
 40 

BULGARIAN ACADEMY OF SCIENCES 

 

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 22, No 1 

Sofia • 2022 Print ISSN: 1311-9702; Online ISSN: 1314-4081 

DOI: 10.2478/cait-2022-0003 

 

 

A Proposal for Honeyword Generation via Meerkat Clan 

Algorithm 

Yasser A. Yasser1, Ahmed T. Sadiq1, Wasim AlHamdani2 
1Computer Science Department, University of Technology-Iraq, Iraq 
2Information Technology Department, University of the Cumberlands, KY, USA 

E-mails:  cs.19.28@grad.uotechnology.edu.iq    Ahmed.T.Sadiq@uotechnology.edu.iq     

wasim.alhamdani@ucumberlands.edu 

Abstract: An effective password cracking detection system is the honeyword system. 

The Honeyword method attempts to increase the security of hashed passwords by 

making password cracking easier to detect. Each user in the system has many 

honeywords in the password database. If the attacker logs in using a honeyword, a 

quiet alert trigger indicates that the password database has been hacked. Many 

honeyword generation methods have been proposed, they have a weakness in 

generating process, do not support all honeyword properties, and have many 

honeyword issues. This article proposes a novel method to generate honeyword using 

the meerkat clan intelligence algorithm, a metaheuristic swarm intelligence 

algorithm. The proposed generation methods will improve the honeyword generating 

process, enhance the honeyword properties, and solve the issues of previous methods. 

This work will show some previous generation methods, explain the proposed 

method, discuss the experimental results and compare the new one with the prior 

ones. 

Keywords: Honeyword, password, metaheuristic, swarm, meerkat. 

1. Introduction 

Password-based authentication is the most frequently accepted authentication 

mechanism because of its ease of implementation and memorability [1]. However, 

this technique has been investigated using multiple attack types such as password 

cracking. Password cracking retrieves passwords from data saved or delivered 

through a computer system using an unusual and typically immoral approach [2]. 

Honeywords is a simple way for strengthening the security of hashed passwords 

and making password cracking easier to detect by increasing the amount of 

“honeywords” (False passwords) associated with each user’s account [3, 4]. If an 

attacker obtains access to the file of hashed passwords and reverses the hash 

algorithm will not infer the true password. A “silent alarm” will be triggered if a 

honeyword is used during the login procedure [5, 6]. Honeychecker is an auxiliary 

mailto:cs.19.28@grad.uotechnology.edu.iq
mailto:Ahmed.T.Sadiq@uotechnology.edu.iq
mailto:wasim.alhamdani@ucumberlands.edu


 41 

server that can recognize the true password and the honeyword, it is connected to the 

login server using a secure connection [7, 8]. 

In computer science and mathematical optimization, a metaheuristic is a higher-

level procedure or heuristic designed to find, generate, or select a heuristic (partial 

search algorithm) that may provide a sufficiently good solution to an optimization 

problem [9]. An optimization issue is a problem in mathematics, computer science, 

and economics where the goal is to identify the optimum answer out of all possible 

ones [10]. The metaheuristic algorithms can be, swarm or nature-inspired. Swarm 

Intelligence (SI) Algorithms are the collective behavior of decentralized, self-

organized systems, natural or artificial. The concept is employed in work on artificial 

intelligence [11, 12]. Nature-inspired Algorithms represent a set of novel problem-

solving methodologies on artificial intelligence [13]. One of the metaheuristic swarm 

intelligence algorithms is the Meerkat Clan Algorithm (MCA), which results from 

the watchful observation of the meerkat while looking for food aims to resolve 

optimization problems by determining the optimum solution [14-16]. 

Many honeyword generation methods have been proposed, they have a 

weakness in generating process, do not support all honeyword properties, and have 

many honeyword issues. This article proposes a novel method to generate honeyword 

using the meerkat clan intelligence algorithm, a metaheuristic swarm intelligence 

algorithm. The meerkat clan algorithm generates solutions, and the proposed method 

employs the algorithm to generate honeywords, benefiting from its properties in 

diversity and fast convergence to solutions. The generation methods being proposed 

will improve the honeyword generating process, enhance the honeyword properties, 

and solve the issues of previous methods. Furthermore, this study lists a few related 

works of honeyword generation methods, provide a simple explanation for 

honeyword technique, illustration for the meerkat algorithm, explanation for the 

proposed system with proposed MCA, presentation for the experimental results, and 

comparisons with the previous method. 

2. Related works 

There is a lot of research that has proposed the honeyword generation methods 

through the last years. This section contains some asymptotical studies. 

• J u e l s  and R i v e s t  [17] propose a variety of honeyword generating 

methods that depend on: tweaking a part of the password, using a dictionary, 

appending a tail by the system, honeywords suppling by the system, honeywords 

suppling by the user, or hybrid methods. These methods divide into two categories 

according to whether or not they influence the User Interface (UI), each of the two 

categories has many techniques to generate honeyword: 

1. Legacy-UI based honeyword generation methods:  

Chaffing-by-tail-tweaking, Chaffing-by–tweaking-digits, Simple model, 

Modeling syntax, “Tough nuts”, Hybrid generation methods. 

2. Modified-UI based honeyword generation methods: 

Take-a-tail, Random pick. 



 42 

• E r g u l a r  [18] proposes a method called “Storage-index”, and it suggests an 

alternate way for honeyword creation that chooses honeywords using current user 

passwords in the system to generate realistic honeywords. Instead of creating 

honeywords and storing them in a password file, this method mimics honeywords 

using existing passwords. 

• C h a k r a b o r t y  and M o n d a l  [19] propose Paired Distance Protocol 

(PDP), which is a new honeyword generation mechanism that uses a new user 

interface. Three portions of information are needed to log in: a username, a password, 

and a password-tail. User can pick his password-tail with this method. On registering, 

the user selects a password-tail of t >1 from a selection of (1) alphabetic characters 

(a-z), and (2) digits in addition to the username and password (0-9). 

• A k s h i m a  et al. [20] propose as better and more useful honeyword 

generation approach, the “evolving-password model”, “user-profile model”, and 

“append-secret model”. 

a) Evolving-password model: Two independent calculation phases may be used 

to conduct the complete procedure, counting the number of times password patterns 

and tokens are used. Creating honeywords from pre-calculated frequencies and 

keeping frequency lists up to date. 

b) User-profile model: Honeywords are created by combining various user 

profile information through the construction of separate sets from given user 

information that comprise tokens of each kind, such as “alphabet-strings”, “digit-

strings”, and “special-character-strings”.  

c) Append-secret model: The system asks the user for username, password, and 

an extra entry, say e, to generate a random string s, taking into consideration numbers, 

letters, and symbols. The model runs the function  f(p||e||s) and returns r. The system’s 

password file will save H (password||r). 

• A k i f  et al. [21] propose a new strategy for generating honeywords that 

incorporates four strategies. As a result, four sets of honeywords appear to be real 

passwords injected into the system. 

a)  Generate honeywords from existing user information: Creating a database 

with public personal questions divided into two parts – the first part will focus on 

characters and the second part will focus on numbers. 

b) Generate honeywords from a dictionary attack: After skimming through the 

dictionary attack, the main principle behind constructing acceptable honeywords is 

to use the original password with a change of up to three digits or characters. 

c)  Generate honeywords from a generic password list: This honeyword group is 

made up of honeywords chosen at random from a list of the 500 worst passwords. 

d) Generate honeyword form shuffling the characters: Honeyword is made by 

shuffled letters or digits from the ID user and then mixed in. 

3. Honeywords 

The honeywords system is based on the creation of honeywords (fake passwords) 

from the sugarword (true password) and then inserting them all into the user account 

as sweetwrods, then hashing them all [22, 23]. If the attacker is successfully obtained 



 43 

plain passwords from hashed passwords, he must then make a correct guess for the 

true password among the sweetwords; instead, a silent warning to the system 

administrator may be triggered, indicating that password cracking is possible  

[24, 25]. The action taken by the administrators is determined by the organization’s 

policy and may include blocking, postponing, or alerting the account [26, 27]. 

4. Meerkat Clan intelligence Algorithm 

The metaheuristics Meerkat Clan Algorithm (MCA) is a swarm nature-stimulated 

algorithm. The MCA is a global optimization metaheuristic, which is gathered by 

selecting the optimal structure and a randomization structure. The MCA’s generated 

solutions have many properties (proximity principle, quality principle, diverse 

response principle, stability principle, and adaptability principle) [14]. Meerkats are 

sociable creatures that live in groups of several individuals, each group has its 

territory. If food cannot be obtained or if a stronger group demands it the weaker 

group will either try to grow in a different method or stay until they get stronger and 

reclaim their lost territory [15]. Each group also has a sentry, or someone who 

watches over the group and knows when to notice danger and alert the other 

individuals. The sentry keeps an eye on both the burrow plan and the other group 

members hunting for food [16]. As an objective function A l-O b a i d i, A b d u l l a h  

and A h m e d  [14] use the Euclidean distances in solving the traveling salesman’s 

problem TSP, while J a m e e l  and A b d u l l a h  [16] use the mean absolute deviation 

MAD in solving a feature selection problem. 

Following up on the previous description of the MCA, Algorithm 1 showing the 

generic stages of this algorithm, which may be modified depending on the issue 

encoded [14]. 

Algorithm 1. The generic steps of the meerkat clan algorithm [14] 

a. Initialization: generate a clan of people at random and establish the clan size, 

foraging size, care size, and worst foraging and care rate parameters. 

b. Calculate the clan’s fitness. 

c. Select the best one as “sentry”. 

d. Split the clan into two parts (foraging and care). 

e. Create neighbors for the foraging group. 

f. Pick the worst members of the foraging group and replace them with the finest 

members of the care group. 

g. Remove the worst members of the care group and generate a new one at 

random. 

h. If the best individual in foraging is sentry, replace him. 

5. Proposed system 

This study proposes a new honeyword system that suggests a novel method for 

generating honeyword by using a metaheuristic swarm algorithm called the Meerkat 

Clan intelligence Algorithm (MCA). The proposed system uses three different 



 44 

algorithms for generating a process, the proposed MCA alphabet generator, the 

random digits generator, and the random special characters generator. 

The choice for MCA to generate the alphabet honeyword tokens was because of 

utilization, examination, and its principles on find solutions (proximity principle, 

quality principle, diverse response principle, stability principle, and adaptability 

principle), note that the system is handling solutions as honeywords. 

The legacy-UI is adopted in the system. When the user creates the account, all 

he has to do is provide the username and password. The password should contain 

alphabets, digits, and special characters. 

The proposed system chooses the number of sweetwords=49, as the k=49, the 

attacker has a 1/49(≈2%) probability of picking a sugarword and 1 – 2%=98% chance 

of picking a honeyword in the perfectly flat honywords generation. The sugarword 

cannot be guessed even if the adversary knows one of the sugarword tokens. In 

sweetwords, each token is redundant seven times, if the adversary knows one of the 

sugarword tokens, then he has the chance of picking the sugarword at random by 

1/7(≈14%). 

The proposed system’s most important aims are to improve the honeyword 

generating process, enhance the honeyword properties, and solve the issues of 

previous methods (detailed discussion in Section 7.2. Comparisons). 

The system acts by six main steps to generate honeywords from the sugarword 

(tokenization, alphabet generating, digits generating, special characters generating, 

collect honeywords, and sweetwords), the generating steps work in parallel. Fig. 1 

shows the suggested system’s block-diagram. 

• Step 1 (Tokenization). Parsing the sugarword characters into distinct tokens 

depends on their type – alphabet, digits, and special characters. If the token is found 

in the username, then the system lets the correlated part stay as is in the honeywords. 

• Step 2 (Alphabet generating). Receive the alphabet tokens from step one, 

then send them to the proposed MCA alphabet generator. 

• Step 3 (Digits generating). Receive the digits token from step one, then 

check if it is in the year’s list or consecutive and frequented numbers list. If the token 

is in one of the lists, then the system randomly chooses tokens from the corresponding 

list to the honeywords. Else, the system sends the digits token to the random digits 

generator. 

• Step 4 (Special characters generating). Receive the special characters 

token from step one, then send it to the random special characters generator. 

• Step 5 (Collect honeywords). Collect the honeywords tokens from the three 

previous steps. 

• Step 6 (Sweetwords). Add the sugarword to the honeywords to provide the 

sweetwords then, randomly permutate the positions of sweetwrods, the total number 

of sweetwords is 49 as presented in the next section. Send the index of the user u(i) 

and the index of the sugarword c(i) to the honeychecker. Then, hashing and store 

sweetwords. Note: Never store the index of sugarword in login server. 

 

 



 45 

 
 

Fig. 1. Block-diagram for the proposed system 

6. Proposed honeyword tokens generating algorithm 

The proposed system has been used for three honeyword tokens generating 

algorithms. The proposed meerkat clan algorithm is used in this study to generate 

solutions as honeyword tokens. The proposed system is working on three parallel 

parts – alphabet, digits, and special characters generating. The first part will use the 



 46 

proposed MCA, the other two parts will use simple random token generating 

algorithms. 

6.1. The proposed MCA alphabet tokens generator 

This part considers as the most important part of the honeyword because it is a 

preferred target for the adversary to guess the real password. The proposed MCA is 

used as alphabet generating algorithm; the input for the proposed MCA is the 

alphabet token of the sugarword. It is considered as the seed that will be processed 

by the algorithm to generate the alphabet tokens for the honeywords. Algorithm 2 

exhibits the generic steps of the proposed MCA alphabet tokens generator. 
 

Algorithm 2. The generic steps of the proposed MCA alphabet token generator 

a. Set the clan size (population size), foraging size, care size, worst foraging 

rate, worst care rate, max-generation, and evaluation criteria. 

b. Generate the initial population (clan) randomly. 

c. Evaluate the fitness of the population. 

d. Make the best token as the sentry. 

e. Divide the rest of the population into two groups; foraging and care. 

f. Generate neighbors for the foraging group. 

g. Choose the best neighbor as the foraging(j). 

h. Swap the worst tokens of the foraging group with the best tokens of the care 

group. 

i. Drop the worst of the care group tokens and generate ones randomly. 

j. Evaluate the population. 

k. chooses the best foraging as best-foraging. 

l. If the best-foraging is better than the sentry then changes. 

m. Update the best a tokens of the population in a buffer. 

n. Repeat d. to m. until max-generation. 
 

Take the best six tokens of the algorithm, make seven copies for each of the six 

alphabet tokens, and consider the 42 tokens as six groups (columns). Each group has 

seven similar tokens. Add seven copies of the alphabet seed. Thus, the algorithm will 

have 49 alphabet tokens. Example 1 shows a case for the honeyword alphabet token 

generating. 
 

Algorithm 3. The pseudocode of the proposed MCA alphabet token generating 

Parameters: 

n clan size (pop-size)  

f  foraging size,  where n<f 

c  Care size   n – f – 1  

Nt Neighbor tokens 

Wfr Worst foraging rate 

Wcr Worst care rate 

Mg Max-generation 

Ec Evaluation criteria 

a best individual size 



 47 

Begin 

Generate clan (n) of n tokens randomly 

Compute the fitness of the token’s clan 

Sentry=best token of the clan 

Divide the rest of the clan into two groups (foraging and care) 

For i=1 to Mg 

For j=1 to f 

Generate Nt neighbor tokens from the foraging group 

Foraging(j)= best token from Nt neighbors 

end for 

Swap the worst Wfr tokens of the foraging group with the best 

tokens of the care group 

Drop the worst Wcr tokens of the care group and generate ones 

randomly 

Compute the fitness of the token’s clan 

Best_foraging= best one of foraging group 

If best_foraging >= sentry then 

Sentry= best_foraging 

end if 

Update the best a individuals of the clan 

end for 

End 

6.2. The random digits tokens generator 

The seed for the digits generating algorithm will be the digit token of the sugarword. 

The system will use the digits tokens generating algorithm to generate six tokens that 

have the same length as the seed. Take the six digits tokens and make seven copies 

for each one and consider the 42 tokens as six groups (rows) each group has seven 

similar tokens. Add seven copies of the digit seed, thus the algorithm will have 49 

digits tokens. 
 

Algorithm 4. The generic steps of the digits tokens generating algorithm 

a. Set the number of the generated digits tokens d. 

b. Changes the digits dp of the digit seed by randomly chosen digits.  

6.3. The random special characters tokens generator 

The seed for the special characters generating algorithm will be the special characters 

token of the sugarword. The system will use the special characters generating 

algorithm to generate six tokens that have the same length as the seed. Take the six 

special characters tokens and make seven copies for each one and consider the 42 

tokens as six groups (rows) each group has seven similar tokens. Add seven copies 

of the digit seed. Thus, the algorithm will have 49 special characters tokens. 

 

Algorithm 5. The generic steps of the special characters token generating 

algorithm 



 48 

a. Set the number of the generated special characters tokens s. 

b. Changes the special characters sp of the special characters seed by randomly 

chosen special characters.  

 

Example 1. For the sugarword “6!cookie”, the seed token of the alphabet is 

“cookie”, of the digits is “6”, and of the special characters is “!”. The system will 

collect the generated tokens to be as follow: 

 
6!cookie 6!cockle 6!cooking 6!cooker 6!coffee  6!crozier 6!cosine 

3[cookie 3[cockle 3[cooking 3[cooker 3[coffee  3[crozier 3[cosine 

8&cookie 8&cockle 8&cooking 8&cooker 8&coffee  8&crozier 8&cosine 

4/cookie 4/cockle 4/cooking 4/cooker 4/coffee  4/crozier 4/cosine 

8<cookie 8<cockle 8<cooking 8<cooker 8<coffee  8<crozier 8<cosine 

1&cookie 1&cockle 1&cooking 1&cooker 1&coffee  1&crozier 1&cosine 

0%cookie 0%cockle 0%cooking 0%cooker 0%coffee  0%crozier 0%cosine 

 

The proposed system will randomly permutate the positions of sweetwrods and 

send the index of the user u(i) and the index of the sugarword c(i) to the 

honeychecker. Then, hashing and store sweetwords. 

6.4. Proposed neighbors generating 

The neighbors generating for the alphabet tokens depends on four operations, for each 

seed token four tokens will be generated then the best token of these tokens will take 

the place of the seed token, the four operations are: 

a) Insert: Choose some characters’ positions on the token randomly, and then 

choose random characters to insert. 

b) Delete: Choose some characters’ positions on the token randomly, and then 

delete it. 

c) Translocation: Choose some characters’ positions on the token randomly, 

and then exchange their positions. 

d) Swap: Choose some characters’ positions on the token randomly, and then 

choose random characters to swap. 

6.5. Proposed evaluation criteria 

The objective function for the proposed MCA will take the sum of the proposed 

evaluation criteria values as a metric to evaluate the generated solutions (alphabet 

tokens). The evaluation for the alphabet token sets a metric on the seed token that has 

been received from the sugarword. This research propose an evaluation criterion for 

the generated alphabet tokens, it is called the approximation factor. The value of the 

approximation factor is between 0 and 1, which is calculated as the sum of the four 

criteria values. Each criterion has a different value as mentioned in  

Section 7.1. Parameters, the four proposed criteria are: 

a) The similarity in characters: The similarity in characters between the 

characters of the seed token and the generated token. 



 49 

b) The similarity in length: The similarity in length between the characters of 

the seed token and the generated token. 

c) The similarity in Part Of Speech (POS): The similarity in POS between the 

seed token and the generated token. 

d) Meaningful word: The token is an English word or not? 

7. Results and discussions 

This portion of the research looks at: the parameter values, the experimental results, 

and a comparison between the proposed honeyword generating method and the 

previous methods; the parameter values, the experimental results, and a comparison 

between the proposed honeyword generating method and the previous methods. 

7.1. Parameters 

The proposed system uses many important parameters, which affect the performance 

of the system. The parameters used in the proposed system are shown in Table 1. 

 
Table 1. The proposed system parameters values 

No Parameter Value 

1 Population Size n 90 

2 Sentry 1 

3 Foraging group size f n/2 

4 Care group size c (n/2) – 1 

5 Generated neighbor tokens size Nt 4 

6 Ratio of changing in alphabet token during neighbor generating 0.3×(Token-length) 

7 Max-generation Mg 30 

8 Worst foraging rate size Wfr 0.2n 

9 Worst care rate size Wcr 0.2n 

10 

evaluation criteria Ec 

Similarity in characters 

Similarity in length 

Similarity in POS 

Meaningful word 

 

 

 

 

 

11 Number of the generated alphabet tokens a 6 

12 Number of the generated digits tokens d 6 

13 Number of digits that changed in generated token dp (Token-length) 

15 Number of the generated special characters tokens s 6 

14 Number of special characters that changed in generated token sp (Token-length) 

 

The proposed system uses many values for the parameters until choosing the 

values that provide the best performance for the proposed MCA. The parameters with 

executed values are:  

• Population Size n: The study uses many population sizes (30, 50, 70, 90), the 

generation of size (90) was chosen. 

0.2 

0.1 

0.1 

0.6 



 50 

• Sentry: Only one sentry is chosen. 

• Foraging group size f: There are many sizes used (n/3, n/2, 2n/3), the foraging 

group size n/2 was chosen. 

• Care group size c: There are many sizes used ((n/3) – 1, (n/2) – 1,  

(2n/3) – 1), the care group size n/2 was chosen. 

• Generated neighbor tokens size Nt: Only four neighbors were generated. 

• The ratio of changing in alphabet token during neighbor generating: The 

changing in token during neighbor generating is attempted in many sizes (one 

character, two characters, 0.25×(token length), 0.3×(token length), 0.5×(token 

length)), the changing size 0.3×(token length) was chosen. 

• Max-generation Mg: Many iterations were used (10, 20, 30, 40,…, 100), 

there were no enhancements in results after 30 iterations. Thus, the max-generation 

number (30) was chosen for the alphabet token. 

• Worst foraging rate size Wfr: Many sizes were used 0.1n, 0.2n, 0.3n, the Wfr 

size 0.2n was chosen. 

• Worst care rate size Wcr: Many sizes were used 0.1n, 0.2n, 0.3n, the Wcr 

size 0.2n was chosen. 

• Evaluation criteria Ec: For the evaluation criteria (the similarity in characters, 

the similarity in length, the similarity in Part Of Speech (POS), and meaningful word)  

consecutively, many values were used (0.3, 0.2, 0.2, 0.3) & (0.4, 0.1, 0.1, 0.4) & (0.3, 

0.2, 0.1, 0.4) & (0.3, 0.1, 0.1, 0.5) & (0.2, 0.2, 0.1, 0.5) & (0.2, 0.1, 0.2, 0.5) & (0.2, 

0.2, 0.1, 0.5) & (0.2, 0.1, 0.1, 0.6). The values (0.2, 0.1, 0.1, 0.6) were chosen because 

they result in meaningful words being generated. 

• The number of the generated alphabet tokens a: only six alphabet tokens were 

generated. 

• The number of the generated digits tokens d: only six digits tokens were 

generated. 

• The number of digits that changed in generated token dp: The change in seed 

token during honeyword tokens generating was equal to the seed length. 

• Set the number of the generated special characters tokens s: Only six special 

characters tokens were generated. 

• The number of special characters that changed in generated token ds: The 

change in seed token during honeyword tokens generating was equal to the seed 

length. 

Note: Each value chosen for a parameter is determined according to the results 

effectiveness monitoring of 10 executions to each value. 

7.2. Experimental results 

The experimental results are divided into two sections, the first focus on the 

individual token, and the second focus on the complete password. The proposed 

system was tested on many password tokens, especially the alphabet token, which is 

considered the most important token because the main aim for the attacker is to guess 

the real password. 



 51 

7.2.1. Results for individual generated tokens (Table 2) 

Table 2. Experimental results of the proposed system (alphabet, digit, special characters tokens) 

No 
Seed 

token 

Pop-size/ 

Max-gen 

Honeyword tokens/Approximation factor 

Token1 Token2 Token3 Token4 Token5 Token6 

1 flower 

30/30 
flown/ 
0.916              

woofer/ 
0.9               

flow/ 
0.9                 

plow/ 
0.866          

floe/ 
0.866             

flywhee/ 
0.85 

50/30 
flown/ 

0.916            

smoker/ 

0.9                

flow/ 

0.9                  

booker/ 

0.9         

floe/ 

0.866              

flew/ 

0.866 

70/30 
blower/ 
0.966           

roomer/ 
0.9                

flow/ 
0.9                  

floor/ 
0.883         

floe/ 
0.866              

flaw/ 
0.866 

90/30 
plower/ 

0.966           

glower/ 

0.966           

blower/ 

0.966         

flown/ 

0.916        

fodder/ 

0.9          

flow/ 

0.9 

2 monkey 

30/30 
motley/ 
0.933           

hockey/ 
0.933          

convey/ 
0.933        

mona/ 
0.8666      

mink/ 
0.866     

honey/ 
0.85 

50/30 
donkey/ 

0.966           

mickey/ 

0.933           

conker/ 

0.933        

monk/ 

0.9            

fonteyn/ 

0.9      

manky/ 

0.883 

70/30 
donkey/ 
0.966           

mocker/ 
0.933           

mickey/ 
0.933       

monte/ 
0.916      

monk/ 
0.9        

mickey/ 
0.9 

90/30 
donkey/ 

0.966           

mickey/ 

0.933           

conker/ 

0.933             

jockey/ 

0.933    

pinkeye/ 

0.9         

monk/ 

0.9         

3 love 

30/30 
lode/ 
0.95                    

hove/ 
0.95            

cove/ 
0.95             

hole/ 
0.9           

cole/ 
0.9                 

lox/ 
0.875 

50/30 
wove/ 

0.95                 

lome/ 

0.95             

dove/ 

0.95            

cove/ 

0.95        

pose/ 

0.9                

lox/ 

0.875 

70/30 
wove/ 
0.95                 

lore/ 
0.95                

lope/ 
0.95            

lome/ 
0.95       

loge/ 
0.95               

lode/ 
0.95 

90/30 
lore/ 

0.95                 

lope/ 

0.95               

lone/ 

0.95                   

lome/ 

0.95        

loge/ 

0.95               

lode/ 

0.95 

4 sunshine 90/30 
sunshade/ 

0.95   
outshine/ 

0.95     
shinbone/ 

0.875 
dauphin/ 

0.862    
puniness/ 

0.85     
dushanbe/ 

0.85 

5 princess 90/30 
primness/ 

0.95     

prince/ 

0.924     

principal/ 

0.9      

princeton/ 

0.9    

mindless/ 

0.875     

huntress/ 

0.875 

6 dragon 90/30 
aragon/ 
0.966       

craton/ 
0.933     

drag/ 
0.9      

diagonal/ 
0.9      

cracow/ 
0.9      

drab/ 
0.866 

7 lion 90/30 
zion/ 

0.95     

pion/ 

0.95      

lyon/ 

0.95      

loon/ 

0.95     

limn/ 

0.95     

lien/ 

0.95 

8 sea 90/30 
zea/ 

0.933          
yea/ 

0.933    
tea/ 

0.933 
spa/ 

0.933       
sew/ 
0.933        

sep/ 
0.933 

9 soccer 90/30 
saucer/ 

0.933      

rocker/ 

0.933      

locoer/ 

0.933       

docker/ 

0.933      

bocce/ 

0.916     

docage/ 

0.9 

10  Cheese 90/30 
Creese/ 
0.966 

Chouse/ 
0.933 

Chaise/ 
0.933 

Chess/ 
0.916 

Cheer/ 
0.916 

Cheerio/ 
0.9 

11 qpzmg 90/30 
cpus/ 

0.82     

apex/ 

0.82     

cps/ 

0.799     

cobol/ 

0.799     

cool/ 

0.779      

pig/ 

0.759 

12 inemcr 90/30 
iceman/ 

0.9    

inexact/ 

0.871       

incus/ 

0.85      

iver/ 

0.833        

ibidem/ 

0.833       

inchworm/ 

0.825 

13 rknus 90/30 
sinus/ 

0.919       

runs/ 

0.919         

ramus/ 

0.919       

pinus/ 

0.919         

genus/ 

0.919     

janus/ 

0.919 

14 48 N/A 17 69 37 92 52 09 

15 583 N/A 562 841 727 069 287 743 

16 4369 N/A 2442 0996 4533 8101 7157 5047 

17 !* N/A |+ {? '%         %<           @] }+ 

18 *@/ N/A ,{$       $<$            @}@           }+;             ['" _~{ 

19 *).! N/A '|-'          .[?@          &'~"       ~-=\        ?(}} \!#] 

 

This section presents an experimental result for some honeyword tokens that are 

generated by the proposed system, 13 alphabet, three digits, and three special 

characters tokens, which are presented in Table 2. The first 10 alphabet tokens are 



 52 

meaningful words and the next three alphabet tokens are rubbish words. As 

mentioned in Section 7.1. Parameters, the proposed MCA choose the  

Pop-size=90/Max-gen=30 as parameters values for the alphabet token, however, the 

first three tokens were tested in four different Pop-size (30, 50, 70, 90) with fixing of  

Max-gen=30. Results show that the four Pop-size lead to good results but the  

Pop-size=90 provide the better approximation factor. Note that the final return of the 

algorithm are the six best tokens, each token is accompanied by its approximation 

factor. Regarding the digit and special characters tokens, a simple random generator 

is used, the changes in characters is random but with the same seed token length, the 

final return of the algorithm are six tokens. 

7.2.2. Results for complete generated honeyword (Table 3) 

Table 3. Experimental results of proposed MCA (alphabet token) of Example 2 

No Attempts Honeyword tokens/Approximation factor 

1 First 

famine/ 

0.933 

facile/ 

0.933 

damply/ 

0.933 

famulus/ 

0.9 

fandom/ 

0.866 

fame/ 

0.866 

fairy/ 

0.85 

smoker/ 

0.9 

fairway/ 

0.842 

zama/ 

0.833 

fail/ 

0.833 

milldam/ 

0.785 

fatally/ 

0.771 

fails/ 

0.75 

camails/ 

0.742 

same/ 

0.733 

daily/ 

0.716 
 

2 Second 

damply/ 

0.933 

farina/ 

0.9 

frail/ 

0.883 

fatal/ 

0.883 

fame/ 

0.866 

fafnir/ 

0.866 

armory/ 

0.866 

feminism/ 

0.85 

pali/ 

0.833 

famish/ 

0.833 

fail/ 

0.833 

fafnir/ 

0.833 

familiar/ 

0.8 

familial/ 

0.8 

talk/ 

0.799 

miry/ 

0.766 

deadly/ 

0.766 
 

3 Third 

famine/ 

0.933 

gamble/ 

0.9 

famulus/ 

0.9 

flail/ 

0.883 

sami/ 

0.866 

fagin/ 

0.85 

failure/ 

0.842 

mali/ 

0.833 

fnma/ 

0.833 

famish/ 

0.833 

fain/ 

0.833 

fail/ 

0.833 

balmy/ 

0.816 

affix/ 

0.816 

mail/ 

0.799 

calamity/ 

0.799 

bail/ 

0.799 

milldam/ 

0.785 

facially/ 

0.75 

balmily/ 

0.714 
– – – – 

 

In this section, many of the results for complete generated honeyword (alphabet, 

digits, and special characters tokens) are presented; these results are introduced as 

examples and appended with desirable properties of the proposed system-generated 

honeywords. The desirable properties of the generated honeywords are: 

• Independent tokens are generated: The proposed system generates each token 

type of the password independently then collects them all.  

Example 1 in Section 6 shows the generating process for each token and the collection 

of them. 

• Many solutions are generated: The generated honeywords of the proposed 

system do not provide only six tokens; a different number of honeywords are 

generated even if the Pop-size/Max-gen are fixed on 90/30. Example 2 shows how 

the proposed system can generate a different number of honeywords for the same 

sugarword and Pop-size/Max-gen. 



 53 

• Different solutions are generated: The proposed system generates different 

honeywords in each generating process even if the Pop-size/Max-gen is fixed on 

90/30. Example 2 shows how the proposed system can generate different honeywords 

for the same sugarword and Pop-size/Max-gen. 

Example 2. For the sugarword family37(&) the example will show all generated 

honeyword alphabet tokens that exceed 0.6 approximation factor in four attempts, the 

Pop-size/Max-gen are fixed on 90/30. As shown in Table 3, there are different 

honeywords with different numbers for each of the attempts. 

• Different password patterns handling. The system being proposed can 

handle the different password patterns of tokens order. In Example 1, the pattern was 

(digit, special characters, alphabet tokens). 

• Sweetwords high security. The honeywords generated by the proposed 

system have high security against adversary guessing. The probability of picking the 

sugarword at random is 2%. Plus, the low probability of adversary right guessing, the 

sugarword in the proposed system cannot be guessed even if the adversary knows 

one of the sugarword tokens. In sweetwords of the proposed system, there are always 

seven sweetwords that have the same tokens. If the adversary knows one of the 

sugarword tokens, then he has the probability of picking the sugarword at random 

1/7(≈14%). Example 1 shows that each token in sweetwords is redundant seven 

times. 

• Capital letters handling. The proposed MCA can handle the capital letters 

of alphabet tokens, if there are capital letters in the sugarword then capital letters will 

be present in honeywords. The word “Cheese” in Table 2 shows alphabet tokens with 

capital letters. 

7.3. Comparisons 

The proposed system demonstrates the proposed MCA to be superior to the previous 

honeyword generation methods. This section compares the proposed MCA and the 

previous generating methods in three comparison dimensions, improving the 

honeyword generating process, enhancing the honeyword properties, and solving the 

issues of previous methods (Table 4). 

• First comparison dimension. Improving the honeyword generating process. 

The honeyword generating process of the proposed MCA has a main difference 

from the previous generating methods. The proposed MCA performs a real 

generating for password tokens depending on real password tokens as a seed then 

processes it to generate honeyword’s tokens derived from that seed. On the other 

hand, the previous generating methods do not not perform a generating process. They 

just change part of the password, suggest honeywords, ask the user to provide 

honeywords, use another user’s password, provide honeywords from published list 

passwords, or ask the user to provide personal information that creates honeywords. 

• Second comparison dimension. Enhancing the honeyword properties. 
 

 

 

 

 



 54 

Table 4. Comparison in most important honeyword properties 

No Methods Flatness DoS resistance Storage 

1 Proposed MCA Unconditionally Strong No overhead 

2 Chaffing-by-tail-tweaking [17] Conditionally Weak No overhead 

3 Chaffing-by –tweaking-digits [17] Conditionally Weak No overhead 

4 Simple model [17] Conditionally Strong No overhead 

5 Modeling syntax [17] Conditionally Strong No overhead 

6 Chaffing with “tough nuts” [17] N/A Strong Overhead 

7 Take-a-tail [17] Unconditionally Strong No overhead 

8 Random pick [17] Conditionally Strong No overhead 

9 Hybrid generation methods [17] Conditionally Strong No overhead 

10 Storage-index [18] Conditionally Weak Overhead 

11 PDP [19] Conditionally Strong Overhead 

12 Evolving password model [20]  Conditionally Strong No overhead 

13 User-profile model [20] Conditionally Weak Overhead 

14 Append-secret model [20] Conditionally Strong No overhead 

15 User information method [21] Conditionally Weak Overhead 

16 Dictionary attack method [21] Conditionally Weak No overhead 

17 Generic password list method [21] Conditionally Strong No overhead 

18 Shuffling characters method [21] Conditionally Weak No overhead 

 

The proposed MCA attempts to enhance the properties of the honeywords that 

are not always present in an optimum way in the previous honeyword generating 

methods. The most important honeyword properties are as follow. 

- Flatness. This is the probability that the adversary can succeed in guessing 

the correct password among several false passwords. Under certain conditions, all 

approaches can reach (1/k) perfect flatness. The condition is that nothing makes the 

correct password distinct from the fake words, both in the real password and its 

relationship to the username. The proposed MCA provides perfect flatness 

unconditionally; on the other hand, most previous generating methods provide perfect 

flatness under some conditions. Satisfying of some conditions to achieve perfect 

flatness is a disadvantage, while not needing to satisfy any conditions is an advantage. 

For the first honeyword system of J u e l s  and R i v e s t  [17] the probability that the 

adversary can succeed in guessing the sugarword was 1/20=5%, the proposed system 

has a less probability with 1/49(≈2%). In all previous honeyword systems, the 

adversary can guess the sugarword if he knows one of its tokens. On the other hand, 

the adversary cannot guess the sugarword even if he knows one of its tokens; this is 

so because each token of the proposed system sweetwords is redundant seven times. 

If the adversary knows one of the sugarword tokens, he has a 1/7(≈14%) chance to 

pick the sugarword. 

- DoS resistance. The system can make honeywords that cannot be guessed 

by the adversary. The DoS attack performed by entering a honeyword and then bring 

to denial the services of the system. The proposed MCA provides honeywords that 



 55 

cannot be guessed by the adversary even if he knows the sugarword in some way. On 

the other hand, many of the previous generating methods provide honeywords that 

may be guessed by the adversary.  

- Storage. The proposed MCA stores only username and sweetwords, on the 

other hand, many of the previous generating methods store extra information and 

details. 

Table 4, shows a comparison between the proposed MCA and previous 

generating methods in the most important honeyword properties: 

• Third comparison dimension. Solving the issues of previous methods. 

The previous honeyword generation methods faced many issues. The proposed 

MCA solves the most important seven issues of honeyword systems. The seven issues 

are: 

- Conditional flatness issue. This is the satisfying of some conditions to 

achieve perfect flatness, which is considered a weakness, while unconditional flatness 

means that there is no need to satisfy any condition, considered a strength. The 

proposed MCA provides perfect flatness unconditionally, on other hand, the most of 

previous generating method provides perfect flatness under some conditions. 

- Weak DoS resistance issue. This is the existence of possibility for the 

adversary to guess the honeywords, while strong DoS resistance means that the 

adversary can not guess the honeywords. The proposed MCA has a strong Dos 

resistance; on the other hand, many of the previous generating methods have a weak 

Dos resistance.  

- Storage overhead issue. This is the demand for extra storage cost. The 

proposed MCA does not need extra storage cost, while many previous generating 

methods need extra storage cost. 

- Correlation issue. One of the concerns is the existence of a correlation 

between username and password. So, the correct password may simply be identified 

from honeywords. Therefore, the proposed MCA lets the correlated part stay as is in 

the honeywords. 

- Consecutive or frequent numbers issue. Because users prefer 

rememberable number patterns, many choose to use consecutive or frequented digits 

in their passwords, such as ‘123’, ‘1234’, ‘111’ or ‘2222’ then this leads to 

recognizing the sugarword. So, the proposed system provides a list of the most used 

consecutive and frequented number patterns. If there are consecutive or frequent 

numbers appearing in the sugarword, the system will randomly choose numbers from 

the list to the honeywords. 

- Special date issue. Many users tend to choose a number concerning the birth 

date, anniversary, the best year in their study, or any other similar date to include in 

their passwords that will disclose the sugarword. Therefore, the proposed system will 

provide a list of the last 50 years. Then the system will randomly choose years from 

the list to the honeywords if the year’s digits appeared in sugarword. 

- User information security issue. Many of the previous generating methods 

use the technique that leans on personal knowledge-based questions, forcing users to 

provide personal information and detail to help the methods to generate honeywords. 

If the system is compromised and personal information disclosed, this information 



 56 

may be used on another system and pose a threat to the user. Thus, using this 

technique constitute a security issue considering it as a weakness, while not using it 

is a strength. Hence, the proposed MCA does not ask the user for any personal 

information. 

Table 5 shows a comparison between the proposed MCA and previous 

generating methods in the most important honeyword system issues. 
 
Table 5. Comparison in most important honeyword system issues 

No Methods 

Condi- 

tional 

flatness 

issue 

Weak 

DoS 

resis- 

tance 
issue 

Storage 

overhead 

issue 

Correlation 

issue 

Conse- 

cutive 

and 

frequent 
numbers 

issue 

Special 

date 

issue 

User 

informa- 

tion 

security 
issue 

1 Proposed MCA No No No No No No No 

2 
Chaffing-by-tail-
tweaking [17] 

Yes Yes No Yes Yes Yes No 

3 
Chaffing-by –

tweaking-digits [17] 
Yes Yes No Yes Yes Yes No 

4 Simple model [17] Yes No No Yes No No No 

5 Modeling syntax [17] Yes No No Yes Yes Yes No 

6 
Chaffing with “tough 

nuts” [17] 
N/A No Yes No N/A N/A No 

7 Take-a-tail [17] No No No No No No No 

8 Random pick [17] Yes No No Yes No No No 

9 
Hybrid generation 

methods [17] 
Yes No No Yes Yes Yes No 

10 Storage-index [18] Yes Yes Yes Yes No No No 

11 PDP [19] Yes No Yes No Yes No No 

12 
Evolving password 

model [20]  
Yes No No Yes Yes Yes No 

13 
User-profile model 

[20] 
Yes Yes Yes Yes Yes No Yes 

14 
Append-secret model 

[20] 
Yes No No No Yes No No 

15 
User information 

method [21] 
Yes Yes Yes Yes Yes No Yes 

16 
Dictionary attack 

method [21] 
Yes Yes No Yes No No No 

17 
Generic password list 

method [21] 
Yes No No Yes No No No 

18 
Shuffling characters 

method [21] 
Yes Yes No Yes Yes Yes No 

8. Conclusion 

This study provides a novel approach for the honeyword generating process. The new 

method lies on the meerkat clan intelligence algorithm, a metaheuristic swarm 

intelligence algorithm. It has undergone several changes to fit the problem space and 

has produced the solutions as honeywords. As a result, the proposed system 

successfully harnesses an intelligent algorithm (meerkat clan intelligence algorithm) 

for security purposes, precisely password cracking detection (honeyword system). 



 57 

The proposed system succeeds in benefiting from MCA’s properties in solutions 

generating (proximity principle, quality principle, diverse response principle, 

stability principle, and adaptability principle) to generate honeywords. The proposed 

MCA improves the honeyword generating process, enhances the honeyword 

properties, and solves the issues of previous methods. The most important and 

complex token of the sugarword is the alphabet token, so the proposed system is used, 

including the proposed MCA to generate the alphabet token. On the other hand, the 

digit and special characters tokens can be generated by a simple random generating 

algorithm. 

The experimental results show the algorithm’s success in generating passwords 

in all its tokens (alphabet, digits, and special characters), especially the alphabet 

token, despite the difficulty of this token as it can be related to meaningful words. 

The alphabet token generating provided great results for generating meaningful 

words from meaningful words. Most interesting is that the algorithm is able to find 

meaningful words from rubbish words. As a result of analysis, the proposed system 

concludes that the Pop-size should be bigger than the Max-gen, by experience, the 

proposed system chooses Pop-size=90/Max-gen=30. The results show many 

desirable properties for the generated honeywords (independent tokens generating, 

many solutions generating, different solutions generating, different password patterns 

handling, sweetwords high security, and capital letters handling) 

The comparisons between the proposed MCA and the previous generating 

methods shows the superiority of the modern method in three dimensions: improving 

the honeyword generating process (through depending on the real password for 

honeywords generating), enhancing the honeyword properties (through providing 

perfectly flat honeywords, strong DoS resistance, and a moderate amount of storage), 

and solving the issues of previous methods (through providing the solutions for the 

most important seven issues of honeyword systems). The most important properties 

which is the flatness showing a great superiority of the proposed system. For the first 

honeyword system of J u e l s  and R i v e s t  [17] the perfect flatness is (1/20=5%), 

the proposed system has a better flatness with 1/49(≈2%). Furthermore, the adversary 

has a 1/7(≈14%) chance to pick the sugarword even if he knows one of the sugarword 

tokens. 

This article suggests recommendations for honeyword generation methods by 

taking advantage of the experience provided by this study of using metaheuristic 

algorithms and attempts to find another intelligent technique that may provide 

optimal solutions (honeywords). Further research in this field could be directed 

towards finding other issues facing honeywords systems and attempting to solve 

them. 

R e f e r e n c e s  

1. M u k t h i n e n i, V., R. M u k t h i n e n i, O. S h a r m a, S. J. N a r a y a n a n. Face Authenticated 

Hand Gesture Based Human Computer Interaction for Desktops. – Cybernernetics and 

Information Technologies., Vol. 20, 2020, No 4, pp. 74-89. 

2. M. Lehto, P. Neittaanmäki, Eds. Cyber Security: Analytics, Technology and Automation. – Cham, 

Springer International Publishing, Vol. 78. 2015. 



 58 

3. G e n ç, Z. A., S. K a r d a ş, M. S. K i r a z. Examination of a New Defense Mechanism: 

Honeywords. – In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in 

Artificial Intelligence and Lecture Notes in Bioinformatics). G. P. Hancke, E. Damiani, Eds. 

Cham, Springer International Publishing. Vol. 10741. 2018, pp. 130-139. 

4. K u s u m a, A. B., Y. R. P r a m a d i. Implementation of Honeywords as a Codeigniter Library for 

a Solution to Password-Cracking Detection. – IOP Conf. Ser. Mater. Sci. Eng., Vol. 508, May 

2019, No 1, p. 012134. DOI: 10.1088/1757-899X/508/1/012134. 

5. W i n, T., K. S. M. M o e. Protecting Private Data Using Improved Honey Encryption and 

Honeywords Generation Algorithm. – Adv. Sci. Technol. Eng. Syst., Vol. 3, 2018, No 5,  

pp. 311-320. DOI: 10.25046/aj030537. 

6. C h a k r a b o r t y, N., S. M o n d a l. Towards Improving Storage Cost and Security Features of 

Honeyword Based Approaches. – Procedia Comput. Sci., Vol. 93, 2016, No September,  

pp. 799-807. DOI: 10.1016/j.procs.2016.07.298. 

7. W a n g, R., H. C h e n, J. S u n. Phoney: Protecting Password Hashes with Threshold Cryptology 

and Honeywords. – Int. J. Embed. Syst., Vol. 8, 2016, No 2-3, pp. 146-154.  

DOI: 10.1504/IJES.2016.076108. 

8. P a l a n i a p p a n, S., V. P a r t h i p a n, S. S t e w a r t  K i r u b a k a r a n, R. J o h n s o n. Secure 

User Authentication Using Honeywords. – Lecture Notes on Data Engineering and 

Communications Technologies, Vol. 31, 2020, pp. 896-903. 

9. H o m a y o u n i, S. M., D. B. M. M. F o n t e s. Metaheuristic Algorithms – Metaheuristics for 

Maritime Operations. Hoboken, NJ, USA, John Wiley & Sons, Inc., 2018, pp. 21-38. 

10. T e z e l, B. T., A. M e r t. A Cooperative System for Metaheuristic Algorithms. – Expert Syst. Appl., 

Vol. 165, 2021, No May 2020, p. 113976. DOI: 10.1016/j.eswa.2020.113976. 

11. T o s h e v, A. Particle Swarm Optimization and Tabu Search Hybrid Algorithm for Flexible Job 

Shop Scheduling Problem – Analysis of Test Results. – Cybernernetics and Information  

Technologies, Vol. 19, 2019, No 4, pp. 26-44. 

12. K u m a r, A., D. K u m a r, S. K. J a r i a l. A Review on Artificial Bee Colony Algorithms and Their 

Applications to Data Clustering. – Cybernernetics and Information Technologies, Vol. 17, 

2017, No 3, pp. 3-28. 

13. G r e e n, D., A. A l e t i, J. G a r c i a. The Nature of Nature: Why Nature-Inspired Algorithms Work. 

– Model. Optim. Sci. Technol., Vol. 10, 2017, pp. 1-27. DOI: 10.1007/978-3-319-50920-4_1. 

14. A l-O b a i d i, A. T. S., H. S. A b d u l l a h, Z. O. A h m e d. Meerkat Clan Algorithm: A New Swarm 

Intelligence Algorithm. – Indonesian Journal of Electrical Engineering and Computer Science, 

Vol. 10, 2018, No 1. pp. 354-360. DOI: 10.11591/ijeecs.v10.i1. 

15. A b d  A l r a d h a  A l s a i d i, S. A., D. K. M u h s e n, S. M. A l i. Improved Scatter Search 

Algorithm Based on Meerkat Clan Algorithm to Solve NP-Hard Problems. – Period. Eng. Nat. 

Sci., Vol. 8, 2020, No 3. DOI: 10.21533/pen.v8i3.1563. 

16. J a m e e l, N., H. S. A b d u l l a h. A Proposed Intelligent Features Selection Method Using Meerkat 

Clan Algorithm. – J. Phys. Conf. Ser., Vol. 1804, February 2021, No 1, p. 012061.  

DOI: 10.1088/1742-6596/1804/1/012061. 

17. J u e l s, A., R. L. R i v e s t. Honeywords: Making Password-Cracking Detectable. – In: Proc. of 

2013 ACM SIGSAC Conference on Computer & Communications Security (CCS’13), 2013, 

No October 2015, pp. 145-160. DOI: 10.1145/2508859.2516671. 

18. E r g u l e r, I. Achieving Flatness: Selecting the Honeywords from Existing User Passwords. – IEEE 

Trans. Dependable Secur. Comput., Vol. 13, March 2015, No 2, pp. 284-295.  

DOI: 10.1109/TDSC.2015.2406707. 

19. C h a k r a b o r t y, N., S. M o n d a l. On Designing a Modified-UI Based Honeyword Generation 

Approach for Overcoming the Existing Limitations. – Comput. Secur., Vol. 66, 2017,  

pp. 155-168. DOI: 10.1016/j.cose.2017.01.011. 

20. A k s h i m a, A., D. C h a n g, A. G o e l, S. M i s h r a, S. K. S a n a d h y a. Generation of Secure 

and Reliable Honeywords, Preventing False Detection. – IEEE Trans. Dependable Secur. 

Comput., Vol. 5971, 2018, No c, pp. 1-13. DOI: 10.1109/TDSC.2018.2824323. 

21. A k i f, O. Z., A. F. S a b e e h, G. J. R o d g e r s, H. S. A l-R a w e s h i d y. Achieving Flatness: 

Honeywords Generation Method for Passwords Based on User Behaviours. – Int. J. Adv. 

Comput. Sci. Appl., Vol. 10, 2019, No 3, pp. 28-37. DOI: 10.14569/IJACSA.2019.0100305. 

 



 59 

22. B r i n d t h a, J., K. R. H i t h a e i s h i n i, R. K o m a l a, G. A b i r a m i, U. A r u l. Identification 

and Detecting of Attacker in a Purchase Portal Using Honeywords. – In: Proc. of 3rd IEEE Int. 

Conf. Sci. Technol. Eng. Manag. (ICONSTEM’17), Vol. 2018-Janua, 2017, pp. 389-393. 

DOI: 10.1109/ICONSTEM.2017.8261414. 

23. G e n ç, Z. A., G. L e n z i n i, P. Y. A. R y a n, I. V a z q u e z  S a n d o v a l. A Critical Security 

Analysis of the Password-Based Authentication Honeywords System under Code-Corruption 

Attack. – Communications in Computer and Information Science, Vol. 977, 2019,  

pp. 125-151. 

24. G e n ç, Z. A., G. L e n z i n i, P. Y. A. R y a n, I. V. S a n d o v a l. A Security Analysis, and a Fix, 

of a Code-Corrupted Honeywords System. – In: Proc. of 4th International Conference on 

Information Systems Security and Privacy, Vol. 2018-Janua, 2018, No Icissp, pp. 83-95.  

DOI: 10.5220/0006609100830095. 

25. C a t u o g n o, L., A. C a s t i g l i o n e, F. P a l m i e r i. A Honeypot System with Honeyword-

Driven Fake Interactive Sessions. – In: Proc. of 2015 Int. Conf. High Perform. Comput. 

Simulation (HPCS’15), 2015, pp. 187-194. DOI: 10.1109/HPCSim.2015.7237039. 

26. N a t h e z h t h a, T., V. V a i d e h i. Honeyword with Salt-Chlorine Generator to Enhance Security 

of Cloud User Credentials. – Commun. Comput. Inf. Sci., Vol. 746, 2017, pp. 159-169.  

DOI: 10.1007/978-981-10-6898-0_13. 

27. M o e, K. S. M., T. W i n. Improved Hashing and Honey-Based Stronger Password Prevention 

against Brute Force Attack. – In: 2017 International Symposium on Electronics and Smart 

Devices (ISESD’17), Vol. 2018-Janua, October 2017, pp. 1-5.  

DOI: 10.1109/ISESD.2017.8253295. 

 

Received: 02.12.2021; Second Version: 20.12.2021; Accepted:11.01.2022  (fast track) 

 


