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Abstract: Wireless sensor networks are an enthralling field of study with numerous 

applications. A Wireless Sensor Network (WSN) is used to monitor real-time 

scenarios such as weather, temperature, humidity, and military surveillance. A WSN 

is composed of several sensor nodes that are responsible for sensing, aggregating, 

and transmitting data in the system, in which it has been deployed. These sensors are 

powered by small batteries because they are small. Managing power consumption 

and extending network life is a common challenge in WSNs. Data transmission is a 

critical process in a WSN that consumes the majority of the network's resources. 

Since the cluster heads in the network are in charge of data transmission, they require 

more energy. We need to know where these CHs are deployed in order to calculate 

how much energy they use. The deployment of a WSN can be either static or random. 

Although most researchers focus on random deployment, this paper applies the 

proposed Deterministic Centroid algorithm for static deployment. Based on the 

coverage of the deployment area, this algorithm places the sensors in a 

predetermined location. The simulation results show how this algorithm generates 

balanced clusters, improves coverage, and saves energy. 

Keywords: Sensors, energy, centroid, DV Hop, WCL, deployment, clustering. 

1. Introduction 

A wireless sensor network is a self-configured network that detects physical changes 

in the environment without the need for additional infrastructure. WSN applications 

include animal tracking, environmental monitoring, medical applications, military 

surveillance, and infrastructure maintenance. A typical WSN is made up of a group 

of sensor nodes that work together to monitor physical or ecological conditions and 

generate a large amount of data that must be routed from the network to the sink/base 

station via multiple hops. A m u t h a, S h a r m a  and N a g a r  [1] discusses the 

application of seismic, thermal, acoustic, visual, magnetic, radar, and infrared sensors 

in a WSN environment. There are three types of sensors: static, mobile, and hybrid. 

https://www.google.bg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiGsPP1woT2AhVUSfEDHcD1Ck8Qs2YoAHoECAkQCQ&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIndia&usg=AOvVaw08377BFiKG2vki346WYZxw
https://www.google.bg/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiGsPP1woT2AhVUSfEDHcD1Ck8Qs2YoAHoECAkQCQ&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIndia&usg=AOvVaw08377BFiKG2vki346WYZxw
mailto:snehamaelin05@gmail.com*
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Static sensors do not move, whereas mobile sensors can move across the network to 

sense data, and hybrid sensors are a combination of static and mobile sensors. The 

primary concerns of WSNs include node energy levels dropping, node identification, 

hardware failure, node positions, network scalability, node deployment, and so on. 

WSN also has a range of benefits. It is self-configurable, modular, cost-effective, and 

lightweight, and it is based on event detection. Small-capacity batteries are used to 

power the sensor nodes. As a consequence, as S n e h a  and N a g a r a j a n  [2] points 

out, energy is a critical factor in deciding the lifetime of wireless sensor networks. In 

an unattended and uninhabited area, it is difficult to replace or recharge a sensor 

node’s battery. As a consequence, any sensor node’s lifespan is determined by its 

energy efficiency. One of the best ways to increase energy efficiency, according to 

G n a n a p r a s a m b i g a i  [3] is to segment the entire network into many clusters. 

The network is divided into clusters, with one of the sensor nodes acting as cluster 

head. The cluster head oversees communication both within and outside of the 

cluster. Communication within a cluster is referred to as intra cluster communication. 

To put it another way, cluster members send data to cluster heads. Inter-cluster 

communication is the exchange of information between cluster heads and sink nodes. 

Finally, the sensed environment data from the sensor node is transmitted to the base 

station via the cluster head sensor nodes. It is necessary to know the location of the 

sensor nodes in order to be aware of the energy consumption of the nodes, as it 

contributes to energy efficiency, load balancing, and network coverage, as discussed 

in E z h i l a r a s i  and K r i s h n a v e n i’s paper [17]. The deployment of the sensor 

node is critical for improving the accuracy of the sensor node’s location. The 

deployment of WSN nodes can be either static or dynamic. Static deployment locks 

the node into a position that cannot be changed during the lifetime of the network, 

whereas dynamic deployment allows the node’s location to change in response to 

network changes. Though random deployment is now the norm, static deployment is 

still required when human intervention is not possible. When using WSN, coverage 

is an important factor to consider. To support connectivity and full coverage, massive 

static nodes are required. This can lead to increased power consumption, higher costs, 

and more complicated network management. A m u t h a, S h a r m a  and N a g a r  [1] 

explains how coverage can be complete or partial. Full coverage implies that each 

deployed point is being monitored by at least one node. This is expensive and 

inefficient for some real-time applications. Partial coverage ensures coverage to some 

extent, which can save energy and increase network lifetime. The coverage model is 

calculated using the distance from the nearest point of interest. The localization 

algorithms provide location estimates that can be used to assess the coverage of the 

system. To improve scalability and reduce overhead caused by changes in topology, 

we use Location-Based Routing (LR) Protocols that rely on position information. The 

energy and power of nodes to extend network lifetime is also an important constraint 

in WSN, depending on where each node is located in the network. E z h i l a r a s i  and 

K r i s h n a v e n i  [4] discusses how nodes in a network must be aware of their 

neighbours in order to transmit a network-required message. There are several 

methods for locating a network node, each with advantages and disadvantages. The 

goal of a localization method is to determine the precise location of the node, which 
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is difficult in most real-time applications. According to N a g a r a j a n  and 

K a r t h i k e y a n  [18], when network nodes are aware of their location, data can be 

transmitted to a base station with the least amount of energy and in the shortest 

amount of time. We propose the Deterministic Centroid algorithm in this paper for 

deploying static nodes with predefined locations. Section 2 of this paper contains a 

review of the literature on existing Centroid algorithm deployments. Section 3 

introduces the Deterministic Centroid algorithm for static deployment, Section 4 

discusses the algorithm’s performance using simulation results, and Section 5 

summarizes Deterministic Centroid’s contribution to improving energy efficiency 

and accuracy. 

2. Related works 

As a classic range-free localization algorithm, B u l u s u, H e i d e m a n n  and 

E s t r i n  [5] proposed the Centroid algorithm. This algorithm is split into two parts. 

During the first phase, all anchor nodes send out packets with their location 

information to all other nodes in the threshold region. During the second phase, each 

unknown node determines its location by arithmetic mean of all anchor nodes 

coordinates within the threshold region. That represents by the equations  

(1)  𝑥𝑢 =
∑ 𝑥𝑖

𝑚
𝑖=1

𝑚
. 𝑦𝑢 =

∑ 𝑦𝑖
𝑚
𝑖=1

𝑚
, 

where: (xi, yi) are the coordinates of the anchor node i; u is the unknown node;  

(xu, yu) is the location of the unknown node; m is the total number of anchor nodes 

that are within the threshold region. This algorithm is simple to implement, but it 

does not produce accurate results and necessitates a complex method to determine 

the threshold value.  
N i c h e l s u  and N a t h  [6] has proposed the DV-Hop Algorithm (Distance 

Vector-Hop) to calculate the approximate distance between two nodes by multiplying 

the average hop distance by the number of hops. It is broken down into three stages. 

During the first phase, each anchor sends a packet containing its location information 

and hop count value to its neighbouring nodes. The nodes that receive this packet 

then send it to their nearest neighbours after multiplying the hop count value by one. 

Each anchor provides a minimum hop count value to all nodes in the network, and 

the location information for each anchor is stored in a hop count table. In the second 

phase, each anchor calculates the average hop distance by the equation 

(2)  AvgHopDis𝑖 = ∑ √
(𝑥𝑗−𝑥𝑖)2+(𝑦𝑗−𝑦𝑖)2

∑ ℎ𝑗𝑖
𝑚
𝑖=1,𝑖≠𝑗

𝑚
𝑖=1,𝑖≠𝑗 , 

where: m is the total number of anchors in the given network; i is the ID of each 

anchor; hij is the minimum number of hop counts between anchor i and anchor j;  

(xi, yi) and (xj, yj) represent coordinates of anchors i and j; AvgHopDisi is the average 

distance of a hop computed by anchor i. Then each unknown node u computes 

approximate distance from anchor node i using the equation given below: 

(3)  𝑑𝑢𝑖 = AvgHopDis𝑖 × ℎ𝑢𝑖. 
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The unknown node’s location is determined using a multilateration method after 

the distance from each anchor is determined. This algorithm requires more energy to 

compute, which leads to more localization errors. 

Z h a n g, J i  and S h a n  [7] has proposed the DV Hop-based Weighted Centroid 

algorithm, which reduces DV Hop localization’s computational complexity and 

power consumption. This algorithm is broken down into two stages. During the first 

phase, each node receives the minimum hop count value from each anchor node. In 

the second phase every unknown node u finds its location (xu, yu) using the equations 

(4)  𝑥𝑢 =
∑ 𝑤𝑖𝑥𝑖

𝑚
𝑖=1

∑ 𝑤𝑖
𝑚
𝑖=1

, 𝑦𝑢 =  
∑ 𝑤𝑖𝑦𝑖

𝑚
𝑖=1

∑ 𝑤𝑖
𝑚
𝑖=1

, 

where: wi= 
1

ℎ𝑢𝑖
 is the weight of each anchor i; hui is the minimum hop count value of 

node u from anchor i; m is the total number of anchor nodes. The weight is inversely 

proportional to the number of hops. This has been used to increase the weight of the 

nearest anchor. The anchor with the fewest hops is closer to the given node and thus 

has a greater influence on determining its location. Anchor nodes, unlike DV Hop, 

do not broadcast packets containing the average hop distance to other nodes. As a 

result, this algorithm has low computational complexity and uses less power, but 

accuracy in localization must be taken into account. 

The Centroid value of each tetrahedron is used Centroid Algorithm for a 

tetrahedron from W a n g  C h a n g-z h e n g, W e n-l i a n g  T a n g  and Y a n  X u  

[8]. The unknown nodes’ locations have been determined. The nodes are initially 

deployed randomly in tetrahedrons in this case, and the Centroid is used to localize 

the nodes. Despite improved accuracy, this algorithm is more prone to errors. 

Because the coordinates of unknown nodes must be calculated in many rounds, the 

energy consumption is extremely high. Novel Centroid Localization Algorithm 

(C h e n  and L i u  [9]) calculates the position of unknown sensor nodes based on the 

connectivity relationship between nodes. The unknown nodes estimate their position 

using the landmarks’ coordinates. The estimated location is the centroid of the 

polygon formed by several landmarks. C h e n  and L i u  [9] has proposed Oval 

Centroid algorithm, which is also similar to the 2D weighted Centroid Algorithm, 

which employs weights to calculate sensor node positions. It makes use of an 

accuracy control factor PCF (Pair Correlation Function), which can be set to 0 or 1. 

C h e n  et al. [10] has proposed the Novel 3D Centroid algorithm, which is based on 

a 3D coordinate system and takes into account geometric relationships as well as 

communication limitations between sensor nodes and sites. The estimated position of 

the unknown node is in the centre of the 3D plane diagram. When the distinguishing 

density exceeds 6, this algorithm provides greater precision. C h e n  et al. [10] 

proposes a new Centroid Algorithm for 3D WSNs that make use of the volume 

coordinate system's coordinate tetrahedron. All anchors broadcast their positions to 

all sensor nodes within their transmitting range, and the sensor nodes collect all 

signals received from various reference points. The Centroid algorithm is used to 

calculate the barycenter of each tetrahedron, and the average coordinates of these 

barycenters are used to calculate the final estimated location of each unknown node. 

This algorithm aids in the elimination of localization errors. D e n g et al. [11] has 

proposed the SA-Centroid algorithm, which operates in three steps. In the first level, 
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each node keeps a table and communicates with its neighbours. The sensor nodes in 

the second level receive notifications from their nearest landmark. This landmark 

node joins two other landmark nodes to form a triangle, and the triangle’s centroid is 

determined. The Centroid value is used by the sensor node to calculate its temporary 

position. In the third step, this temporary position estimate is used to shape a polygon, 

and the Centroid is calculated again to compute the exact location estimate. This 

algorithm increases the computational cost, and it also requires symmetrical anchor 

node reference to improve accuracy. X u  et al. [12] has proposed the 2D Weighted 

Centroid algorithm, which takes into account anchors with the same weight that can 

be found inside a circle. Anchors that are not useful for the localization phase are 

discarded to eliminate RSSI error. This algorithm works better on large-scale WSNs, 

and its accuracy improves only when the anchor weight is set to 0 or 1. Because the 

estimate is based on distance, it is possible the results to be unreliable. Weighted 

Centroid-Improved Particle Filter Algorithm (Z h a n g, F e n g  and G u o  [13]) is 

used to determine the improved particle filter’s initial estimation point. The number 

of anchor nodes and the sensing data determine the location of the sensor node. This 

algorithm is quick to localize and works well with a small number of beacons. The 

Centroid Algorithm for 2D and 3D by X u  et al. [12] combines the Centroid algorithm 

and RSS to estimate the position of unknown nodes. Anchors, which are static nodes, 

are used to obtain RSS values from unknown nodes, and the best possible position is 

estimated using an improved weighted Centroid algorithm. Distance thresholding has 

been proposed to improve positioning accuracy. The 2D Weighted Centroid 

algorithm’s threshold is the radius of a circle whose centre is an unknown node. This 

algorithm applies data from anchors inside the circle to them. The weight of these 

anchors is the same whether they are inside or outside the circle. This algorithm can 

be used when anchors and unknown nodes are on the same plane. The 3D Weighted 

Centroid Localization algorithm developed by X u  et al. [12] is an extension of the 

2D Weighted Centroid Localization algorithm. The coordinate information of the 

anchor nodes on the z-axis is used here. In this algorithm, the threshold is the radius 

of the sphere whose centre is an unknown node. Since 3D-WCL has high localization 

accuracy and a low hardware cost, it is suitable for a wide range of real-time 

applications.  

Weighted Centroid Localization Algorithm (S h i [14]) converts RSSI data from 

unknown nodes into distance and then uses the negative square of the distance ratio 

to calculate a mend weight. The modified weight is used to improve positioning 

precision. The specific steps covered by this modified algorithm are as follows. 

1. The beacon sends relevant packets to the surrounding environment on a 

regular basis. 

2. RSSI messages are sent to blind nodes by beacon nodes. 

3. Determine the set of anchor nodes that are received by blind nodes and assign 

RSSI values to them. 

4. The blind point coordinates are roughly confirmed. 

5. The average positioning error and non-beacon positioning error are 

computed. 
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This algorithm makes the best use of the RSSI data, reducing the deficiency to 

some extent. This method outperforms traditional methods in terms of positioning. 

The positioning precision is excellent, and the positioning error is minimal. This 

algorithm, however, does not account for energy consumption or calculation amount. 

K a u r, K u m a r  and G u p t a’s [15] Enhanced Weighted Centroid DV Hop 

Localization (EWCL) takes into account a novel weight computation method. It 

computes weight by taking into account various factors such as communication 

radius, the influence of various anchors, and the proximity of a given node’s anchors. 

EWCL not only saves power but also improves localization errors. This is carried out 

in three stages. The first phase determines the minimum number of hops counted by 

each node from each anchor. In the second phase, each anchor’s average distance per 

hop is calculated. In the third phase, the location of the unknown nodes is computed. 

By taking into account the communication radius and the nearest anchor node, the 

EWCL algorithm improves localization accuracy. By limiting the broadcasting range, 

it reduces power consumption in the first two phases.  

3. Deterministic centroid model description 

The Deterministic Centroid algorithm is proposed for statically deploying sensors in 

areas where human intervention is prohibited. A Wireless Sensor Network (WSN) is 

a network of nodes that sense, aggregate, and transmit data. The proposed model 

divides the entire network into clusters. There are five sections in this model: node 

deployment, Cluster Head (CH) selection, cluster formation, next CH selection, and 

communication. The following constraints apply to the proposed work: 

1. The sensor nodes will be deployed deterministically based on the calculated 

Centroid. 

2. There is only one sink in the sensing region. 

3. The sensor nodes and sink are both fixed. 

4. The initial energy is the same for all network nodes. 

5. The sink node knows the coordinates of all the member nodes. 

6. Using Hop count, each node is aware of its neighbors. 

The following are the advantages of the D-Centroid Algorithm over existing 

ones: 
1. The sensors are distributed evenly across the deployment area, with equal 

spacing between them. 

2. Because the entire network is divided into grids and sensors are strategically 

placed throughout the grids, the network is completely covered. 

3. Because the nodes’ locations are fixed, node failures can be easily detected.  

4. Data is transmitted to the base station via cluster heads, which can be single 

hop or multihop. 

5. Prior to deployment, the optimal number of cluster heads is determined. 

6. Cluster heads are rotated based on the residual energy of the nodes as well as 

their distance from the base station. 

7. Because each node in the network is aware of its neighbors prior to data 

transmission, data delay is reduced. 
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8. Cluster formation results in balanced clusters, which increase network 

lifetime. 

The proposed work divides the entire network area into equal-sized squares to 

form a grid that spans the entire network. This grid concept can aid in ensuring 

network coverage across the network’s area. The Deterministic Centroid algorithm is 

implemented in three stages. The first is sensor node positioning, followed by cluster 

formation, and finally communication. In the first phase, the entire sensing area is 

divided into a grid, and the coordinate values of each square in the grid are passed to 

the proposed algorithm, which computes the Centroid position for each square. For 

each square, the centroid is calculated using the following formula: 

(5)  Centroid(𝑥,𝑦) = (
 (𝑥1+𝑥2+𝑥3+𝑥4)

4
,

(𝑦1+𝑦2+𝑦3+𝑦4)

4
 ). 

The sensors are positioned based on the Centroid obtained for each square. This 

procedure will be repeated until all of the sensors are evenly distributed across the 

grid. 

Pseudo code 1. Grid Formation and Deployment 

Input: la, ba 

Output: Grid (M) formation and Node deployment (N) 

Procedure Grid Formation 

Let areaa= (la * ba) 

Compute GridMinimumCut Mi = (la * ba – 1) 

Partition areaa into Mi equal sets M 

For each M 

Compute CentroidC= (
𝑥1+𝑥2+𝑥3+𝑥4

4
,

𝑦1+𝑦2+𝑦3+𝑦4

4
) 

For each CentroidC 

Deploy Ni 

End for 

End for 

End procedure 

 

 
Fig. 1. D-Centroid node deployment 

 
The optimal number of cluster heads required for the sensing area is determined 

in the second phase. Cluster heads for the sensing area are chosen based on the 
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distance between the sensor nodes and the sink. S a t h y a p r i y a  and A r u m u g a m  

[16] discusses how to calculate the optimal cluster heads needed for the sensing area, 

(6)  𝑂ch =  
max (dist (𝑁𝑖,𝑆)

Tr 2⁄
, 

where Och is the optimal cluster heads, Ni represents the sensor nodes, S is the Sink 

and Tr is the transmission radius. The number of cluster heads selected is one 

important criterion to save energy. Because the initial cluster heads are chosen based 

on their distance from the sink, the cluster formation will be done with balanced 

clusters, which will increase the network’s lifetime. Each CH broadcasts its 

coordinates as well as its ID to all network nodes. Each member node receives the 

coordinates from the CHs and uses Hop count to calculate the distance between itself 

and the CH. Following the computation of distances, each member node joins the 

CHs with the shortest distance, and clusters are formed. Each cluster’s average 

number of nodes is discovered to be equal. The following are the benefits of the 

method discussed in paper [16]: 

1. Load balancing can be accomplished using balanced clusters. 

2. It reduces CHs’ energy consumption. 

3. It extends the network’s lifetime. 

After identifying the best cluster heads, the other nodes use Hop count to 

calculate their distance from the best cluster heads. The sensor nodes communicate 

with the nearby cluster head to ensure efficient transmission, avoiding delays, 

reducing energy consumption, and extending network lifetime. 

Pseudo code 2. Cluster Formation 

Input: Ni, S, Tr 

Output: Cluster Heads (CH) 

Procedure Cluster Formation 

For each Ni 

Do 

Compute distance D from Ni to Sink S 

Compute Optimal Och= 
max (dist (𝑁𝑖,𝑆)

Tr 2⁄
 

End for 

CHj broadcasts (XCH, YCH) and IDCH 

While (j=0; j++) 

For each Ni 

Compute Hopcount from Ni to CHj 

If Hopcount<=10 

Form cluster with CHj 

Else 

Compute Hopcount from Ni to Next CHj 

Until j<=Och 

Repeat until all Ni are included in clusters 

End if 

End for 

End while 

End procedure. 
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The initial cluster head selection is done deterministically based on distance 

from the sink, but as the data transmission and aggregation process progresses, the 

residual energy of the cluster heads is checked in each round. The selected CH will 

continue to collect data and send it to the sink until the energy reaches a certain 

threshold. 

 

 
 

Fig. 2. Deterministic Centroid cluster formation 

 
When the energy level of the cluster heads is less than the predefined threshold 

value, it remains the CH. If the residual energy reaches the threshold, the CH requests 

residual energy and the distance to the sink from the cluster’s other member nodes. 

The initial and residual energy are used to calculate the energy Centroid coordinates. 

The member node with the highest residual energy and the closest proximity to the 

sink is chosen as the next cluster head. This process is repeated until all of cluster’s 

nodes drain out. The energy Centroid coordinates are calculated using the equations 

discussed in paper [16], 

(7)  𝑋e =
∑

𝐸re
𝐸0

.𝑋𝑛
𝑚=0

𝑛
 , 

(8)  𝑌e =
∑

𝐸re
𝐸0

.𝑌𝑛
𝑚=0

𝑛
, 

where: E0 is the initial energy of the sensor nodes; X, Y are the coordinates of sensor 

nodes; Ere is the residual energy of the sensor nodes; n is the number of nodes in the 

sensing region; Xe and Ye are the energy Centroid coordinates. 
The energy threshold value for each cluster is derived from paper [16] using the 

equation 

(9)  Energythrs = DP × 𝐸elec × (
𝑁

𝐶
− 1) + DP × 𝐸dat (

𝑁

𝐶
) + DP × 𝐸elec + DP × 𝜀fs𝑑2, 

where: 𝐸elec is the initial energy to run transmitter electronics; 𝐸dat is the energy 

required for data aggregation; d is the distance; N is the number of nodes in the 

sensing area; C is the number of clusters; 𝜀fs is the free space model; DP is size of 

the data packet. 
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Pseudo code 3. Selection of next CH 

Input: C 

Output: New Cluster Head  

Procedure New Cluster Head 

For each Ni in Ci 

Compute Energy Centroid (Xe,Ye) for all C 

Find Residual Energy of all Ni 

Compute Distance for all Ni to Sink 

Calculate Energy threshold Energythrs for each C 

If (CHresidual >Energythrs) 

Then Ni remains Cluster Head 

Else 

Next Ni with dmin and Eresidual-max selected as CH 

End if 

End for 

End procedure. 

 

The CH collects data from the cluster’s member nodes, aggregates it, and sends 

it to the sink. To forward the collected data to the sink the Disthrs is calculated using 

free space and multipath model. The distance threshold used in the following 

equation determines whether the data communication is single hop or multihop: 

(10)  Disthrs = √
𝜀fs

𝜀mp
 , 

where 𝜀fs is the free space model and 𝜀mp is the multipath model. 

If the distance to the sink is less than the distance threshold, the CH 

communicates with the sink directly (i.e., using single hop), otherwise it 

communicates with the sink via the intermediate CHs (i.e., using multihop). 

Pseudo code 4. Data Communication 

Input: CH, Sink 

Procedure Communication 

For each CH 

Compute disch(i) to sink 

Compute Disthrs 

If (disi < Disthrs) 

Then CH directly send data to Sink 

Else 

Select nearest neighbor CH with min disi to Sink 

Send data packets to the neighbor CH 

Neighbor CH send data packets to Sink 

End if 

End for 

End procedure 
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4. Simulation results 

The proposed method has been tested with a hundred nodes in the environment 

depicted in Table 1. The sensor nodes are distributed at random across a 100×100 m 

field. The sink node is assumed to be in the centre of the field’s top periphery. Each 

cluster will contain approximately 25% of the total nodes in this work. Cluster 

structure, network lifetime, and energy efficiency are computed and compared with 

the SA-Centroid, Improved WCL, and ECWL algorithms. 

Table 1. Simulation parameters 
Parameter Value 
Network size 100×100 

No of sensor nodes 100 

Radio propagation range 300 m 

Channel capacity 2 Mbits per 1s 

Initial energy 1 J 

Data packets 3200 bits 

Distance threshold 85 m 

Simulation time 180 s 

εfs 10 pJ per 1 bit per 1 m2 

εmp 0.0013 pJ per 1 bit per 1 m4 

 

Table 2. Number of nodes in each cluster including cluster head, using SA-Centroid, Improved WCL, 

ECWL and Proposed Algorithm 

SA-Centroid Improved WCL Algorithm ECWL Algorithm Proposed Algorithm 

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

32 30 17 21 28 22 30 20 32 27 23 18 25 25 26 24 

30 28 23 19 30 25 27 18 27 32 18 23 24 26 25 25 

22 26 29 23 26 24 29 21 32 23 19 26 25 26 24 25 

15 20 31 34 27 23 27 23 21 29 25 25 24 26 24 26 

25 24 30 21 25 24 28 21 25 24 29 22 25 24 26 25 

 

Cluster structure. The proposed approach produces balanced clusters (i.e., the 

number of member nodes in each cluster is equal). SA-Centroid [11], Improved WCL 

[14], and ECWL [15] are used to compare cluster formation. The SA-Centroid and 

Improved WCL distribute the sensor nodes in the deployment area at random. The 

CH is chosen at random in SA-Centroid, and the location of the unknown nodes is 

computed using SA-Centroid. The CHs in Improved WCL are computed using the 

weight function. ECWL chooses clusters based on their energy Centroid. The 

proposed method deploys all nodes deterministically where their location is known 

ahead of time. The CHs are chosen based on their proximity to the sink. Fig. 3 shows 

that the clusters are unbalanced. Initially, clusters are formed at random, and 

unknown nodes in the deployment area calculate the Centroid and join with the CH 

closest to the Centroid coordinate. The clusters are not stable after each round, which 

means that the nodes keep switching to each cluster. The disadvantage of this 

approach is that the path for data transmission must be computed after each round 

because the location of the nodes changes. The clusters must adapt to the network’s 

load. Fig. 4 depicts the Improved WCL algorithm’s cluster formation. Weight is used 

in this algorithm to calculate the distance between nodes. There are several anchor 
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nodes deployed, and the unknown node calculates its position using the coordinates 

of the anchor nodes. If an unknown node is within the range of several anchors (more 

than three anchors), the unknown node is considered to be within the range of 

intersection anchor circles. Based on geographic boundaries, the algorithm generates 

clusters with a predefined shape, preferably a hexagon. Each cluster chooses one node 

to serve as the cluster head. The cluster head keeps a list of all adjacent clusters and 

the locations of their member nodes. Clusters are formed at random in this approach, 

and the cluster heads are elected by the cluster members, which can increase energy 

consumption. The clusters are unbalanced, and each round necessitates a  

re-clustering.  

 

 
Fig. 3. SA-Centroid clustering approach 

 

Fig. 5 depicts the cluster formation of ECWL, which does not produce 

significant unbalanced clusters. The cluster heads in this algorithm are not chosen at 

random, but rather based on the energy Centroid coordinate. This algorithm has 

proven to be more effective at load balancing. The re-clustering is performed based 

on the energy drain, with both the energy Centroid and the distance Centroid 

calculated. This algorithm, however, does not take coverage into account. 

 

 
Fig. 4. Improved WCL Clustering approach 
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Fig. 5. ECWL Clustering approach 

 

 
Fig. 6. Proposed D-Centroid approach 

 

Fig. 6 depicts the proposed D-Centroid Algorithm forming balanced clusters to 

improve load balancing. Because this algorithm employs static deployment, the sink 

is aware of the location of all nodes prior to data transmission, which can help to 

reduce packet drop. This algorithm takes into account the deployment area’s coverage 

and thus positions the sensors uniformly throughout the sensing area. The residual 

energy of the nodes is used to re-cluster them, and the distance to the sink is also 

taken into account. Because this algorithm generates balanced clusters, the load on 

the CHs is distributed evenly across all clusters, potentially increasing the network's 

lifetime. 

Fig. 7 compares the energy consumption of the SA-Centroid, Improved WCL, 

ECWL, and the proposed D-Centroid algorithms. The amount of energy consumed is 

determined by the sensing environment, data computation, and data transmission. As 

a result, the following equation is used to calculate the energy consumption of each 

node in the network, 
(11)  𝐸consumed = 𝐸initial − 𝐸residual, 

where 𝐸consumed is the total energy consumption of the node, 𝐸initial is the initial 

energy of the node, and 𝐸residual is the remaining energy of the node. After each 
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round, the residual energy of the nodes is calculated. As a result, the total network’s 

energy consumption can be calculated using the following equation: 

(12)  ∑ 𝐸consumed
𝑁
𝑐=1 =  ∑ 𝐸initial

𝑁
𝑖=1 − ∑ 𝐸residual.  

𝑁
𝑟=1  

 

 
Fig. 7. Comparison of energy consumption 

 

Fig. 7 shows that the proposed algorithm consumes 50% of the energy after 

3000 rounds, whereas SA-Centroid consumes 50% after 2000 rounds, Improved 

WCL consumes 50% after 2300 rounds, and ECWL consumes 50% after 2700 

rounds. Because the proposed algorithm's communication is based on residual energy 

and distance to the sink, the energy required to transmit data is reduced, resulting in 

an increase in network lifetime. The residual energy comparison in Fig. 8 

demonstrates that the proposed approach has the highest residual energy even after 

4500 rounds. This demonstrates that energy is balanced throughout the network, 

which can effectively balance network load while also contributing to an increase in 

network lifetime. 

 

 
Fig. 8. Comparison of residual energy 
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5. Conclusion 

In this paper the static deployment of nodes in wireless sensor networks is considered, 

and an energy-efficient static deployment algorithm D-Centroid is proposed. The 

entire deployment area is covered while deploying the nodes, and because it is a static 

deployment strategy, the sink knows the location of all nodes in the network. This 

algorithm determines the optimal number of cluster heads based on the number of 

deployed nodes. This algorithm balances the clusters it creates, thereby balancing 

network load and energy consumption. As the distance to the sink is taken into 

account before transmission, the energy required for transmission is balanced across 

all clusters, increasing network lifetime. The proposed algorithm outperforms  

SA-Centroid by 100%, Improved WCL by 49 % and ECWL by 28 %. Since all cluster 

nodes are given the opportunity to become CHs, the intermediate CHs should be used 

for multihop communication in the final rounds. We are attempting to improve data 

aggregation techniques by incorporating a mobile sink into this algorithm. 
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