
 3

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 22, No 1

Sofia • 2022 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2022-0001

Hiding Sensitive High Utility and Frequent Itemsets Based

on Constrained Intersection Lattice

Huynh Trieu Vy1, Le Quoc Hai2, Nguyen Thanh Long2, Truong Ngoc

Chau3, Le Quoc Hieu4
1Information Technology Faculty, Pham Van Dong University, Vietnam
2Information Technology Faculty, Quang Tri Teacher Training College, Vietnam
3Information Technology Faculty, Da Nang University, Vietnam
4Faculty of Information Systems, University of Economics And Law, Vietnam

E-mails: htvy@pdu.edu.vn hailq79@gmail.com long_nt@qtttc.edu.vn

truongngocchau@yahoo.com hieulq@uel.edu.vn

Abstract: Hiding high utility and frequent itemset is the method used to preserve

sensitive knowledge from being revealed by pattern mining process. Its goal is to

remove sensitive high utility and frequent itemsets from a database before sharing it

for data mining purposes while minimizing the side effects. The current methods

succeed in the hiding goal but they cause high side effects. This paper proposes a

novel algorithm, named HSUFIBL, that applies a heuristic for finding victim item

based on the constrained intersection lattice theory. This algorithm specifies exactly

the condition that allows the application of utility reduction or support reduction

method, the victim item, and the victim transaction for the hiding process so that the

process needs the fewest data modifications and gives the lowest number of lost non-

sensitive itemsets. The experimental results indicate that the HSUFIBL algorithm

achieves better performance than previous works in minimizing the side effect.

Keywords: High utility mining, High utility and frequent itemset, Sensitive high utility

and frequent itemset hiding, Privacy-preserving utility mining.

1. Introduction

Today the development of international business and e-commerce requires

companies to share their data with partners to promote their collaboration. However,

sharing data between companies could potentially create more risks; therefore, the

sensitive information, which is discovered by data mining algorithms can be explored

by their competitors. This harms their business and collaboration. In order to preserve

sensitive information while maintaining other valuable information in database, a

number of algorithms have been proposed for hiding sensitive information from

database before sharing it with the partners [2, 3, 9, 13].

 4

Privacy-Preserving high Utility Itemset Mining (PPUIM) is a technique that

preserves sensitive information which can be extracted by High Utility Itemset

Mining (HUIM) algorithm from database [5]. Its goal is to remove all sensitive high

utility itemsets from a database by reducing the utility of the data item. This process

leads to possible loss of non-sensitive itemsets, difference of data mining results, and

data values of the sanitized database in comparison to the original database. They are

defined as side effects of the PPUIM algorithms. The target of the PPUIM algorithm

is to sanitize a database in order to hide all sensitive itemsets with the lowest side

effects. To achieve this, many heuristic methods have been proposed to optimize the

hiding process by finding exactly victim items and victim transactions for the data

modification. The first PPUIM algorithms named HHUIF (Hiding High Utility Item

First) algorithm and MSICF (Maximum Sensitive Itemsets Conflict First) algorithm

have been proposed by Y e h and H s u [16] and their improvements have been then

developed [7, 10, 11].

Privacy-Preserving high Utility and Frequent Itemset Mining (PPUFIM) is an

extension of the PPUIM. Although the PPUIM algorithms can be applied to the

PPUFIM problem, they result in low performance. To solve this issue, R a j a l a x m i

and N a t a r a j a n [14] proposed two algorithms named MSMU (Minimum Support

and Maximum Utility) and MCRSU (Maximum Conflict Ratio for Support and

Utility). They succeeded in hiding all sensitive itemsets but they failed in minimizing

the side effects. To overcome this, L i u, X u and L v [12] proposed a maximal border

to specify whether the algorithm should reduce support or utility of a sensitive itemset

in order to achieve higher performance. This method gained better results compared

to previous works. However, the side effects are still high because the proposed

algorithm HUFI (Hiding Utility and Frequent Itemsets) uses the same method for

selecting victim items and victim transactions in both cases of support reduction and

utility reduction.

This paper aims to propose a novel algorithm for the PPUFIM problem to

overcome the drawback of the HUFI algorithm [12] and the current PPUIM

algorithms when dealing with the PPUFIM problem. In order to minimize the side

effect, this paper proposes a heuristic to specify which method, including support

reduction and utility reduction method, contributes to reducing the side effects.

Moreover, this paper defines a constrained intersection lattice of high utility and

frequent itemset. Then, a heuristic strategy is proposed based on this lattice to select

exactly the victim item for the data modification process. This strategy therefore

achieves better performance than the previous works.

The remaining of this paper consists of four main sections. In Section 2, we

introduce some works related to PPUIM. In Section 3, we provide definitions and

statements related to the high utility and frequent itemset mining (HUFIM) problem.

Then in Section 4, we propose a new algorithm named HSUFIBL. In this section, by

experimental results, we will prove the efficiency of our algorithm and show that it

causes lower side effects in comparison to the previous algorithms proposed in

[7, 12, 14]. And the last section is the conclusion.

 5

2. Related works

The general process of data sanitization approach for PPUIM includes two steps:

Firstly, an item is specified as a victim item and a transaction is specified as a victim

transaction in such a way that modifying value of the victim item in the victim

transaction causes the lowest side effects. Secondly, the victim item in the victim

transaction is then reduced in order to decrease the utility of the sensitive itemset

below a given a threshold. The side effects of a high utility itemset hiding algorithm

depend on the strategy for specifying victim item and victim transaction. The first

algorithms named HHUIF and MSICF have been proposed by Y e h and H s u [16]

in 2010. In these algorithms, the victim item is specified as an item that has maximal

utility at the victim transaction. With a simple strategy for the hiding process, HHUIF

and MSICF result in high side effects. To overcome this drawback, more efficient

algorithms such as MSU-MAU and MSU-MIU [11], EHSHUI [7] have been then

proposed.

In reality, both frequency and utility of itemsets are considered for business or

decision making. High utility and frequent itemset hiding algorithm therefore is

developed for the sensitive knowledge protection purpose. In 2012, R a j a l a x m i

and N a t a r a j a n [14] have proposed two novel algorithms named MSMU and

MCRSU. The methodology [14] is to modify the value of data item to reduce both

support and utility of the sensitive itemset to less than the minimum support threshold

and minimum utility threshold, respectively. Both algorithms firstly reduce support

of the sensitive itemset. In the case of the sensitive itemset being still not hidden, they

then reduce its utility below the minimum utility threshold. Although the MSMU and

MCRSU strategies succeeded in hiding all of the sensitive itemsets, they failed to

minimize the side effects. Accordingly, when hiding a sensitive high utility and

frequent itemset, MSMU and MCRSU cause the loss of many non-sensitive high

utility and frequent itemsets. This weakness has been then overcome by the HUFI

algorithm which have been proposed by L i u, X u and L v [12]. In order to hide the

sensitive itemset, the HUFI algorithm modifies the value of a sensitive item until

either the support of the sensitive itemset is less than the minimum support threshold

or the utility of the sensitive itemset is less than the minimum utility threshold. To

minimize the side effect, L i u, X u and L v [12] has proposed a maximal border to

specify whether the algorithm should reduce support or utility to achieve better

performance. This method gains better results in comparison to the previous works.

However, the HUFI algorithm uses the same method to select victim item and victim

transaction for both support and utility reduction. This still causes too many side

effects. In order to solve this problem, in this paper, we propose a heuristic to specify

the victim item and victim transaction for the case of utility reduction. For the support

reduction case, we propose a constrained intersection lattice of high utility and

frequent itemsets, and then based on this lattice we propose a heuristic for victim item

specification.

 6

3. Basic preliminaries and problem statement

In this section, we recall the basic concepts presented in previous works [7, 11, 12,

15, 16]. We apply these theories to propose the novel algorithm.

Let 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑚} be a finite set of items, where each item 𝑖𝑙 ∈ 𝐼 has an

external utility 𝑝(𝑖𝑙). A transaction database D is a set of transactions {𝑇1, 𝑇2, … , 𝑇𝑛},

where each transaction 𝑇𝑐 ⊆ 𝐼, 1 ≤ 𝑐 ≤ 𝑛, has a unique identifier, called Tid. Each

item i in a transaction Tc is associated with a weight indicator called quantity 𝑞(𝑖, 𝑇𝑐),

which is the number of items i appearing in the transaction Tc. An itemset X⊆ 𝐼

containing k items is called a k-itemset. A transaction Tc is said to support an itemset

X if X ⊆ T.

Table 1. Transaction database D

Tid Transaction Tid Transaction

T1 A(3), B(1), C(5), F(2) T6 B(2), C(2), F(1), H(2)

T2 D(2), E(3), F(3), G(1) T7 D(1), E(1), F(3), G(2), H(2)

T3 A(2), B(3), D(3), E(5), F(1) T8 B(1), D(2), H(2)

T4 A(3), B(2), C(1), E(2) T9 B(4), D(3), F(1)

T5 D(2), E(3), F(5) T10 B(4), D(1), F(3)

Table 2. External utility of transaction dataset D

Item A B C D E F G H

Utility 4 2 2 1 2 1 2 1

Definition 1. The support of an itemset X in the database ,D denoted as

support(X), is defined as

support(𝑋) = supc(𝑋) |𝐷|⁄ ,

where, supc(𝑋) is support count of an itemset X, is defined as

supc(𝑋) = |{𝑇𝑐|𝑋 ⊆ 𝑇𝑐 , 𝑇𝑐 ∈ 𝐷}|.
Definition 2. An itemset X in the database D is said to be a frequent itemset if

its support is greater than or equal to a predetermined minimum support threshold 𝛿.

Definition 3 (The utility). Let i be an item, X be an itemset, and i, X Tc, we

have:

The utility of an item i in a transaction Tc is defined by 𝑢(𝑖, 𝑇𝑐) = 𝑞(𝑖, 𝑇𝑐) ∗ 𝑝(𝑖).

The utility of an itemset X in a transaction Tc is defined by

𝑢(𝑋, 𝑇𝑐) = ∑ 𝑢(𝑖, 𝑇𝑐)𝑖∈𝑋 .

The utility of an itemset X in a transaction database D is defined by

𝑢(𝑋) = ∑ 𝑢(𝑋, 𝑇𝑐)𝑋⊆𝑇𝑐∧𝑇𝑐∈𝐷 .

The utility of a transaction Tc in a transaction database D is defined by

𝑡𝑢(𝑇𝑐) = ∑ 𝑢(𝑖, 𝑇𝑐)𝑖∈𝑇𝑐
.

Definition 4. An itemset X is said to be a high utility itemset if the utility of X

is not less than minimum utility threshold 휀, that is 𝑢(𝑋) ≥ 휀.

Definition 5. The itemset X is said to be a high utility and frequent itemset if it

is a frequent and high utility itemset. Let HUFIs be a set of High Utility and Frequent

Itemsets then we have HUFIs = {𝑋|𝑋 ⊆ 𝐼, 𝑢(𝑋) ≥ 휀 ∧ support(𝑋) ≥ 𝛿}.

 7

For example Table 3 is a set of high utility and frequent itemsets mined from

the data set given in Table 1 and Table 2 where the minimum utility threshold is

휀 = 27 and the support threshold is 𝛿 = 20%.

Table 3. The set HUFIs mined from D with 휀 = 27 and 𝛿 = 20%
Itemset Utility Support(%) Itemset Utility Support(%) Itemset Utility Support(%)

A 32 30 ABF 31 20 DF 30 60

AB 44 30 B 34 70 DEF 44 40

AC 36 20 BD 33 40 E 28 50

AE 42 20 BF 36 50 EF 36 40

ABC 42 20 BDF 34 30

ABE 44 20 DE 32 40

Definition 6 (Sensitive high utility and frequent itemset). In the set of high

utility and frequent itemsets, there are some itemsets containing useful information

that is needed for making business decision. They are called Sensitive High Utility

and Frequent Itemsets, in short is SHUFIs.

Accordingly, the set of non-sensitive high utility and frequent itemsets, denoted

by nonSHUFIs, is defined as: nonSHUFIs = HUFIs – SHUFIs.

The set of SHUFIs needs to be preserved from being revealed when sharing the

database containing them.

Definition 7. Hiding SHUFIs is the process of transforming the original

transaction database D to a sanitized transaction database D', such that only the

nonSHUFIs can be mined from sanitized database D'.

Definition 8 (Side effects). The side effects of the SHUFI hiding process are

the difference of the content of data items and the mining results of the HUFI

algorithm between the original database and the sanitized database. They are:

• Missing Cost (MC): The MC is the ratio of the number of non-sensitive high

utility and frequent itemsets lost by the hiding process and the number of original

ones, and is defined as follows:

(1) MC =
|nonSHUFIs\nonSHUFIs′|

|nonSHUFIs|
.

Where nonSHUFIs and nonSHUFIs′ are non-sensitive high utility and frequent

itemsets mined from original database D and sanitized database D', respectively.

• Hiding Failure (HF): The HF is the number of SHUFI discovered from the

sanitized database, namely:

(2) HF = |SHUFIs ∩ HUFIs′|.
• The similarity rate reflects the difference between the original database and

the sanitized database, including: Database Structure Similarity (DSS), Database

Utility Similarity (DUS), and Itemsets Utility Similarity (IUS), which are defined as

[7]:

(3) DSS = √∑ (𝑓(tp𝑘
𝐷) − 𝑓(tp𝑘

𝐷′
))

2|tp𝑘
𝐷∪tp𝑘

𝐷′
|

𝑘=1 ,

where tp𝐷
 and tp𝐷′

are the set of transaction pattern in the original database D and

the sanitized database D', respectively; 𝑓(tp𝑘
𝐷) and 𝑓(tp𝑘

𝐷′
) are frequency of a pattern

in original database D and sanitized database D'.

 8

(4) DUS =
∑ tu(𝑇𝑐)𝑇𝑐∈𝐷′

∑ tu(𝑇𝑐)𝑇𝑐∈𝐷
,

(5) IUS =
∑ 𝑢(𝑋)𝑋∈HUFIs′

∑ 𝑢(𝑋)𝑋∈HUFIs
.

4. Algorithm proposal

In this section we propose a novel algorithm named HSUFIBL (Hiding Sensitive high

Utility and Frequent Itemsets Based on constrained intersection Lattice) to efficiently

hide sensitive high utility and frequent itemsets. This algorithm includes three stages.

In the first stage, the maximal border theory is applied to analyze which method

between support reduction or utility reduction is the best for minimizing side effects.

In the second stage, a heuristic strategy is proposed to select victim item and victim

transaction for data modification. The third stage is data modification. The detail is

presented as follows.

4.1. Analyzing the impact of data modification and methods for hiding strategy

A transaction database D is considered, with a minimum utility threshold 휀 and a

minimum support threshold 𝛿; Si
is i-th sensitive high utility and frequent itemset that

needs to be hidden. Itemset Si is hidden if its support is less than 𝛿 or its utility is less

than 휀. In this paper, we reduce the support or utility of Si by modifying the value of

a sensitive item of Si in an original database. This process is called database

sanitization.

Therefore, the process for hiding itemset Si can be done by one of the following

methods:

• Method 1 (Hiding Si by support reduction). To reduce the support of Si

below a minimum support threshold; this method deletes an item belonging to Si at a

transaction supporting Si. The minimal support value needed to be reduced to hide Si

is

(6) ds = supc(𝑆𝑖) − ⌈𝛿 ∗ |𝐷|⌉ + 1.
• Method 2 (Hiding Si by utility reduction). To reduce the utility of Si below

the minimum utility threshold; this method reduces the internal utility of an item

belonging to Si at a transaction supporting Si. The minimal utility value needed to be

reduced to hide Si is

(7) du = 𝑢(𝑆𝑖) − 휀 + 1.
The process of data modification for the hiding process always causes side

effects. The target of the hiding algorithm is to hide high utility and frequent itemsets

with minimal side effects. In general, the side effect of sensitive high utility and

frequent itemset hiding depends on:

• Which method is selected for the hiding algorithm?

• Which strategy is applied for selecting victim item and victim transaction?

The victim item (ivic) is an item of a sensitive high utility and frequent itemset

Si, so that modifying ivic from a transaction causes minimal side effects. The victim

transaction (Tvic) is a transaction containing sensitive high utility and frequent itemset

 9

Si, so that modifying the internal utility of 𝑖vic ∈ 𝑆𝑖 from Tvic causes minimal side

effects.

Victim item ivic is selected for modification at the victim transaction Tvic in order

to hide the sensitive itemset Si. This means that modifying utility or support of victim

item leads to the reduction of utility or support of Si, respectively. Let SA be the high

utility and frequent itemset affected by modifying the victim item ivic at the victim

transaction Tvic. Then setSA is the set of SA given by

setSA = {SA|𝑖vic ∈ SA, SA ⊆ 𝑇vic}.

Property 1. If ivic is deleted from transaction Tvic then:

• Utility of Si will be decreased by u(Si, Tvic) and the utility of every itemset in

SA setSA will also be decreased by u(SA, Tvic).

• Support count of Si and every itemset SA ∈ setSA will be decreased by 1, that

is the support of Si and every itemset in SA ∈ setSA will be decreased by 1/|𝐷|.
P r o o f : Suppose that ST𝑆𝑖 = {ST1, ST2, … , ST𝑘} is a set of transaction

supporting Si, then 𝑢(𝑆𝑖) = ∑ 𝑢(𝑆𝑖, ST𝑗)ST𝑗∈STS𝑖
, supc(𝑆𝑖) = |ST𝑆𝑖| and

support(𝑆𝑖) = supc(𝑆𝑖) ⁄ |𝐷| . If ivic

is deleted at transaction 𝑇vic ∈ STS𝑖 then

transaction Tvic

does not support Si and STSi will be replaced by STS𝑖 = STS𝑖\𝑇vic.

Thus, if ivic

is deleted at Tvic then 𝑢(𝑆𝑖) = 𝑢(𝑆𝑖) − 𝑢(𝑆𝑖, 𝑇vic),

supc(𝑆𝑖) = supc(𝑆𝑖) − 1 and support(𝑆𝑖) = support(𝑆𝑖) − 1 |𝐷|⁄ .

Similarly, if ivic is deleted at 𝑇vic ∈ STS𝑖 then for an itemset SA ∈ setSA we have

𝑢(SA) = 𝑢(SA) − 𝑢(SA, 𝑇vic), supc(SA) = supc(SA) − 1 and

support(SA) = support(SA) − 1 ⁄ |𝐷|.
Property 2. If the internal utility of item ivic at transaction Tvic is decreased by

a value r, 𝑟 ∈ 𝛮 then:

• If 𝑟 < 𝑞(𝑖vic, 𝑇vic) then the utility of Si and the utility of an itemset
SA ∈ setSA is decreased by a value 𝑟 ∗ 𝑝(𝑖vic), meanwhile the support of Si and

itemsets SA ∈ setSA are not affected.

• If 𝑟 = 𝑞(𝑖vic, 𝑇vic) then the side effect of hiding process is equal to the side

effect of deleting item ivic from Tvic.

P r o o f : If the internal utility of ivic
at Tvic is decreased by a value

𝑟 < 𝑞(𝑖vic, 𝑇vic), this means that the internal utility of ivic
at Tvic is updated by a new

value 𝑞(𝑖vic, 𝑇vic) = 𝑞(𝑖vic, 𝑇vic) − 𝑟 > 0, then item ivic
is not deleted from Tvic.

Therefore, the support of Si and itemset SA ∈ setSA is not affected. The internal

utility of ivic
at Tvic is updated by a new value 𝑞(𝑖vic, 𝑇vic) = 𝑞(𝑖vic, 𝑇vic) − 𝑟.

Consequently, the utility of Si and itemsets SA ∈ setSA is decreased by a value
𝑟 ∗ 𝑝(𝑖vic).

If 𝑟 = 𝑞(𝑖vic, 𝑇vic) then the internal utility of ivic at Tvic is updated by a new value

𝑞(𝑖vic, 𝑇vic) = 𝑞(𝑖vic, 𝑇vic) − 𝑟 = 0. This means that ivic is deleted from Tvic. As a

result, according to Property 1, the utility of Si is decreased by a value 𝑢(𝑆𝑖, 𝑇vic) and

the utility of itemset SA ∈ setSA is decreased by a value 𝑢(SA, 𝑇vic) at the same time.

The support count of Si and every itemset SA ∈ setSA is decreased by 1. This means

that their support is decreased by 1 |𝐷|⁄ .

 10

In order to select the method for hiding sensitive high utility and frequent

itemset, L i u, X u and L v [12] have defined a maximal utility border and a minimal

utility border notions for sensitive itemset iS as follows.

Definition 9. Given ST𝑆𝑖 = {ST1, ST2, … , ST𝑘} is a set of transactions supporting

𝑆𝑖, which is sorted in descending order of 𝑢(𝑆𝑖, ST𝑗), ST𝑗 ∈ ST𝑆𝑖 . The maximal utility

border of 𝑆𝑖 which is denoted by Bdmax and the minimal utility border of 𝑆𝑖 which is

denoted by Bdmin are respectively defined as follows:

(8) {
Bdmax = ∑ 𝑢(𝑆𝑖, ST𝑗), ST𝑗 ∈ STS𝑖

ds
𝑗=1 ,

Bdmin = ∑ 𝑢(𝑆𝑖, ST𝑗), ST𝑗 ∈ STS𝑖.𝑘
𝑗=𝑘−ds+1

Basing on the value of Bdmax and Bdmin, the authors [12] proposed the

conditions for selecting the best method for hiding sensitive high utility and frequent

itemset and they are presented in Property 3 and Property 4.

Property 3 [12]. If Bdmax ≤ du then hiding 𝑆𝑖 by Method 1 or Method 2 causes

the same side effect, however, Method 2 has achieved better performance because it

needs less CPU-time.

Property 4 [12]. If Bdmin > du then hiding 𝑆𝑖 by Method 2 achieves better

results than by Method 1 in both minimizing side effect and CPU-Time.

By Property 3 and Property 4, the conditions to decide which method for hiding

the itemset 𝑆𝑖 with lower side effect is specified as follows:

(9) {
If Bdmax ≤ du then Method 1 selected,
If Bdmin > du then Method 2 selected.

In case of Bdmax > du and Bdmin ≤ du then neither Method 1 nor Method 2 is

specified as the best. For this case, the HUFI algorithm [12] selects Method 2 for the

hiding process. According to Property 1 and Property 2, the impact on non-sensitive

high utility and frequent itemset caused by using Method 2 is less than the one caused

by using Method 1.

For this reason, we apply Method 1 for the case of Bdmax ≤ du. Otherwise, we

apply Method 2 for the remaining cases.

4.2. Victim transaction and victim item selection

The HUFI algorithm [12] applies the same strategy to select victim item and victim

transaction for both cases using Method 1 and Method 2 for the hiding process. In

this paper, we propose a novel algorithm, named HSUFIBL, that applies different

strategies to select victim item and victim transaction for each case using Method 1

or Method 2. This contributes to reducing the side effects of the hiding process.

• Case 1. Applying Method 2 for hiding sensitive high utility and frequent

itemset:

Property 5. Let 𝑆𝑖 be a sensitive high utility and frequent itemset that needs to

be hidden. Let two items 𝑥, 𝑦 ∈ 𝑆𝑖, and two transactions ST𝑥 ⊇ 𝑆𝑖 and ST𝑦 ⊇ 𝑆𝑖 be

given. If 𝑢(𝑥, ST𝑥) ≥ du and 𝑢(𝑦, ST𝑦) < du, then modifying item x at transaction

STx causes less side effect than modifying item y at transaction STy.

P r o o f : In order to hide 𝑆𝑖, the internal utility of the victim item 𝑖vic at the

victim transaction 𝑇vic must be decreased by a value 𝑟 = ⌈du 𝑝(𝑖vic)⁄ ⌉. In case of

𝑢(𝑥, ST𝑥) ≥ du, 𝑆𝑖 is hidden after subtracting a value r from the internal utility of

 11

item x at transaction STx. This needs once to modify the data. Because
𝑢(𝑥, ST𝑥) ≥ du and 𝑞(𝑥, ST𝑥) ≥ 𝑟, the internal utility of item x at transaction STx is

updated by a new value as 𝑞(𝑥, ST𝑥) = 𝑞(𝑥, ST𝑥) − 𝑟 ≥ 0. In case of
𝑢(𝑦, ST𝑦) < du, meaning that 𝑞(𝑦, ST𝑦) < 𝑟 item y needs to be removed from

transaction STy. Although item y is removed from STy, the itemset 𝑆𝑖 is not hidden .

Consequently, if the item x is modified at transaction STx, then the hiding

process needs once to modify the database. Otherwise, if the item y is modified at

transaction STy then the hiding process needs more than one time to modify data. By

Property 2, reducing 𝑢(𝑥, ST𝑥) causes lower side effect compared to reducing

𝑢(𝑦, ST𝑦).

By Property 5, if there is an item 𝑥 ∈ 𝑆𝑖 and transaction ST𝑥 ∈ STS𝑖 such that

𝑢(𝑥, ST𝑥) ≥ du, then the victim item will be 𝑖vic = 𝑥 and the victim transaction will

be 𝑇vic = ST𝑥. In case that there is more than one item x such that 𝑢(𝑥, ST𝑥) ≥ du,

then victim item is selected from one of such items x in such a way that 𝑢(𝑖vic, 𝑇vic)

achieves the maximal value, in the other words:

(10) (𝑖vic, 𝑇vic) = argmax(𝑥,ST𝑥){𝑢(𝑥, ST𝑥)|𝑢(𝑥, ST𝑥) ≥ du, ST𝑥 ∈ STS𝑖}.

If there is no item 𝑥 ∈ 𝑆𝑖 and no transaction ST𝑥 ∈ STS𝑖 such that
𝑢(𝑥, ST𝑥) ≥ du, meaning that 𝑢(𝑥, ST𝑥) < du, then item x at transaction STx must

be reduced to zero (this means that the item x is removed from STx) in order to reduce

the utility of 𝑆𝑖. Therefore, victim transaction is selected as:

(11) 𝑇vic = argmaxST = {𝑢(𝑆𝑖, ST), ST ∈ STS𝑖}.

This aims to make 𝑢(𝑆𝑖) to be quickly reduced below the minimal utility

threshold, so that the data modification can be done faster. Accordingly, the victim

item has lowest support among high utility itemsets supported by the transaction 𝑇vic.

This helps to minimize the number of itemsets affected by the hiding process.

Namely,

(12) 𝑖vic = argmin𝑥 = {𝑓(𝑥), 𝑥 ∈ 𝑆𝑖 ∧ 𝑓(𝑥) = |𝑋 ∈ HUFIs|𝑋 ⊆ 𝑇vic ∧ 𝑥 ∈ 𝑋|}.

• Case 2: Applying Method 1 for hiding sensitive high utility and frequent

itemset:

For this case, sensitive high utility and frequent itemset 𝑆𝑖 will be hidden based

on the support reduction strategy. Therefore, the transaction 𝑇vic at which 𝑆𝑖 gains

the minimal utility among transactions containing it is selected as a victim

transaction. This means that 𝑢(𝑆𝑖) reaches a minimum at 𝑇vic, thus:

(13) 𝑇vic = argminST = {𝑢(𝑆𝑖, ST), ST ∈ STS𝑖}.

Modifying the victim item at 𝑇vic causes the least impact on non-sensitive high

utility and frequent itemsets.

In order to build the strategy for specifying victim item using lattice theory [6]

and intersection lattice theory proposed by L e et al. [9], and L e, S. A r c h-I n t, and

N. A r c h-I n t [13], we propose a new concept of constrained intersection lattice for

a set of high utility and frequent itemsets.

Definition 10 (The set lattice) [6]. Let U be a finite and non-empty set. The

subsets of U are denoted by X, Y, … The universal space of subsets of U is said to

be the power set of U and is denoted by Poset(𝑈). It is an ordered set under relation

operator ⊆. The least upper bound and the greatest lower bound of two subsets {𝑋, 𝑌}

are sup({𝑋, 𝑌}) and inf({𝑋, 𝑌}), respectively. (Poset(𝑈); ⊆) is a lattice if and only

 12

if existing sup({𝑋, 𝑌}) and inf({𝑋, 𝑌}) for any 𝑋, 𝑌 ∈ 𝑈 where sup({𝑋, 𝑌}) = 𝑋 ∪ 𝑌

and inf({𝑋, 𝑌}) = 𝑋 ∩ 𝑌. If ℒ ⊆ 𝑈 then (ℒ; ⊆) is a lattice if sup({𝑋, 𝑌}) = 𝑋 ∪ 𝑌

and inf({𝑋, 𝑌}) = 𝑋 ∩ 𝑌 for any 𝑋, 𝑌 ∈ ℒ. Similarly, if (ℒ; ⊆) is a lattice with

inf({𝑋, 𝑌}) = 𝑋 ∩ 𝑌 for any 𝑋, 𝑌 ∈ ℒ then (ℒ; ⊆) is called a semi-lattice closed under

intersection operator, and called an intersection lattice.

Definition 11 (Intersection lattice of frequent itemsets) [9]. Let FIs be the set

of Frequent Itemsets in a database D. Then (FIs; ⊆) is an intersection lattice.

The (FIs; ⊆) is an intersection lattice because by Apriori property [1], ∀𝑋, 𝑌 ∈
FIs we have inf({𝑋, 𝑌}) = 𝑋 ∩ 𝑌 ∈ FIs. In the other words, (FIs; ⊆) is closed under

intersection operator ∩.

However, (HUFIs; ⊆) is not an intersection lattice because it does not satisfy

Apriori property. In other words, (HUFIs; ⊆) is not closed under intersection

operator. For example, let us recall the set HUFIs given in Table 3, we have itemsets

BF, DF ∈ HUFIs but BF ∩ DF ∉ HUFIs.

In order to apply the property of intersection lattice for designing an improved

hiding strategy, we define a new concept of intersection operator and call it as

constrained intersection operator.

Definition 12 (Constrained intersection operator). Given {HUFIs ∪ ∅}, a

constrained intersection operator ∩𝐻 is specified as follows: ∀𝑋, 𝑌 ∈ HUFIs,

(14) 𝑋 ∩𝐻 𝑌 = {
𝑋 ∩ 𝑌 if 𝑋 ∩ 𝑌 ∈ HUFIs,
∅ if 𝑋 ∩ 𝑌 ∉ HUFIs.

Definition 13 (Constrained intersection lattice of HUFIs). Let {HUFIs ∪ ∅}

be a set satisfying the constrained intersection operator ∩𝐻, (HUFIs ∪ ∅; ⊆) is a

constrained intersection lattice, where inf({𝑋, 𝑌}) = 𝑋 ∩𝐻 𝑌 for ∀𝑋, 𝑌 ∈ HUFIs.

This means that the constrained intersection lattice is closed under the

constrained intersection operator.

Definition 14. The generating set of HUFIs, denoted by Gen(HUFIs), is the

smallest subset of HUFIs such that for every itemset in HUFIs can be generated by

constrained intersection of some itemsets in Gen(HUFIs). In the other words,

(15) HUFIs = {𝑋|𝑋 = ⋂ 𝑌𝑘 , 𝑌𝑘 ∈ Gen(HUFIs)𝑘∈𝑁∗ }.

The set Gen(HUFIs) can be computed as follows:

(16) Gen(HUFIs) = {𝑋 ∈ HUFIs|𝑑(𝑋) ≤ 1},

where 𝑑(𝑋) = |{𝑌 ∈ HUFIs|𝑋 ⊂ 𝑌}|.
For example, the generated set of HUFIs in Table 3 is

Gen(HUFIs) = {AC, AE, BD, DE, EF, ABC, ABE, ABF, BDF, DEF}.

Definition 15. For each constrained intersection lattice (HUFIs ∪ ∅; ⊆), the set

of maximal HUFIs is denoted by Coatom(HUFIs), and is defined as follow:

(17) Coatom(HUFIs) = {𝑋|𝑋 ∈ Gen(HUFIs) ∧ 𝑑(𝑋) = 0}.

For example, the set containing maximal nodes of (HUFIs ∪ ∅; ⊆) in Fig. 1 is

Coatom(HUFIs) = {ABC, ABE, ABF, BEF, DEF}.

 13

Fig. 1. The constrained intersection lattice of HUFIs presented in Table 3 (the value inside each node

shows the HUFI and its Support/Utility)

Property 6. Itemsets in the set Coatom(HUFIs) have the lowest support

compared to the others in the constrained intersection lattice (HUFIs ∪ ∅; ⊆).
P r o o f : By Definition 15 and Apriori property [1] we achieve the proof.

The constrained intersection lattice (HUFIs ∪ ∅; ⊆) contains sensitive high

utility and frequent itemset and non-sensitive high utility and frequent itemset. Hiding

a sensitive high utility and frequent itemset and non-sensitive high utility and frequent

itemset means to remove it from the constrained intersection lattice. This can be done

by reducing support (Method 1) or decreasing utility (Method 2) of SHUFIs.

However, removing a node from the lattice by Method 1 affects the related nodes and

this may lead to results that some non-sensitive nodes are hidden. Therefore, the

important requirement for selecting a victim item is to select the item in such a way

that reducing its support causes the least impacts to the other nodes of the lattice.

Definition 16. Given the itemset 𝐶 ∈ Coatom(HUFIs), the set of high utility

and frequent itemsets generated by C is denoted by GenU(𝐶) and it is defined as

follows:

(18) GenU(𝐶) = {𝐶\𝑖𝑘, 𝑖𝑘 ∈ 𝐶, 𝑘 = 1, … , |𝐶||𝑢(𝐶\𝑖𝑘) ≥ 휀 ∧ support(𝐶\𝑖𝑘) ≥ 𝛿}.

For example, GenU(ABC) = {AB, AC}, GenU(DEF) = {DE, DF, EF}.

By Apriori property [1], itemsets in the set GenU(𝐶) have the lowest supports

compared to the sub-itemsets of C. Therefore, they will be lost first when reducing

support of their sub-itemsets. This means that the nodes in GenU(𝐶) are the easiest

to be removed from the lattice, when hiding a sensitive node by reducing its support

using Method 1. Therefore, if a sensitive node 𝑆𝑖 is hidden by using Method 1, then

its supper itemsets in Coatom(HUFIs) will be hidden.

Theorem 1. If a node 𝑋 ∈ GenU(𝐶) in the constrained intersection lattice

(HUFIs ∪ ∅; ⊆) is not hidden by using Method 1, then every node 𝑋′ ⊂ 𝑋 in the

lattice (HUFIs ∪ ∅; ⊆) will not be hidden, too.

P r o o f : By the Apriori property, if 𝑋′ ⊂ 𝑋 then support(𝑋) ≤ support(𝑋′).

Therefore, if the itemset X is not hidden when reducing its support
(support(𝑋) ≥ 𝛿), then support(𝑋′) ≥ 𝛿. In other words, 𝑋′ is not hidden.

 14

The process of hiding SHUFIs by using Method 1 may lead to hiding nonHUFIs,

and this leads to increasing of side effects. In order to overcome this problem, when

using Method 1 for hiding SHUFIs, we apply a heuristic to select the victim item

based on protecting the set of itemsets in GenU(𝐶) which are the easiest vulnerable

in the lattice from being removed from the lattice.

4.3. Algorithm proposal

Based on the theory that we developed in Sections 4.1 and 4.2, in this section, we

propose an algorithm for hiding sensitive high utility and frequent itemset named

HSUFIBL (Algorithm 1) and for specifying victim item to hide SHUFI in case of

reducing its support named FindVictimItemBasedOnLattice (Algorithm 2).

Description of Algorithm 1 in pseudo-code is shown in Fig. 2. The algorithm

hides sensitive high utility and frequent itemset S in the given set SHFUIs,

respectively. For each itemset S, the algorithm executes three steps, including:

Step 1 (lines 2 to 7). To calculate du and ds, needed to be reduced in order to

hide S; extract the set of transactions that contain S, denoted by STS𝑖; sort the set STS𝑖

in the descending by value of 𝑢(𝑆, 𝑇𝑐), where 𝑇𝑐 ∈ STS𝑖.

Step 2 (lines 9 to 27). If the loop condition is not satisfied then Step 3 is

executed. Otherwise, data modification continues to be executed. Namely:

If 𝐵𝑑max ≤ du then the algorithm reduces support of the victim item below a

given minimum support threshold:

• Specify 𝑇vic and 𝑖vic to modify: Select the victim transaction in the set ST𝑆𝑖

in such a way that utility of S is minimal at this transaction; the victim item is

specified by Algorithm 2 basing on the intersection lattice HUFIs;

• Data modification: Remove 𝑖vic from 𝑇vic and remove 𝑇vic from STS𝑖; update

du and ds; repeat Step 2.

Otherwise, if Bdmax > du then the victim item is modified in order to reduce

utility of S below the minimum utility:

• Specify 𝑇vic and 𝑖vic: The tuple (𝑖vic, 𝑇vic) is specified using criteria that the

utility of 𝑖vic at 𝑇vic is maximal among transactions of STS𝑖;

• If u(𝑖vic, 𝑇vic) ≥ du then the algorithm modifies 𝑖vic at 𝑇vic to be

𝑞(𝑖vic, 𝑇vic) − ⌈
du

𝑝(𝑖vic)
⌉; then set du = 0. Otherwise, if u(𝑖vic, 𝑇vic) < du then specify

𝑇vic and 𝑖vic: 𝑇vic is the transaction such that 𝑢(𝑆, 𝑇vic) is maximal (among

transactions in STS𝑖); 𝑖vic is the most frequent item among items of HUFIs supported

by 𝑇vic; update value of du and ds; Remove 𝑖vic from 𝑇vic; remove 𝑇vic from STS𝑖;

Repeat Step 2.

Step 3. Update the database.

 15

Fig 2. The HSUFIBL Algorithm

Description of Algorithm 2 in pseudo-code is shown in Fig. 3: Algorithm 2

performs the following steps:

Step 1 (lines 1, 2). Extract the super set of sensitive set S, denoted

by Coatom𝑆 from the maximal support sets Coatom(HUFIs). This step aims to

create the variable setTuplemin which will be used to contain the minimal tuples

specified at Step 2.

Algorithm 1: HSUFIBL

Input: D: Original database; HUFIs: the set of high utility and frequent

itemsets; SHUFIs: the set of sensitive high utility and frequent

itemsets; 휀: minimal utility threshold; 𝛿: minimal support threshold

 Output: D': Sanitized database

1 𝐟𝐨𝐫𝐞𝐚𝐜𝐡(𝑆 ∈ SHUFIs) 𝐝𝐨

2 du = 𝑢(𝑆) − 휀 + 1;
3 ds = supc(𝑆) − ⌈(𝛿) ∗ |𝐷|⌉ + 1;

4 STS𝑖 = {𝑇𝑐|𝑆 ⊆ 𝑇𝑐 , 𝑇𝑐 ∈ 𝐷};

5 Sort(ST𝑆𝑖) in descending order of u(𝑆, 𝑇𝑐);

6

Bdmax = ∑ 𝑢(𝑆, 𝑇𝑐)
𝑑𝑠

𝑐=1
;

7 flag = (Bdmax ≤ du? true: false);

8 𝐰𝐡𝐢𝐥𝐞((du > 0)and(ds > 0)) 𝐝𝐨

9 𝐢𝐟(flag) then

10 𝑇vic = argmin𝑇𝑐
{𝑢(𝑆, 𝑇𝑐), 𝑇𝑐 ∈ STS𝑖};

11 𝑖vic = FindVictimItemBasedOnLacttice(𝑆, Coatom(HUFIs))

12 du = du − 𝑢(𝑆, 𝑇vic);
13 ds = ds − 1;
14 𝑞(𝑖vic, 𝑇vic) = 0;
15 remove 𝑇vic from STS𝑖;
16 𝐞𝐥𝐬𝐞

17 (𝑖vic, 𝑇vic) = argmax(𝑥,𝑇𝑐){𝑢(𝑥, 𝑇𝑐), 𝑥 ∈ 𝑆𝑖 ∧ 𝑇𝑐 ∈ STS𝑖};
18 𝐢𝐟(𝑢(𝑖vic, 𝑇vic) ≥ du) 𝐭𝐡𝐞𝐧

19

𝑞(𝑖vic, 𝑇vic) = 𝑞(𝑖vic, 𝑇vic) − ⌈
du

𝑝(𝑖vic)
⌉ ;

20 du = 0;
21 𝐞𝐥𝐬𝐞

22 𝑇vic = argmax𝑇𝑐
{𝑢(𝑆, 𝑇𝑐), 𝑇𝑐 ∈ STS𝑖};

23 𝑖vic = argmin𝑥{𝑓(𝑥), 𝑥 ∈ 𝑆, 𝑓(𝑥) = |𝑋 ∈ HUFIs|𝑋 ⊆ 𝑇vic ∧ 𝑥 ⊆ 𝑋|};
24 du = du − 𝑢(𝑆, 𝑇vic);
25 ds = ds − 1;
26 𝑞(𝑖vic, 𝑇vic) = 0;
27 remove 𝑇vic from STS𝑖 ;

28 Update(𝐷);
29 return D;

 16

Step 2. (lines 3-9). Scan the set Coatom𝑆. For each 𝐶 ∈ Coatom𝑆, the algorithm

finds the minimal by these steps:

Step 2.1. Find the generating set of C (the supper set of C)

Step 2.2. Scan S, for each 𝑥𝑙 ∈ 𝑆, specify the minimal tuple as follow:

• In the generating set of C, specify the set set𝐺𝑥𝑙 including the itemsets which

contains item 𝑥𝑙

• In the set set𝐺𝑥𝑙, get the set G, the set of itemsets which have minimal

support among other itemsets.

• Add the minimal tuple tuple(𝑥𝑙, 𝐶, 𝐺, 𝜆) into setTuplemin

• Repeat Step 2.2

Step 3 (lines 10, 11). In the setTuplemin, get the tuple tuple(𝑥𝑙 , 𝐶, 𝐺, supc(𝐺))

in such a way that supc(𝐺) of this tuple is highest compared to other tuples of

setTuplemin. The victim item is 𝑥𝑙 of tuple(𝑥𝑙, 𝐶, 𝐺, supc(𝐺)).

Fig 3. The FindVictimItemBasedOnLattice Algorithm

4.4. Experimental results

4.4.1. Experiment descriptions

• The HSUFIBL algorithm is implemented by the Java programming language

and run on a computer with the configuration: CPU Core I5 2.4GHz, RAM 8GB,

Windows 10.

• Database: Retail, Mushroom, Chess and Chainstore. These databases have

been published by professor Philippe-Fournier. They have been published and

available in [4] and are available at http://www.philippe-fournier-

viger.com/spmf/index.php?link=datasets.php. These databases have been

popularly used for experiments of pattern mining and privacy-preserving in pattern

mining. Many papers published in well-known journals use those databases for their

experiments. The detail of databases is presented in Table 4.

Algorithm 2: FindVictimItemBasedOnLattice

 Input: 𝑆 : The sensitive itemset; Coatom(HUFIs): the set of maximal node

 Output: 𝑖vic: Victim item

1 Coatom𝑆𝑖 = {𝐶, 𝐶 ∈ Coatom(HUFIs)|𝑆 ⊆ 𝐶};
2 setTuplemin = {∅};
3 𝐟𝐨𝐫𝐞𝐚𝐜𝐡(𝐶 ∈ Coatom𝑆) 𝐝𝐨

4 Compute GenU(𝐶);
5 𝐟𝐨𝐫(𝑥𝑙 ∈ 𝑆) 𝐝𝐨

6 set𝐺𝑥𝑙 = {𝐺𝑘 , 𝐺𝑘 ∈ GenU(𝐶)|𝑥𝑙 ∈ 𝐺𝑘};
7 𝐺 = argmin𝐺𝑘

{supc(𝐺𝑘), 𝐺𝑘 ∈ set𝐺𝑥𝑙};

8 𝜆 = supc(𝐺);
9 setTuplemin = setTuplemin ∪ tuple(𝑥𝑙 , 𝐶, 𝐺, 𝜆);

10 𝑖vic = argmax𝑥𝑙
{𝜆, tuple(𝑥𝑙 , 𝐶, 𝐺, 𝜆) ∈ setTuplemin};

11 return 𝑖vic;

 17

• Sets of sensitive-high utility and frequent itemsets: For each database,

SHUFIs are randomly selected from the set HUFIs mined by the HUFIM algorithm

[8]. The experiment has been executed with four datasets presented in Table 4 and

the corresponding minimal utility threshold and minimal support threshold presented

in Table 5.

Table 4. The data sets description

Databases |D| |I| Average length Max length

Retail 88,162 16,470 10.3 76 76

Mushroom 8,124 119 23 23

Chess 3,196 75 37 40

Chainstore 1,112,949 46,086 7.23 170

Table 5. The parameter settings of the four datasets

Databases
Sensitive itemset

size
휀(%) 𝛿(%) Databases

Sensitive itemset

size
휀(%) 𝛿(%)

Retail

Varied 0.04 0.1

Chess

Varied 12 4

20 Varied 0.1 20 Varied 4

20 0.04 Varied 20 12 Varied

Mushroom

Varied 24 75

Chainstore

Varied 0.02 0.015

20 Varied 75 30 Varied 0.015

20 24 Varied 30 0.02 Varied

4.4.2. Experimental results and discussions

In this section, we compare the experimental results between our algorithm and the

HUFI [12], MSMU, MCRSU [14], EHSHUI[7] algorithms. The results are presented

for each side effects and time consuming as follows:

• Missing cost: Figs 4, 5, 6 show the performance of algorithms HSUFIBL and

HUFI, MSMU, MCRSU, EHSHUI in comparing the missing cost side effect. The

result indicates that the HSUFIBL algorithm achieves better performance. It causes

lower MC than the HUFI, MSMU, MCRSU, EHSHUI algorithms in every case of

the comparison, including the change of the number of sensitive itemsets, minimum

support threshold, and minimum utility threshold. This is clearer in the case of

datasets containing long average length of transaction (Chess, Mushroom dataset).

The reason for this result is that the HUFI algorithm applies only one method for

specifying victim item and victim transaction for both hiding strategies using

Method 1 or Method 2. The MSMU, MCRSU algorithms apply both Method 1 and

Method 2. The EHSHUI algorithm hides SHUIs by using Method 2. In order to

promote optimization of both Method 1 and Method 2, the HSUFIBL algorithm

applies a heuristic to select exactly the condition that Method 1 or Method 2 must

apply for achieving better performance. Especially, the HSUFIBL algorithm applies

a heuristic based on constrained intersection lattice of high utility and frequent

itemset to specify victim item for hiding sensitive itemsets for the case of Method 1.

 18

Fig. 4. Miss cost with various sensitive itemset

Fig. 5. Miss cost with various minimum support thresholds

Fig. 6. Miss cost with various minimum utility thresholds

• Database structure similarity, database utility similarity, and itemsets utility

similarity: The DSS, DUS, and IUS between the original database and the sanitized

database after completing the hiding process performed by the HSFUIBL algorithm

and the HUFI, MSMU, MCRSU, EHSHUI algorithms is presented in Figs 7-15. The

results show that the DSS, DUS, and IUS produced by the HSFUIBL algorithm is

higher than those produced by the other algorithms. This means that hiding sensitive

high utility and frequent itemsets by the HSFUIBL algorithm caused the database

less distortion than by the HUFI, MSMU, MCRSU, EHSHUI algorithms. The reason

for good performance is that the HSFUIBL algorithm tries to reduce the number of

iterations for modifying the database when applying the heuristic to select the victim

item and the victim transaction.

 19

Fig. 7. DSS with various sensitive itemset

Fig. 8. DSS with various minimum support thresholds

Fig. 9. DSS with various minimum utility thresholds

Fig. 10. DUS with various sensitive itemset

 20

Fig. 11. DUS with various minimum support thresholds

Fig. 12. DUS with various minimum utility thresholds

Fig. 13. IUS with various minimum sensitive itemset

Fig. 14. IUS with various minimum support thresholds

• Run time: MSMU, MCRSU, and EHSHUI algorithms applied Method 2 for

finding victim item and victim transaction so that they consume lower running time

than HUFI and HSUFIBL for most of the datasets. The running time consumed by

 21

the HUFI algorithm is higher because this algorithm must create the HUFI-table and

t-Table. For the HSUFIBL algorithm, running time depends on the victim item

specification step for Method 1 because this process needs to scan the lattice at least

one time. This is clearer when the sensitive itemset is longer. The experiment results

presented in Figs 8, 9, 10 indicate that the running time for hiding sensitive itemsets

mined from Chess by using the HSUFIBL algorithm is higher than by using the HUFI

algorithm. The reason is that the sensitive itemsets discovered from Chess are long

so that the hiding process mostly uses Method 1 and needs more time to find the

victim item. For the remaining datasets, the running time needed for the HUFI

algorithm is higher than for the HSUFIBL algorithm because the heuristic for finding

the victim item and the victim transaction applied in the HSUFIBL algorithm

contributes to decrease the time of data modification.

Fig. 15. IUS with various minimum utility thresholds

Fig. 16. Run time with various sensitive itemset

Fig. 17. Run time with various minimum utility thresholds

 22

Fig. 18. Run time with various minimum utility thresholds

5. Conclusion

PPUIM is an emerging research area that concentrates on hiding sensitive

information implicit in the database in such a way that this information cannot be

discovered from the database by data mining techniques.

The target of the PPUIM algorithm is to completely hide sensitive information

while minimizing side effects. This paper proposes a heuristic algorithm named

HSUFIBL for hiding sensitive high utility and frequent itemsets based on constrained

intersection lattice and maximal border theory to make a copy of the database by

modifying the victim item from the victim transaction of the original database.

The main contribution of this paper is to propose two heuristic strategies to

specify victim item and victim transaction for two cases of support reduction and

utility reduction, respectively. By theoretically analyzing and experimentally

computing the side effect for each case of data modification, the HSUFIBL algorithm

selects the exact method for hiding all sensitive itemsets with minimal side effect.

For the support reduction case, a constrained intersection lattice of high utility and

frequent itemsets is defined. This theory is applied to propose a heuristic for finding

the victim item. For the utility reduction case, the victim items and the victim

transactions are specified in such a way that the utility of the victim item reaches

maximal value at the victim transaction compared to utility of the other items. The

experimental results show that the side effects caused by the HSUFIBL algorithm are

mostly lower than the side effects caused by the HUFI, MSMU, MCRSU, EHSHUI

algorithms.

Although achieving better results than HUFI, MSMU, MCRSU, and EHSHUI

algorithms in almost all criteria of the experiment, the HSUFIBL algorithm still

requires more time when running with the dataset which has long transactions. This

limitation is caused by the victim item specification step that waists more time to find

the maximal itemset and the set of lowest-support itemsets. Our near future work is

to improve this drawback for the better algorithm.

R e f e r e n c e s

1. A g a r w a l, R., R. S r i k a n t. Fast Algorithms for Mining Association Rules. – In: Proc. of 20th

VLDB Conference, 1994. p. 499.

 23

2. A g r a w a l, R., R. S r i k a n t. Privacy-Preserving Data Mining. – In: Proc. of 2000 ACM SIGMOD

International Conference on Management of Data, 2000, pp. 439-450.

3. C h e n g, P., et al. Hide Association Rules with Fewer Side Effects. – IEICE TRANSACTIONS on

Information, Vol. 98, 2015, No 10, pp. 1788-1798.

4. F o u r n i e r-V i g e r, P. 2021 [cited 2021 01/01/2021].

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

5. G a n, W., et al. Privacy Preserving Utility Mining: A Survey. – In: Proc. of 2018 IEEE International

Conference on Big Data (Big Data), 2018, IEEE, pp. 2617-2626.

6. G r C a t z e r, G. Lattice Theory: Foundation. 2011. Springer Science & Business Media.

7. H u y n h T r i e u, V., H. L e Q u o c, C. T r u o n g N g o c. An Efficient Algorithm for Hiding

Sensitive-High Utility Itemsets. – Intelligent Data Analysis, Vol. 24, 2020, No 4, pp. 831-845.

8. K i r a n, R. U., et al. Efficiently Finding High Utility-Frequent Itemsets Using Cutoff and Suffix

Utility. – In: Proc. of Pacific-Asia Conference on Knowledge Discovery and Data Mining,

2019, Springer, pp. 191-203.

9. L e, H. Q. et al. Association Rule Hiding in Risk Management for Retail Supply Chain

Collaboration. – Computers in Industry, Vol. 64, 2013, No 7, pp. 776-784.

10. L i n, C.-W., et al. A GA-Based Approach to Hide Sensitive High Utility Itemsets. – The Scientific

World Journal, Vol. 2014, 2014.

11. L i n, J. C.-W., et al. Fast Algorithms for Hiding Sensitive High-Utility Itemsets in Privacy-

Preserving Utility Mining. – Engineering Applications of Artificial Intelligence, Vol. 55, 2016,

pp. 269-284.

12. L i u, X., F. X u, X. L v. A Novel Approach for Hiding Sensitive Utility and Frequent Itemsets. –

Intelligent Data Analysis, Vol. 22, 2018, No 6, pp. 1259-1278.

13. Q u o c L e, H., S. A r c h-I n t, N. A r c h-I n t. Association Rule Hiding Based on Intersection

Lattice. – Mathematical Problems in Engineering, Vol. 2013, 2013.

14. R a j a l a x m i, R., A. N a t a r a j a n. Effective Sanitization Approaches to Hide Sensitive Utility

and Frequent Itemsets. – Intelligent Data Analysis, Vol. 16, 2012, No 6, pp. 933-951.

15. Y a o, H., H. J. H a m i l t o n, C. J. B u t z. A Foundational Approach to Mining Itemset Utilities

from Databases. – In: Proc. of 2004 SIAM International Conference on Data Mining, 2004.

SIAM, pp. 482-486.

16. Y e h, J.-S., P.-C. H s u. HHUIF and MSICF: Novel Algorithms for Privacy Preserving Utility

Mining. – Expert Systems with Applications, Vol. 37, 2010, No 7, pp. 4779-4786.

Received: 11.05.2021; Second Version: 06.11.2021; Accepted: 11.01.2022

