows the original user data to be extracted from other. Interleaving ECC-

encoded data can reduce the all-or-nothing properties of transmitted ECC codes when 

channel errors tend to occur in packets. However, this method has limitations; it is 

best used for narrowband data. Most telecommunications systems use a fixed channel 

code designed to withstand the worst-case expected bit error rate and then fail at all 

if the bit error rate gets worse.  

Let’s define a machine B that divides the entire frequency of the visible 

spectrum by 
MFFF ,...,, 21

 and assigns an array of qubits (a set of spatially ordered 

states [6]) Q to each subset of F. B must act as a bijective function between the 

frequency partition of the subset F and the set of states of the qubit Q. It is not allowed 

to have the same distribution of qubit states for two different frequency subsets. 

Suppose machine B only produces qubit states |0 and |1. The number of colours that 

can be represented in an array of n qubits –
n2 as in the classical case, but if turn on 

the states of the qubits |– and |+. Then the number of different colours that can be 

stored – In2 . Formally speaking, the previously observed measurement of control 

qubits |p is ~

1 10 0 1 1A  = + , 
11,   is the probability of obtaining a quantum 

states. However, as a solution to this problem were Quantum Error Correcting Codes 

(QECC) have been proposed. The main difference between QECC and classic codes 

is to correct the error “without delving into the meaning” of a quantum state. The 

interaction of a qubit with the environment can lead to an error of one of three 

possible types:  

1. Bit (or, as they are also called, amplitude) errors – X, i.e., leading to a qubit 

flip: |0 → |1, |1 → |0. 

2. Phase errors – Z: |0 → |0, |1> → – |1. 

3. Bit-phase (amplitude-phase) errors (i.e., simultaneous action of errors of the 

first and second types) – Y: |0 → |1, |1 → – |0. 

4. Simulation of quantum algorithms implementation 

We perform a simulation of the noisy quantum Fourier transform and the quantum 

Grover algorithm. The main difficulty of such modeling is the exponential growth of 

the dimension depending on the number of qubits. So, to simulate only 50 qubits, you 
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need to work with vectors from 
502  complex numbers. When using single precision 

numbers, a minimum of 1,125,899,906,842,624 bytes is required to store such a 

vector. On modern personal computers, using random access memory, approximately 

30 qubits can be simulated. So, the simulation of circuits with 32 qubits with 16 Gb 

of RAM has been implemented. The use of supercomputers makes it possible to 

increase the number of simulated qubits up to about 40. The quantum Fourier 

transform is a variation of the discrete Fourier transform, which plays a role in 

quantum computing simulation algorithms. On initial states, the transform acts as 

formal model of the proposal: 
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number of qubits, i, j are two quantum states at the beginning and end of the 

computational process, k is number of gates on a quantum circuit. A simulation of 

ideal and noisy quantum algorithms has been performed. Certain types of noise have 

been chosen for the gates. The Hadamard gate with an admixture of noisiness: 
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Here e is the error level, N(0, 1) is a normal random variable with zero mean 

and unit variance,   is the angle of the spin direction in the three-dimensional space 

of the Bloch sphere.   is a set of instructions for undulating quantum errors. All 

experiments have been carried out on a developed software model of a quantum 

computing device with a set of specialized libraries and functions. The model is a 

desktop program written in Java with the help of libraries (API libquantum and 

LinerAl) of quantum primitives and functions. The general interface of the developed 

model [7] is shown in Fig. 1. On the left are the buttons for controlling the quantum 

circuit. This area of the program gives the possibility of automatic or step-by-step 

movement of the model forward or in the opposite direction. User can also delete the 

last element selected and entered into the diagram, or completely clear the entire 

diagram. At the top, there is a menu bar for managing and configuring the model. In 

the middle at the top is a set of quantum gates, at the bottom is a state diagram of x-

registers and y-registers. As a formal model of the proposed quantum computing 

system having been developed lies in the software interpretation of the fundamentals 

of quantum computing with the help of quantum software libraries. The library has a 

set of gates in the API for working with quantum registers. A distinctive feature of 

this library is the method of storing the state matrix of the qubit group. The memory 

contains only those states whose probabilities are not equal to zero; this feature allows 

saving a large amount of memory. 

Conclusions from numerical experiments, which are necessary to assess the 

effect of quantum noise on the accuracy of execution and results of the quantum 

Fourier algorithm, are shown in Fig. 2. Let us take the probability of coincidence F 

between ideal and noisy state vectors. This parameter is calculated as the square of 

the modulus of the scalar product of the corresponding vectors. 

If the number of qubits is from 5 to 30, you have to run the algorithm for 300 

runs. If the number of qubits is 29, there are 143 runs, and for 33 qubits, there are 26 

runs. The curves represent a Gaussian approximation (Fig. 3).  
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Fig. 1. The interface of the developed modeling environment 

 

 

Fig. 2. Cumulative accuracy loss for quantum algorithm from a set of qubits (n = 5, n=25) 

 
Fig. 3. Accuracy of the algorithm in terms of the number of qubits 
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Here is a dependence of average accuracy of quantum Fourier algorithm 

realization on a number of qubits for noise level e = 0.01. For a given number of 

qubits a certain number of runs of the algorithm have been performed. 

5. Development of a scheme for correcting arbitrary errors 

Let’s consider a more general situation when all possible one-qubit errors are in effect 

in the system. To fix all kinds of errors (𝑋, 𝑌 and 𝑍) in one qubit, you must use a 𝑛 

qubit. Let us define the minimal n. The 2n-dimensional space of the n qubit system 

must not be less than 2(3n + 1)-dimensional error space 132 1 +− nn . It is seen from 

inequality that 5min =n . The effect of noise on a system of 9 qubits can be described 

using equations. The action of the environment is presented in the form of a super 

operator: 
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Equation (8) reflects the sum of quantum states of a system of 9 qubits, where p 

is the noise factor (from 0 to 1), $p describes bit errors during interaction with the 

environment. Syndromes (I, X, Y, Z) are used to correct errors. The first syndrome 

determines whether the 1st and 2nd qubits are equal, the second syndrome answers 

the question of the equality of the 2nd and 3rd qubits, etc. Knowing the results of the 

syndromes, we will find out which of the three qubits is wrong. Syndromes are 

measurements that result in the loss of some off-diagonal elements of the density 

matrix. The reduction will eliminate all probabilities corresponding to transitions 

from states with equal qubits to states with unequal qubits, as well as the probabilities 

of transitions from states with unequal to states with equal qubits. The first syndrome 

nullifies the elements marked with X and so on. The correction algorithm first corrects 

the bit error in each group of three qubits. This operation thereby reduces the noise 

of the bit component, that is 
bit bitp p  , but this leads to an increase in the noise of 

the phase component 𝑝(phase) and the mixed error component bit+phasep . The 

characteristic increase in the measure of decoherence caused by the correction of the 

bit error with the admitted phase error is shown in Fig. 4 by dots. The solid line shows 

the decrease in the measure of decoherence (at small errors) with the admitted bit 

error and the dotted line marks the case without the correction procedure. The graphs 

of the dependence of 𝜇 on 𝑝 described below have been modeled on the developed 

model of a quantum computing device (Fig. 1). Using 100 runs of Shor’s algorithm 

and comparing the results obtained for the presence and value of an error depending 

on the number of qubits and other input data. 

Using this approach, by reducing the noise according to the principles of 

quantum mechanics, and increasing noise, one can find the approximate behavior of 

the curve 𝜇(𝑝). This graph refers to the case when the phase deteriorates first, and 

then its recovery. The opposite case is shown in Fig. 5. Conclusion: if we know that 

bit errors are the most complex in the system, then we should first correct them, and 
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only then phase errors. Dependence 𝜇(𝑝) as a whole segment is shown in Fig. 5. In 

this scheme, one has to use syndromes that require the use of additional qubits. The 

result of simulation this correction scheme is the dependence 𝜇(𝑝) is shown in Fig. 6. 

 
Fig. 4. Typical change when correcting various errors 

 
Fig. 5. Dependence 𝜇(𝑝) on the whole segment 

It is similar to the coding schemes already considered. The code correction 

scheme consists of an encoding scheme, a noise area, a correction and decoding 

scheme (Fig. 7). |𝜓⟩ = 𝑎|0⟩ + 𝑏|1⟩ is represented by a 5-qubit state |𝜓′⟩ = 𝑎|𝑐0⟩ + 𝑏|𝑐1⟩, 
where |𝑐0⟩ = |00000⟩ + |11000⟩ + |01100⟩ + |00110⟩ + |00011⟩ + |10001⟩ − |10100⟩ − 

|01010⟩ − |00101⟩ − |10010⟩ − |01001⟩ − |11110⟩ − |01111⟩ − |10111⟩ − |11011⟩ − 

|11101⟩, |𝑐1⟩ = |11111⟩ + |00111⟩ + |10011⟩ + |11001⟩ + |11100⟩ + |01110⟩ − |01011⟩ 
− |10101⟩ − |11010⟩ − |01101⟩ − |10110⟩ − |00001⟩ − |10000⟩ − |01000⟩ − |00100⟩ − 

|00010⟩.  
We can encode with such codewords using the scheme. The decoding scheme 

is obtained by transposing the coding scheme. The correction procedure is shown in 

Fig. 4. For correction, four syndromes have been used; in this case they are 

implemented as four ancilla qubits. The measurement results of which influence 

further correction 𝑃. Moreover, k = n – 1. In the case of bit error correction, two 

syndromes have been used, in the case of the code, four syndromes have been used. 
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Fig. 6. The scheme of the fix in the code 

 
Fig. 7. Decoding scheme in code 

The algorithm will correct errors in the effect of noise on an arbitrary pure state 

at 
c 0.093p p = . The dependences of the decoherence [8] measure on the noise level 

at small 𝑝 are well approximated by the 23p  parabola. The dependences 𝜇(𝑝) for 

the code can also be replaced by quadratic at low noises
cp p . For a 9-qubit code 

0,35 2 → pp , and for a 5-qubit code 0,15 2 → pp . The measure of 

decoherence (Fig. 8) can be represented in the form 2bp= , where 𝑏 varies weakly 

for low noise levels and decreases for all error correction algorithms. 

 
Fig. 8. A measure of decoherence in a code 
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6. Conclusion 

This paper describes the basics of developing quantum algorithms and modeling 

entangled quantum computations applicable to quantum algorithms. Ansatz of the 

work is developed codes for correcting various types of errors. Quantum algorithms 

involve the use of vector and matrix algebra. The structure of the quantum computer 

model is determined and reflects all its functional features, advantages and 

disadvantages. Implementation of the scheme for correcting the main types of 

quantum errors based on the basic scheme for constructing correction codes have 

been done. The types of noise and their influence on the type of density matrix with 

a particular dimensionality are described and analyzed. The significance of the study 

lies in the development of a scheme for correcting arbitrary errors and carrying out 

experiments on the developed software model of a quantum computing device. Codes 

for correcting various types of errors are numerically simulated. 

Correcting errors is one of the major challenges considering quantum computing 

devices. Moreover, without solving this problem, further successful developments in 

this promising area will become ineffective. In this paper, the codes for correcting 

various types of errors are numerically simulated. The main obstacles and difficulties 

in the way of protecting the channel from noise are analyzed. Some methods of 

overcoming them are proposed. Implementation of schemes for correcting two main 

types of quantum errors has been made. The dependences of the data distortion on 

the noise level and the decoherence measure on the noise level in one qubit are 

demonstrated. The effect of different types of quantum noise on some types of 

quantum gates and on the result of a particular quantum algorithm is described. The 

growth of the error in the simulation results along the dimensionality exponent as a 

function of the number of qubits is revealed. 
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