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Abstract: Air pollution has increased worries regarding health and ecosystems. 

Precise prediction of air quality parameters can assist in the effective action of air 

pollution control and prevention. In this work, a deep learning framework is 

proposed to predict parameters such as fine particulate matter and carbon monoxide. 

Long Short Term Memory (LSTM) neural network-based model that processes 

sequences in forward and backward direction to consider the influence of timesteps 

in both directions is employed. For further learning, unidirectional layers’ stacking 

is implemented. The performance of the model is optimized by fine-tuning 

hyperparameters, regularization techniques for overfitting resolution, and various 

merging options for the bidirectional input layer. The proposed model achieves good 

optimization and performs better than the simple LSTM and a Recurrent Neural 

Network (RNN) based model. Moreover, an attention-based mechanism is adopted to 

focus on more significant timesteps for prediction. The self-attention approach 

improves performance further and works well especially for longer sequences and 

extended time horizons. Experiments are conducted using real-world data collected, 

and results are evaluated using the mean square error loss function. 

Keywords: Air quality forecasting, Air pollution forecasting, Deep learning, Long 

short term memory, attention. 

1. Introduction 

Due to fast economic development, urbanization, construction of industrial parks, and 

production procedures, air pollution has become an alarming issue for society. Also, 

rapid urban development has given rise to global warming, climate changes, and 

disturbance of the ecosystem. Fuel-burning generates carbon dioxide as well carbon 

monoxide, both influence rising of earth temperature. In recent years, numerous cities 
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across the globe have been attacked by smog. The smog affects citizens’ daily life 

and causes many health hazards.  

According to [1], a substantial fear for air pollution is due to the existence of a 

high concentration of particulate matter (PM 2.5 and PM10) and carbon monoxide in 

the surrounding atmosphere. Incomplete coal burning and automobile emissions can 

cause damaging effects on health because they discharge fine particulate matter 

(PM2.5) straight into the atmosphere. PM 2.5 can cause harmful effects to various 

human organs such as the lungs, nervous system [2], and the outermost layer of skin 

[3]. Carbon monoxide (CO) present in the atmosphere is responsible for an enormous 

proportion of the poisonings and life losses, reported all around the globe [4]. In 

various cases, Carbon monoxide level increases to a level that causes coma and even 

deaths sometimes [5]. The development of accurate air quality (air pollution) 

parameter forecasting model or system in urban areas can help people in avoiding 

health hazards by the decision making of canceling to be outdoor or to visit certain 

critical places. Also, the forecasting results inform government agencies to execute 

traffic control or any such policy implementation, looking at the critical levels of air 

pollution in the future. 

2. Related work 

Numerous air quality prediction methodologies have been presented by researchers, 

which can be classified as statistical methods, machine learning-based approaches, 

and recently, deep learning-based approaches. Statistics based approach comprises 

Principal Component Analysis (PCA), Coefficient analysis, linear as a well non-

linear regression-based model [6, 11, 8], and interpolation-based [7] 

implementations. These methods suffer due to a lack of ability to model non-linear 

as well as multivariate types of data. Machine learning-based approach comprises 

fuzzy methods [12, 13], genetic algorithm [9], and support vector [10, 13] based 

implementations. 

Recent development in deep learning-based forecasting approaches has shown 

very good prediction accuracy, outperforming the statistics and machine learning-

based methods in various domains. Deep learning methods include Recurrent Neural 

Network (RNN) and Long Short Term Memory (LSTM) based neural network model 

[14, 15]. LSTM network has performed better compared to RNN due to the gated 

cell-based mechanisms in the LSTM unit [15, 16, 26]. LSTM based fully connected 

network has been utilized to predict particulate matter concentration at targeted 

stations [17, 18] by the researchers. Authors in [19] have predicted air pollution 

parameters with a combination of Convolutional Neural Network (CNN) and LSTM 

based networks to further improve the efficiency of a simple LSTM based network 

model. Thanongsak Xayasouk and team [20] have predicted air quality using the deep 

auto encoder and LSTM based model. The authors have fine-tuned the performance 

by hyperparameter setting and compared the performance using two approaches – 

PM2.5 predictions by combining convolution networks and bidirectional GRU 

(Gated Recurrent Unit) network over particulate matter data of Beijing city have been 

carried out to enhance the performance of simple GRU [21]. Saba Gul and his team 
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[43] have implemented and fine-tuned the performance of LSTM based model for the 

classification of the Air Quality Index in six different categories. Authors [22] have 

used a bi-directional LSTM network for prediction the severity of air pollution 

category. The bi-directional approach learns features in both forward and backward 

directions to improve further the LSTM performance. Weitian Tong and his team 

[23] have used bidirectional LSTM for spatiotemporal interpolation of particulate 

matter PM2.5 concentrations. The model has focused on both spatial and temporal 

factors. Yue-Shan Chang and his team [41] have used aggregated LSTM model. The 

model has used three sets of data and aggregated predictive features from those three 

sets in the prediction of PM2.5. The first set has utilized the data from the local station 

which contained 17 attributes along with PM2.5. The second data set of PM2.5 and 

PM10 has been derived from nearby stations to realize the effect of the nearby 

pollutant on local pollutants. The third dataset has been derived from the industrial 

zone to consider the effect of external sources. The model utilizes the effect of other 

(other than PM2.5) pollutants from local stations and the effect of nearby as well 

external sources of PM2.5 and PM10 on the prediction of local stations’ PM2.5. Jun 

Ma and the team [44] have utilized the data from the existing station during training, 

which assists to improve the predictive performance of the new station to overcome 

the shortage of data at such new stations. The model named transfer learning (from 

existing to new stations) utilizes a stacked bi-direction LSTM network. Authors [42] 

have used a flexible dropout layer to adjust the dropout rate automatically along with 

widow size for specific intervals and have found good results by the addition of such 

layer. The model performs better compared to other alternatives (without flexible 

dropout) such as GRU, LSTM, and bi-LSTM. So LSTM based approach is one of the 

popular choices in air quality parameter prediction. Some attempts have been also 

made to further improve the performance of LSTM based model as discussed. In the 

proposed work LSTM network-based model is implemented for the prediction of air 

quality parameters like Carbon monoxide (CO), Particulate matter 2.5, and 

Particulate matter 10. The major contribution of the proposed work can be given as 

follows. 

• LSTM based deep learning network model that takes the advantage of both 

forward and backward direction time step observation in learning during training is 

applied in the proposed work. The data being observed are modeled into sequences 

and a sliding window-based approach for the transformation of training data into 

supervised data is used. The model can predict the next time step value for air quality 

parameters from the given test sequence. In the field of air quality prediction, one 

such approach of using bidirectional LSTM [22] is available but the work is done for 

label classification where the label is various severity categories rather than actual 

sequence to sequence (moving window based) value prediction. In another approach, 

authors [44] have used bidirectional stacked LSTM during transfer learning from 

existing station data to the new station for such time series prediction. In our 

approach, the input layer is only kept bidirectional while the stacking is done with 

unidirectional LSTM layers. The performance of such bi-directional LSTM is heavily 

influenced by the way forward and backward layer outputs are merged. In the 

proposed work, the model is critically evaluated with various merging functions 
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(options) to optimize the performance. Moreover, the stacking model is tested with 

an incremental approach to decide the best stacking approach for optimized 

performance.  

• The performance of the deep learning model suffers from an overfitting issue. 

In the model being proposed, the issue is resolved by analyzing and implementing 

two regularization techniques. The model is also fine-tuned by a proper 

hyperparameter setting to improve the performance. 

• The proposed work also implements a self-attention mechanism which shows 

better performance by minimizing the loss function further. The applied self-attention 

mechanism is also one of the first attempts to the best of our knowledge, in the field 

of sequence to sequence air quality prediction.  

The proposed article is organized as follows: Section 3 presents the necessary 

concepts and LSTM based neural network methodology (model) employed in the 

proposed work. Section 4 discusses data preparation or data modeling, preprocessing, 

overall prediction framework, and results of experiments in detail. The concluding 

remarks and future enhancements discussions have been carried out in Section 5. 

3. Necessary concepts and methodology employed 

3.1. LSTM neural network   

A Recurrent Neural Network (RNN) is mostly utilized to process sequential data. 

RNN handles dependencies among data by the information/knowledge gained from 

the succeeding timesteps by the use of network loops and by the concept of timing in 

learning. The activation of the previous time step is provided as input to the current 

time step for forecasting purposes in the loop. RNN is very promising in processing 

short-term dependencies but does not perform well with long-term dependencies or 

long sequences due to the gradient disappearance or explosion problem in training 

[24, 25].  

 

 

Fig. 1. Internal gated structure of basic LSTM unit/cell 

Long Short Term Memory (LSTM) network (a special type of RNN) has been 

proposed to solve the vanishing gradient problem and handle the prediction of long 

sequences in an effective manner [26]. The traditional perceptron architecture has 
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been replaced with a memory function to maintain cell state and gated functions for 

regulating input information. The architecture includes an input gate, a forget gate, 

and an output gate. Fig. 1 shows the architectural design of a single LSTM unit. The 

internal cell state at time step t is denoted as ct and at time t – 1 is denoted as ct–1. The 

inputs to LSTM at time t are an input vector xt, a hidden vector ht–1, and a cell state  

ct–1. LSTM produces the output ct and ht from the given input and with the use of the 

three gates. The function of forget gate, input gate, and output gate ft, it, and ot, 

respectively, can be stated as per the equations (1)-(3). The previously hidden state  

ht–1 and the input at current unit xt are given to the sigmoid function. The output ft 

(between 0 to 1) is multiplied with ct–1 to decide the extent of information to be 

forgotten at forget gate  

(1) 𝑓𝑡 = 𝜎(𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓),  

(2) 𝑖𝑡 = 𝜎(𝑊𝑖  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖),  

(3) 𝑜𝑡 = 𝜎(𝑊𝑂  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑂).  

The sigmoid at the input gate generates a value between 0 and 1 using  

Equation (2), which decides values to be updated or added in the neuron state. The 

intermediate cell state ct′ is calculated as per Equation (4) using previous time point 

output ht–1 and current unit input xt. The intermediate cell state ct′ and it are multiplied 

element-wise and the result is added with the output of forget gate to calculate the 

cell state ct at time t as per Equation (5). The output gate decides information to be 

outputted in the state of the neuron. The output state of the input gate(ct) is given to 

tanh layer and this output from tanh (between 1 and –1) is multiplied by ot to generate 

output hidden state ht at timestep t as shown in Equation (6). Parameter W is weight 

matrices and b is biased, which are applied respectively at each stage; σ is the logistic 

sigmoid activation function and tanh is the hyperbolic tangent function, 

(4) 𝑐𝑡
′ = tanh(𝑊𝐶  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶),  

(5) 𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗  𝑐𝑡′,  
(6) ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝑐𝑡).   

3.2. Proposed LSTM based Neural Network (bidirectional and stacking) model 

Authors have proposed in [27] for the first time a bidirectional recurrent neural 

network, which works on sequences in two directions – forward as well backward. 

Forward pass and backward pass are handled by separate RNN layers. A bidirectional 

Long Short Term Memory network was proposed in the year 2005 [28] in the field 

of signal processing. It connects two separate layers (forward and backward 

processing) to the same output (merge) layer. The approach proved to perform brtter 

than unidirectional [28, 29].  

In our model being proposed for training, two sequences are processed as shown 

in Fig. 2. The forward pass layer outputs sequence h iteratively which is calculated 

using inputs in forwarding direction T – 1 to T+1. The backward pass layer outputs 

vector h′ iteratively which is calculated using inputs in reverse direction T+1 to  

T – 1. Both the forward and backward layer outputs are calculated by equations used 

for the standard LSTM unit.  The input vector to the next layer is generated using the 

merge function. The Merge function uses the output of the respective time step from 

the LSTM cell in the forward and backward layer as shown in Fig. 2. 
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Fig. 2. Proposed LSTM based model 

Various researches [30-32] have presented that deep neural network building by 

progressively stacking recurrent layers on top of each other works more effectively. 

The approach lets the hidden state at every level to work at different timescale and 

every layer provides its abstraction level. The model being proposed implements deep 

LSTM architectures where several stacked unidirectional LSTM layers are added on 

top of each other. The output of one such layer is given as input to the next layer. The 

bottom layer in the training model being proposed utilizes forward and backward pass 

for learning the features in given sequences. The top layers of the model utilize the 

learned features from the bottom layer for further learning. The number of layers to 

be stacked, which gives the optimum result, is one of the hyperparameters, and it is 

decided through experiments. The proposed training model with forward and 

backward layer and the first layer with only forward unidirectional stacking as shown 

in Fig. 2 will be referred to as the FBLSTM model further on in the paper. 
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3.3.  Attention mechanism 

Attention mechanism in a neural network lets the training model give more 

importance to the features that are having more influence on the output. Self-attention 

is applied to the input timestep vector of the RNN layer to focus more on important 

timestep values [33, 34]. The self-attention mechanism assigns some weight to each 

input sample according to its importance or influence on the output. Self-attention is 

proven to improve the performance of the neural network [33-35]. Self-attention is 

applied in the model shown in Fig. 2 and experiments are being carried out to check 

the effect on learning with different dimensions, discussed later in the result section. 

Output vector V ={V1, V2, V3, …, Vt } of the last unidirectional hidden layer in LSTM 

stacking is given as input to the attention mechanism or attention layer. The self-

attention mechanism assigns the weight αi to each of the Vi based on the importance 

to output as per Equations (7) and (8):  

(7) 𝛼𝑖 =
exp (𝑒𝑖)

∑ exp (𝑒𝑖)
T
𝑖=1

,  

(8) 𝑒𝑖 = fun(𝑊𝑖 , 𝑉𝑖 ),  

(9) 𝑉′𝑖 = 𝛼𝑖 ∗ 𝑉𝑖,  

where Wi is the weight applied during training for each timestep Vi in LSTM based 

learning through backpropagation with time and fun is the function applied for 

calculation of ei which is tanh function in experiments. Softmax in Keras is used for 

self-attention which calculates the normalized weight αi as per Equation (7). The 

softmax function takes care that the addition of all the weights(αi) is one. The final 

Context vector output from the self-attention layer is V′={V′1, V′2, V′3, …, V′t }, where 

V′i can be obtained as per Equation (9). 

4. Experimentation and results 

4.1. Data preparation 

Real-time data of air quality parameters for the forecasting purpose are collected by 

an IoT (internet of technology) based air quality monitoring system [36]. The 

monitoring system contains a smart node with an ESP8266 12E/Node MCU 

controller and a variety of air quality parameter sensors interfaced with it. The smart 

node is connected to cloud broker HiveMQ via MQTT protocol. The data observed 

of the remote site is logged in at the server every 90 seconds, which works as the 

timestep of the input sequences in the proposed prediction model. The IoT-based 

system utilizes ZE07-CO (electrochemical sensor module) for carbon monoxide and 

SDS 021(laser scattering sensor module) for PM 10 and PM 2.5 parameter collection. 

To develop a model for prediction of the time series data of pollutants collected, 

we need to transform the time series data into a suitable data structure for supervised 

learning. The approach having been used in [37] relies on a prediction methodology 

that models many to many mapping of inputs to outputs by keeping the stochastic 

interdependencies of time-series events. It consists of predicting the next k values as 

per the next equation:  

(10) 𝑃(𝑥𝑡, … , 𝑥𝑡−𝑙+1) = (𝑥𝑡+𝑘 , … , 𝑥𝑡+1),  



 178 

where l indicates the number of past observations utilized for prediction of k next 

events and t ∈ {l, …, n − k}. The right-hand side of the equation indicates observation 

included in the target or output window and k represents the size of the output 

window. The left-hand side of the equation represents observations included in the 

input window with size l. The moving window or sliding window method is 

employed for partitioning the time-series observations of pollutants of length n into 

sample sequences of length [input window (l) + output window (k)]. So overall there 

are total [n-(input window size +output window size) +1] such samples in sample 

space. The sample space X after segmentation over the time-series with n timesteps 

can be given as: 

(11) 𝑋 =

[
 
 
 
 

𝑥1 𝑥2 ⋯ 𝑥𝑙 𝑥𝑙+1 ⋯ 𝑥𝑙+𝑘

𝑥2 𝑥3 ⋯ 𝑥𝑙+1 𝑥𝑙+2 ⋯ 𝑥𝑙+𝑘+1

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮

𝑥𝑛−(𝑙+𝑘)+1 𝑥𝑛−(𝑙+𝑘)+2 ⋯ 𝑥𝑛−𝑘 𝑥𝑛−𝑘+1 ⋯ 𝑥𝑛 ]
 
 
 
 

.  

The output window is kept of size one, so only the next time step is predicted in 

experiments and input window size l is kept to be 60. During the training of the LSTM 

network, training samples are obtained using the moving input window as shown in 

Fig. 3. The l sized input window slides over the pollutant time-series observations 

until the last window is encountered. The output window observation is used as a 

target value that is used for further learning using backpropagation through time and 

for error gradient calculation over the employed batch size. 

 

 
Fig. 3. Moving window over timesteps in time-series 

4.2. Pre-processing and Metrics 

Fig. 4 shows the complete framework of the proposed research work. During data 

pre-processing normalization of time series data is performed using linear scaling 

given with Equation (12) below. The linear scaling method transforms the 

observations into a new interval defined by lower bound (lb) and upper bound (ub). 

The new transformed pollutant time series data lies in the range [0, 1]:  

(12)   𝑋𝑖_new = lb +
𝑋𝑖− MIN(𝑋)

MAX(𝑋)−MIN(𝑋)
∗ (ub − lb).  
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Fig. 4. Detailed training and testing framework of proposed forecasting task 

Transformed training data are modelled into supervised learning data as 

discussed in the data preparation subsection. There are various evaluation metrics 

available, e.g., MAPE, MSE, and RMSE that can be used in the performance 

evaluation of the prediction model. Mean Square Error (MSE) is used as an 

evaluation metric (MSE loss function in Keras) in the experiments conducted that can 

be defined as per Equation (13), where Xpred_i is the predicted value and Xactual_i is the 

actual value of the i-th air quality parameter observation: 

(13) MSE =
1

𝑛
∑ (Xpred_i − Xactual_i)

2
𝑛

𝑛=1
.   

4.3. Results 

Implementation of the proposed FBLSTM model and experimentations are carried 

out using Keras 2.1.6 which uses Tensorflow in the back end. The model uses 60 

units in each layer and tanh function is utilized as an activation function. The input 

window or sequence size in each sample is set to 60. In Keras, the LSTM layer is 

shaped with a three-dimensional vector with fields (total sample space size, number 

of timestep observations in individual sample, feature). Training in neural networks 

is done using a stochastic gradient descent optimization algorithm. This algorithm 

compares the prediction to actual observation and uses the difference as an estimation 

for the error gradient. The error gradient in turn is used to update the weights and 

biases. SGD [38] algorithms are suffering from the problem of deciding optimal step 

size. The problem is solved by the availability of a new optimization algorithm, i.e, 

ADAM [38]. ADAptive Moment estimation (ADAM) is the best stochastic 

optimization algorithm for deep learning purposes and comprehends the benefits of 

two widely used algorithms AdaGrad and RMSProp. The ADAM algorithm is 

utilized in the model for optimization which adapts the rate of learning based on the 

average of first as well second moments of the gradients. The algorithm provides fast 
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convergence with less memory necessity comparing to the two other stochastic 

algorithms [38].  

Table 1. Comparison of MSE of the proposed model(FBLSTM) with LSTM and RNN for training and 

validation 

Model Epochs 100 Epochs 200 Epochs 300 

Train Value Train Value Train Value 

RNN  

(sequence size =10)  

CO 0.0761 0.0903 0.0579 0.1079 0.0443 0.1127 

PM2.5 0.0643 0.0834 0.0408 0.0986 0.0392 0.1023 

PM10 0.0617 0.0782 0.0510 0.1087 0.0398 0.1324 

RNN 

(sequence size =60) 

CO 1.8967 1.9942 1.6993 2.0934 1.6341 2.2832 

PM2.5 2.1032 2.4926 1.8976 2.5503 1.7689 2.6845 

PM10 1.9873 2.3031 1.6973 2.3314 1.5961 2.7941 

LSTM  

CO 0.0118 0.0140 0.0107 0.0129 0.0104 0.0144 

PM2.5 0.0104 0.0119 0.0100 0.0130 0.0089 0.0147 

PM10 0.0111 0.0135 0.0105 0.0137 0.0102 0.0153 

FBLSTM 

(1 hidden layer, CONCAT 

merge function,  

sequence size =60) 

CO 0.0059 0.0082 0.0049 0.0069 0.0042 0.0093 

PM2.5 0.0041 0.0057 0.0039 0.0072 0.0026 0.0083 

PM10 0.0047 0.0077 0.0040 0.0073 0.0036 0.0088 

FBLSTM 

(2 hidden layer, CONCAT 

merge function,  

sequence size =60) 

CO 0.0052 0.0078 0.0041 0.0061 0.0038 0.0093 

PM2.5 0.0030 0.0058 0.0025 0.0059 0.0023 0.0077 

PM10 0.0041 0.0070 0.0032 0.0067 0.0029 0.0080 

FBLSTM 

(3 hidden layer, CONCAT 

merge function,  

sequence size =60) 

CO 0.0060 0.0080 0.0048 0.0074 0.0048 0.0098 

PM2.5 0.0043 0.0074 0.0045 0.0079 0.0033 0.0088 

PM10 0.0052 0.0084 0.0048 0.0081 0.0043 0.0094 

 

The total number of individual training samples utilized (after which error 

gradient calculated) for estimation of error gradient is a hyperparameter for the 

ADAM optimization algorithm which is known as batch size. A batch size of 32 is 

used during the experiments. The number of unidirectional layers in stacking to gain 

minimum loss for prediction of air pollutant time series data is decided through 

experiments. The return sequence attribute is kept to be true in Keras, while the output 

of one LSTM layer is given as input to the subsequent layer. So, instead of giving 

one output, the LSTM layer gives output for each timestep. The backward pass layer 

is implemented by setting go_backwards to be true in Keras. We use the functional 

API of Keras for building the proposed training model. Table 1 shows the loss in 

MSE (mean squared error) with various stacking options for the proposed FBLSTM 

model. The MSE values listed in the tables are averaged values over six repeated 
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runs. Experiments are conducted till 300 epochs and loss reported at the end of 100, 

200, and 300 epochs are listed for both train and test (validation) data in the table. 

Table 1 shows the output of the experiments with the “CONCAT”(Con) function for 

merging the two layers (forward and backward), which is the default one in Keras. 

The results are compared with RNN and simple LSTM. RNN suffers from a 

vanishing gradient problem as the sequence sample size increases, which also can be 

observed in the performance evaluation. As the sequence size increases from 10 to 

60 the loss value increases. Mean Squared Error-values highlighted in bold in the 

table show the minimum observed loss during experiments. The minimum value of 

loss in turn indicates the best accuracy for time series prediction. It can be observed 

that in the proposed FBLSTM model with the discussed parameter setting, the 

minimum loss is observed with the stacking of two hidden layers. Moving further by 

adding one more layer to the existing unidirectional stacking, i.e, three hidden layers, 

the performance starts degrading. The proposed model outperforms both the RNN 

and the simple LSTM layer. 

There are four merging functions available in Keras.  Concat (Con) is the default 

merging option where the output of the respective cell state from forward and 

backward layers are simply concatenated together. Mul and Add are the merge modes 

where such outputs are multiplied or added respectively. Ave is the merge function 

where the average of the corresponding outputs is taken. We utilized the optimum 

FBLSTM model setup which has two hidden layers and experimented with all 

possible four merge modes. As shown in Fig. 5 the Con function performs best over 

train as well as test data and achieves minimum loss function. Add function also 

perform near equal to the Con function while Mul function has the highest loss 

amongst all four. 

Table 1 shows the MSE value at 100, 200, and 300 epochs, from the result it can 

be seen that the MSE value decreases as the number of epochs increased for the train 

data. The epoch represents the number of scans throughout the total sample space. It 

is very obvious and expected that with the increase of epochs the loss gets decreased 

and at a certain point it becomes stable. Such behavior has been also exhibited for the 

train data but for validation data (test data) the same effect is not observed. The 

detailed behavior of the model is represented in Fig. 6 by collecting and plotting loss 

value after every epoch for the training data and validation data for a specific sample 

space of PM 2.5 time-series data. It can be seen that initially with fast convergence 

and after obtaining the minimum value of loss function, the model performance starts 

decreasing with the increase of epochs for validation. The behavior exhibited is due 

to an overfitting issue. 
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(a) 

 

  
(b) 

Fig. 5. MSE for merge function alternatives over: training data (a); validation data (b) 

 

 
Fig. 6. Plotting of MSE per every epoch for training and validation 

To reduce overfitting, various regularization techniques are proposed by 

researchers in the field of neural networks. Dropout is one such regularization 

technique used to avert the model from overfitting. Dropout regularization is 
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executed by randomly setting the leaving or outgoing edges of hidden cells in the 

hidden layer to zero at each update of the training phase [39]. Keras supports the 

implementation of the dropout by using dropout layers. Dropout layers are added in 

between hidden layers. Input and recurrent edges or connections to LSTM units are 

excluded by setting probability for activation and updates of weights during training 

of a network. The addition of dropout layers results in simulating a large number of 

networks with a very dynamic network structure in parallel. Also due to dropout, a 

neural network can never rely on any input node because every node has the 

probability to be removed. So, the network cannot assign any high weight to a specific 

feature. The probability of such dropout is again a hyperparameter which needs to be 

chosen with experiments. Fig. 7a shows all experimented values of dropout, plotted 

against the MSE loss recorded for a particular dropout value. Applied dropout values 

can vary in the range of 0 to 1. It can be seen from Fig. 7a that minimum loss is 

recorded for 0.3 value of dropout and after 0.5 dropout value, there is a sudden 

increase in the loss function. Dropout value 0.3 in Keras is representing a 30 percent 

probability of node removal during training.  

         

 
(a) 

 

 
(b) 

Fig. 7. Performance of the model for: various values of dropout parameter under dropout technique 

(a); various values of lambda or regularization factor under L2 regularization (b) 
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Table 2. MSE comparison of the proposed model (FBLSTM) under regularization techniques for 

validation data 

Para 

meter 

Epochs 100 Epochs 200 Epochs 300 

No 

Regu-

lari-

zation 

Dropout        

(0.3) 

L2 

regu-

lari-

zation 

(×10–5) 

No 

Regu-

lari-

zation 

Dropout       

(0.3) 

L2 

regu-

lari-

zation 

(×10–5) 

No 

Regu-

lari-

zation 

Dropout       

(0.3) 

L2 

regu-

lari-

zation 

(×10–5) 

CO 0.0078 0.0075 0.0081 0.0061 0.0057 0.0059 0.0093 0.0052 0.0056 

PM 

2.5 
0.0058 0.0047 0.0054 0.0059 0.0031 0.0043 0.0077 0.0025 0.0038 

PM 

10 
0.0070 0.0061 0.0063 0.0067 0.0047 0.0059 0.0080 0.0041 0.0057 

 

Another technique of regularization is using weight decay known as L2 

regularization. The neural network always tries to minimize the cost function by 

adjustment of weights and biases. For L2 regularization a component is added which 

penalizes the large weights. The component is added to the cost function. The 

addition of the component drives the overall weight matrix values down, which in 

turn reduces the activation function influence. Due to that comparatively less 

complex activation function may be fit to observations, which helps in reducing 

overfitting. The component is given in the next equation:  

(14) New Minimization Goal = 𝐿(𝑊,𝐵) + 𝜆 ‖𝑊‖2.  
Here λ in the component is a regularization or tuning parameter that balances the 

tradeoff between a low value of weights and a low loss of training. λ is the 

hyperparameter which is needed to be optimized. Authors in [40] report the value of 

λ (regularization factor) to be 10–6 for getting optimum results in their LSTM based 

network. We tried the initial value of  which is given as an argument to the L2 

regularization in Keras starting from 10–1 to 10–6. Fig. 7b shows all experimented 

values of λ plotted against the MSE loss recorded for a particular λ value 

(regularization factor). It can be seen from the given figure that minimum loss has 

been recorded for 10–5 values of λ. 

Table 2 shows loss function MSE recorded for three time-series data of pollution 

parameters at the end 100, 200, and 300 epochs for validation data. The table 

compares the MSE values for 0.3 dropouts and 10–5 for  value which is found to be 

providing optimum results during respective regularization experiments. Results 

show that dropout-based regularization outperforms weight decay (L2) regularization 

and is more suitable to our model. Dropout regularization can achieve stable 

conversation along with loss in MSE up to 0.0052, 0.0025, and 0.0041 for CO, PM 

2.5, and PM 10, respectively.  

As discussed in Subsection 3.3, the self-attention mechanism is also applied and 

tested during the experiments. The Self-attention layer is kept as the last layer in the 

model (FBLSTM) shown in Fig. 2. The output of the self-attention layer is given as 

input to the final dense layer for prediction. To understand the effect on loss function 

and improvement to the existing model, we analyze the self-attention mechanism 

with two dimensions, time horizon as well input window size or input lag. While 

increasing the time horizon, the sequence size is kept of the same length. By keeping 

the same sequence size and increasing in time horizon, employed recorded parameter 
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samples in training realize more fluctuations compared to small-time horizon.  

Table 3 compares the loss function value (mean squared error) obtained for the 

FBLSTM (with two hidden layers), without attention, and with attention mechanism 

for the three air quality parameters. The table shows the effect on MSE value with 

the increase in the time horizon. The first two rows in the table depict the MSE value 

for Tx (the basic time step in the input sequence) which is 90 seconds. The time 

horizon increment further is obtained by aggregating the recorded value for the basic 

timestep, i.e., 4Tx horizon is the aggregated value over 360 seconds and so on. To 

keep the total sample size and samples in each sequence the same with the extension 

of the time horizon (for each horizon), more training data(samples) are required. So 

training data (recorded observations of air quality parameters) covers data of one 

complete week. The table shows the results obtain over data of two such weeks. The 

rate column in the table shows the percentage of increase in MSE value with the 

increase of time horizon from the previous one. It can be seen from the table that with 

the extension of the time horizon, the rate of increase in MSE (compared to the 

previous horizon) remains small for the model with an attention mechanism. The high 

rate of increase in MSE represents the rapid reduction in prediction performance with 

the extension in the horizon. It can be seen that initially there is not much difference 

between the performance of the two models but with a higher time horizon, the model 

with attention mechanism performs substantially better compared to the model 

without attention. Table 4 shows the performance of the two models with the increase 

in input window size over recorded air quality parameters observations of a single 

day. The MSE value and rate of increase in MSE are listed for an input window size 

of 60, 80, and 120. The table indicates that the model with attention mechanism 

realizes lower MSE and a slow rate of increase in MSE for higher input window size. 

Thus the table depicts self-attention mechanism provides better performance for 

longer sequences. 

Table 3. MSE comparison of FBLSTM with attention and without attention after 300 epochs for 

various time horizons 

W
ee

k
 N

o
 

Para-

meter 

Simple 

FB-

LSTM 

With 

self-

atten-

tion 

Simple 

FB-

LSTM 

With 

self- 

atten-

tion 

Simple 

FB-

LSTM 

With 

self- 

atten-

tion 

Simple 

FB-

LSTM 

With 

self- 

atten-

tion 

Tx 4Tx 8Tx 12Tx 

W
ee

k
 1

 

CO 0.0051 0.0047 0.0055 0.0049 0.0073 0.0053 0.011 0.006 

Rate - - 7.84 4.26 32.73 8.16 50.68 13.21 

PM2.5 0.0025 0.0023 0.0028 0.0025 0.0044 0.0029 0.0083 0.0034 

Rate - - 12.00 8.70 57.14 16.00 88.64 17.24 

PM10 0.0041 0.0036 0.0045 0.0039 0.0066 0.0044 0.0118 0.0052 

Rate - - 9.76 8.33 46.67 12.82 78.79 18.18 

W
ee

k
 2

 

CO 0.0039 0.0038 0.0044 0.004 0.0061 0.0043 0.0097 0.0051 

Rate - - 12.82 5.26 38.64 7.50 59.02 18.60 

PM2.5 0.0032 0.0031 0.0035 0.0033 0.0058 0.0037 0.0103 0.0044 

Rate - - 9.38 6.45 65.71 12.12 77.59 18.92 

PM10 0.0045 0.0038 0.0051 0.0041 0.0076 0.0047 0.0125 0.0052 

Rate - - 13.33 7.89 49.02 14.63 64.47 10.64 
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Table 4. MSE comparison of FBLSTM with attention and without attention after 300 epochs for 

various input windows 

Model 
Input 

Window size 
CO Rate PM2.5 Rate PM10 Rate 

FBLSTM 

60 

0.0055 – 0.0035 – 0.0046 – 

FBLSTM+ 

Attention 
0.0036 – 0.0021 – 0.0034 – 

FBLSTM 

80 

0.0084 52.73 0.0057 62.86 0.0074 60.87 

FBLSTM+ 

Attention 
0.0045 25.00 0.0029 38.10 0.0045 32.35 

FBLSTM 

120 

0.0223 165.48 0.0191 235.09 0.0208 181.08 

FBLSTM+ 

Attention 
0.0086 91.11 0.0061 110.34 0.0091 102.22 

 

5. Conclusion and future enhancements 

Reliable and precise prediction of air pollution or air quality parameters is of great 

importance. In the presented work LSTM based deep learning framework is proposed 

for the prediction of air quality parameters. The framework includes a forward and 

backward LSTM based model for learning the influence of other observations on 

current prediction in two directions. The proposed model is using bidirectional 

learning with unidirectional further stacking to improve the performance. Optimum 

performance is achieved with two hidden layers and CONCAT merging function (out 

of four merging function alternatives available in Keras) in the proposed model and 

the model outperforms the simple RNN and LSTM based model. The proposed work 

is also solving the overfitting issue by applying L2 regularization and dropout 

methods. The best fit for validation is found with a 0.3 dropout value and 10–5  value 

under dropout and L2 regularization methods respectively. The dropout method 

performs better and achieves a lower value of MSE with good convergence compared 

to L2 regularization. Finally, self-attention is applied as the last layer in the model 

and the effect is assessed on two dimensions, for various extended time horizons  

(Tx, 4Tx, 8Tx, and 12Tx) and with varying input windows (60, 80, and 120). The results 

show significant improvement in the performance with both dimensions. Future work 

of the current study includes an extension of attention application and model 

capability in learning the influence of temperature and humidity (recorded at same 

timesteps) in the prediction of air quality parameters.  
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