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Abstract: Multi-objective Solid Transportation Problem (MSTP) is known as a 

special class of vector-minimization (or maximization) problems and has three 

parameters: source, destination, and conveyance. The objectives such as 

transportation cost, transportation time, transportation safety level, and objectives 

in terms of environmental and social issues are generally in conflict with each other. 

In this paper, we present a fuzzy approach to bring these conflicting objectives 

together as high as possible. Instead of using the linear membership function, which 

is frequently used in the literature for ease of use, we use the hyperbolic membership 

function in our approach. Also, while most of the papers in the literature deal with 

the standard equality constrained form of MSTP, the mixed constrained form is 

addressed in this paper. Finally, a numerical example from the literature is used to 

illustrate the construction of the hyperbolic membership function and how well it 

represents the objective functions’ degree of satisfaction.  

Keywords: Multi-objective optimization, solid transportation problem, hyperbolic 

membership function, fuzzy mathematical programming. 

1. Introduction 

Solid transportation problem having three items as supply, demand, and conveyance 

is one of the most important implemented to several real-life problems. If there are 

multiple non-commensurable and conflicting objectives, then the corresponding 

problem is called the Multi-objective Solid Transportation Problem (MSTP). 

Considering uncertainties in the real world, the fuzzy approach has been studied 

commonly for multi-objective problems [9] and also for MSTP. B i t, B i s w a l  and 

A l a m  [2] have applied the traditional fuzzy approach to solve MSTP. P r a m a n i k, 

J a n a  and M a i t i  [10] have presented a formulation of MSTP for the damageable 

item. C h e n, P e n g  and Z h a n g  [6] modeled goal programming for MSTP. 
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A n u r a d h a  et al. [1] have used a row maxima method for solving the bi-objective 

STP. L e b e r l i n g  [7] solved the multi-objective linear programming problem by 

fuzzy method with nonlinear membership function. Solution of fuzzy multi-objective 

problem is found and compared with obtained using trapezoidal and hyperbolic 

membership functions by R a t h  and D a s h  [11, 12]. P e i d r o  and V a s a n t  [8] 

have implimented the fuzzy goal programming approach with some nonlinear 

membership functions solving MTPs. The fuzzy approach with hyperbolic 

membership functions for the multi-objective capacitated transportation problem has 

been presented by B i t  [3]. V e r m a, B i s w a l  and B i s w a s  [13] have proposed 

the fuzzy method using some non-linear membership functions to solve an MTP. 

B o d k h e, B a j a j  and D h a i g u d e  [5] have applied the fuzzy approach for solving 

MSTP using hyperbolic and exponential membership functions. B i t  [4] has 

presented the fuzzy model with hyperbolic membership functions for a multi-

objective capacitated STP. The summary of the literature presented is given in  

Table 1.  
 

Table 1. Summary of the literature presented 

References The problem addressed 
Membership  

function used 

Brief description of  

the method used 

A n u r a d h a   

et al. [1] 

Bi-objective solid  

transportation problem  
Linear 

A row maxima  

method  

B i t, B i s w a l   

and A l a m  [2] 
MSTP  Linear Fuzzy programming 

B i t  [3] 

Linear multiobjective 

capacitated transportation 

problem 

Hyperbolic Fuzzy programming 

B i t  [4] Capacitated MSTP  Hyperbolic Fuzzy programming 

B o d k h e, B a j a j   

and D h a i g u d e  [5] 

MSTP with equality  

constraints 

Hyperbolic,  

exponential 
Fuzzy programming 

C h e n, P e n g   

and Z h a n g  [6] 

Bicriteria solid  

transportation problem 
─ 

Expected value and  

chance-constrained goal 

programming model 

L e b e r l i n g  [7] 
Multi-objective linear  

programming problem 

Linear,  

hyperbolic  
Fuzzy programming  

P e i d r o  and  

V a s a n t  [8] 

Multi-objective linear  

transportation problem 

Modified S-curve 

membership  

functions 

Fuzzy programming 

P e n e v a  and  

P o p c h e v  [9]  
Multi criteria problems ─ 

Fuzzy decision  

making 

P r a m a n i k, J a n a   

and M a i t i  [10] 

MSTP for damageable  

item 
Linear  

Generalized reduced  

gradient method 

R a t h  and D a s h   

[11] 

Multi-objective linear  

programming problem 

LInear,  

hyperbolic 

Ranking function,  

fuzzy programming 

R a t h  and D a s h   

[12] 

Multi-objective linear  

programming problem 

Linear,  

exponential 

Ranking function,  

fuzzy programming 

V e r m a, B i s w a l  

and B i s w a s  [13] 

Multi-objective linear  

transportation problem 

Hyperbolic,  

exponential 
Fuzzy programming 

 

As seen from the literature, most of the papers deal with the standard constraint 

form of MSTP, but not the mixed constraint form. Moreover, linear membership 

functions have been used in almost all of these studies due to their computational 
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efficiency. With these motivations, we used the hyperbolic membership function to 

present the membership degrees more precisely, and also focused on the mixed 

constraint form of MSTP which is a more general structure. Thus, a fuzzy 

programming method using the hyperbolic membership function is developed for 

solving MSTP with mixed constraints. A numerical example is given to compare the 

solutions of the proposed method with the linear and hyperbolic membership 

functions. Therefore, we can get a satisfactory solution to MSTP. 

The organization of the paper is in five sections. In Section 2, the mathematical 

model of MSTP with mixed constraints is given. The next Section 3 presents the 

solution procedure of our problem using the hyperbolic membership function. In 

Section 4, an illustrative example is solved, and a comparison is presented for linear 

and hyperbolic membership functions. Finally, the conclusion is given in Section 5. 

2. MSTP with mixed constraints 

In real-life problems, the constraints of transportation problems are not generally in 

the same form. In some cases, the decision-maker may have specified a supply 

amount that must be provided from a particular source. Then, the corresponding 

supply constraint will be “greater than or equal to” form. Similarly, when the amount 

of resources owned by any supplier is limited (i.e., have an upper limit), then the 

corresponding supply constraint will be “less than or equal to” form. These different 

types of inequalities may also appear in any demand or conveyance constraints. With 

this motivation, MSTP with mixed constraints, which we focused on this paper, 

enables to model in a more realistic aspect. 

MSTP with mixed constraints aims to find the minimal cost for transporting a 

product from m  supplies to n  demands through K conveyances, where their 

capacities are: 
ia , 1, 2, ,i m= ; jb , 1, 2, , ;j n=  and 

ke , 1, 2, , ,k K=  

respectively. And suppose that the cost of p-th objective function ( )pZ x , 

1, 2,..., ,p P=  is denoted by 
p

ijkc  which corresponds to ijkx . Then, the mathematical 

model of the MSTP with mixed constraints can be defined as  

(1)   
1 1 1

min ( ) ,
m n K

p

p ijk ijk

i j k

Z c x
= = =

=x   1, 2,..., ,p P=  

s.t. 

ijk i

j k

x a= , 
1i I ;  ijk i

j k

x a , 
2i I ;    ,ijk i

j k

x a  3i I , 

,ijk j

k i

x b=  
1j J ; ,ijk j

k i

x b  
2j J ;  ,ijk j

k i

x b  
3,j J  

,ijk k

i j

x e=   
1k K ;    ,ijk k

i j

x e  
2k K ;  ,ijk k

i j

x e  
3,k K  

0ijkx  ,  
1 2 3i I I I I   = ;  

1 2 3 ;j J J J J   =   
1 2 3 ,k K K K K   =  

where the subscripts on ( )pZ x  and 
p

ijkc  denote the p-th objective function, and: 

0ia  , i ; 0jb  , j ; 0ke  , k ; 0p

ijkc  , ,i  j, k, p. Also, 
1I , 2I , and 3I  
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refer to “equality”, “greater than or eqaual to”, and “less than or equal to” type of 

constraints, respectively. Similarly the partition on the index set of demands and 

conveyances can be defined. 

Let the feasible region of (1) is denoted by S .  It  is assumed that S  is a convex 

and compact set.  

Definition 1. 
* Sx  is a Pareto-optimal (strongly-efficient) solution if there 

does not exist another Sx  such that 
*( ) ( )p pZ Zx x  ,p  and 

*( ) ( )p pZ Zx x  

p ; where 
* { }ijkx=x .  

Definition 2. A feasible * Sx  is a compromise solution of (1) iff * Ex  and 
*( ) ( )p

S
Z Z


 

x
x x  where ( )1 2( ) ( ), ( ), , ( )pZ Z Z Z=x x x x ,   stands for “minimum” 

and the set of Pareto-optimal solutions is E.  

3. A fuzzy programming approach to MSTP with mixed constraints  

3.1. Designing the linear membership functions of the objectives 

The linear membership functions of each objective can be written in the following 

way: 

(2) 

1, ,

( )
( ( )) , ,

0, ,

P

P p

P p

P p p p

p p

p p

Z L

U Z
Z L Z U

U L

Z U



 


−
=  

−
 

x
x ,   

where max ( )p p
S

Z U


=
x

x   and min ( )p p
S

Z L


=
x

x , 1,..,p P = .  

By using Zimmermann’s “min” fuzzy operator model, and introducing a new 

auxiliary variable min ( )p pZ = , problem (1) can be converted to 

(3) max ,  

s.t.   ( ) ,p pZ     1,..., ,p P=  Sx . 

Problem (3) is the model that corresponds to Zimmermann’s min operator. The 
*  solution represents the common satisfactory level of all objectives. Here, the 

word “common” means the lowest level of satisfaction achieved for each objective 

of (1). 

3.2. Designing the non-linear (hyperbolic) membership functions of the objectives 

Although the linear membership function is widely utilized in many real-world 

decision-making problems, the usage of the non-linear membership function can 

provide a more realistic conclusion than the linear one in some practical applications. 

The rate of satisfaction of nonlinear membership functions is not always constant as 

in linear membership functions. The shape of the nonlinear membership function 

alters in accordance with an  parameter value which provides more flexibility in 
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decision-making problems. Thus in this paper, we use the hyperbolic membership 

function instead of using a linear membership function. 

The hyperbolic membership function of the p-th objective function can be 

determined as 

(4) 

( ) ( )
2 2

( ) ( )
2 2

1, ,

1
( ( )) , ,

2
2

0, ,

p p p p
p p p p

p
p p p p

p p p p

p p

L U L U
Z Z

H

p p p pL U L U
Z Z

p p

Z L

e e

Z L Z U

e e

Z U

 

 



+ +   
− − −      

   

+ +   
− − −      

   




 
 −
   

= +  
 
 +
   




x x

x x

x   

p  is named as the shape parameter. Using (4), the fuzzy programming method 

integrated with hyperbolic membership functions for the solution of (1) can be 

presented as  

(5)   max ,  

s.t. ( )H ( )p pZ x ,   1,...,p P= , ,Sx  

where the hyperbolic membership function is given as 

(6)   ( )

( ) ( )
2 2

H

( ) ( )
2 2

1
( )

2
2

p p p p
p p p p

p p p p
p p p p

L U L U
Z Z

p p L U L U
Z Z

e e

Z

e e

 

 



+ +   
− − −      

   

+ +   
− − −      

   

 
 −
 
 

= + =
 
 +
 
 

x x

x x

x  

1
1 tanh ( ) .

2 2

p p

p p

L U
Z 

  + 
= + −     

   

x  

Considering (6), the problem (5) can be rewritten as follows: 

(7)   max ,  

s.t. 
1 1

tanh ( )
2 2 2

p p

p p

L U
Z 

 + 
 − +   

  
x , 1, 2,..., ,p P=  Sx . 

Introducing a new variable 1

H tanh (2 1)x −= − , the foregoing problem (7) 

becomes 

(8)   max ,  

s.t. H ( )
2

p p

p p

L U
x Z 

+ 
 − 
 

x , 1,..,p P= , Sx . 

Since ( )H

1 1
tanh

2 2
x = +  and tanh  is a strictly increasing function, (8) can be 

converted to the following linear programming problem: 



 163 

(9)   
Hmax ,x  

s.t.  H( )
2

p p

p p p

L U
Z x 

+
+ x ,  1,..., ,p P=  Sx . 

After the optimal solution 
* *

H( , )x x  is found by solving the problem (9), the 

common satisfactory level 
*  and the Pareto-optimal solution to the problem (1) can 

be found by ( )* * * *

H

1 1
, tanh( ) ,

2 2


 
= + 
 

x x x .  

4. Illustrative numerical example 

Let us implement our solution procedure to following numerical example taken from 

[2]. 

Supplies:  
1 8a = ;  

2 9a = ; 
3 5a = ;  

Demands: 
1 7b = ;  

2 6b = ;  
3 5b = ;  

Conveyances capacities: 
1 10e = ;  

2 5e = ;  
3 6e = ;  

Penalties of the first objective: 
1

ijkc   

j 

i 
1 2 3 

 j 

i 
1 2 3 

 j 

i 
1 2 3 

1 9 6 3  1 12 9 7  1 9 7 7 

2 5 9 6  2 6 11 8  2 5 3 6 

3 2 2 1  3 2 7 9  3 1 7 3 

Conveyance 1 (k=1)  Conveyance 2 (k=2)  Conveyance 3 (k=3) 

Penalties of the second objective: 
2

ijkc   

j 

i 
1 2 3 

 j 

i 
1 2 3 

 j 

i 
1 2 3 

1 2 1 9  1 9 4 9  1 8 1 5 

2 2 4 8  2 8 5 6  2 1 2 9 

3 5 8 5  3 2 9 2  3 7 7 5 

Conveyance 1 (k=1)  Conveyance 2 (k=2)  Conveyance 3 (k=3) 

Penalties of the second objective: 
3

ijkc   

j 

i 
1 2 3 

 j 

i 
1 2 3 

 j 

i 
1 2 3 

1 2 3 8  1 4 6 4  1 6 4 9 

2 2 5 9  2 5 6 6  2 3 6 3 

3 1 8 5  3 9 3 7  3 1 9 11 

Conveyance 1 (k=1)  Conveyance 2 (k=2)  Conveyance 3 (k=3) 

 

Then, the corresponding MSTP can be written explicitly as follows: 
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(10)   
3 3 3

1 1 1

min ( ) ,p

p ijk ijk

i j k

Z c x
= = =

=x  1, 2, 3,p =  

s.t.  
3 3

1

1 1

8jk

j k

x
= =

= , 
3 3

2

1 1

9jk

j k

x
= =

 , 
3 3

3

1 1

5jk

j k

x
= =

 , 
3 3

1

1 1

7i k

k i

x
= =

= , 

3 3

2

1 1

6i k

k i

x
= =

 ,  
3 3

3

1 1

5i k

k i

x
= =

 ,  
3 3

1

1 1

10ij

i j

x
= =

= ,  
3 3

2

1 1

5ij

i j

x
= =

 ,  
3 3

3

1 1

6ij

i j

x
= =

 . 

Let the feasible region of (10) is denoted by Ŝ . 

Optimizing the objective functions of (10) individually, the aspired and the 

highest acceptable level of achievement for objective functions are found as:  

1 75,L =  , 
1 133U = ; 

2 32L = ,  
2 80U = ; 

3 53.5L = , 
3 130U = . Then, by using (2), 

the linear membership functions are constructed as:  

1
1 1

133 ( )
( ( ))

58

Z
Z

−
=

x
x , 2

2 2

80 ( )
( ( ))

48

Z
Z

−
=

x
x , 3

3 3

130 ( )
( ( ))

76.5

Z
Z

−
=

x
x . 

4.1. Solving MSTP using hyperbolic membership function 

Using (6), the hyperbolic membership function of 1Z  can be constructed easily. For 

this objective, Fig. 1 presents the graph for the linear and hyperbolic membership 

functions. Fig. 1 shows that the hyperbolic membership function gives better 

membership values for the satisfaction degrees above the intersection point. 

Similarly, the graphs of the remaining objective functions can be drawn as well. 
 

 

Fig. 1. The linear and hyperbolic membership functions of 1Z  

 

Then, the problem corresponds to (9) and can be rewritten as: 

(11)   
Hmax ,x  

s.t. 
1 H0.103 ( ) 10.35Z x− x , 

2 H0.125 ( ) 7.28Z x− x ,  

3 H0.078 ( ) 7.34,Z x− x   Ŝx . 

where 1 0.103 = , 
2 0.125 = , 

3 0.078 = . We note here that the shape parameters 

are determined by the formula ( )6p p pU L = − , 1, 2, 3,p =  which is generally used 

in the literature. To offer more Pareto-optimal solutions to the decision-maker, it is 

possible to obtain various solutions by choosing different shape parameters. Solving 

(11), 
*

1x  and 
*

Hx  is obtained as follows: 
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*

H 1.58x = ,  

* * *

121 131 211

* * * *

1 212 223 312

*

7.579, 0.421, 2,

1, 6, 4,

rest all 0.

 

ijk

x x x

x x x

x

 = = =


= = = =


=

x  

Using the equation 
* *

1 H

1 1
tanh( ) ,

2 2
 = +x  the common satisfactory level of 

membership functions is found as *

1 0.96 = . For 
*

1x , the objective function values 

are *

1 1( ) 88.74Z =x , *

2 1( ) 43.37Z =x , 
*

3 1( ) 107.11Z =x . 

4.2. Solving MSTP using linear membership function  

In this subsection, to show the effectiveness of the hyperbolic membership function, 

the Pareto-optimal solution will be obtained by the widely used linear membership 

function (2), and a comparison will be presented. 

The problem corresponding to (3) can be written as follows: 

(12)   2max ,  

s.t.  ( ) 1
1 1 2

133 ( )
( )

58

Z
Z 

−
= 

x
x , ( ) 2

2 2 2

80 ( )
( )

48

Z
Z 

−
= 

x
x , 

( ) 3
3 3 2

130 ( )
( )

76.5

Z
Z 

−
= 

x
x , Ŝx . 

Solving (12), 
*

2x  and 
*

2  are obtained as 

* * *

121 122 211

* * * *

2 212 223 312

*

7.17, 0.830, 2.83,

2.779, 3.391, 1.391,

rest all

 

0,ijk

x x x

x x x

x

 = = =


= = = =


=

x  

*

2 0.67 = . 

For 
*

2x , the objective function values are *

1 2( ) 94.27Z =x , *

2 2( ) 47.95,Z =x  

*

3 2( ) 78.91Z =x . The satisfaction degrees of all objective functions are summarized 

in Table 2. 
 

Table 2. The comparison of membership functions 

Value 
Single-objective case 

Multi-objective case 

Hyperbolic Linear 

1Z  
2Z

2Z  
3Z  ( )*

1pZ x  H *

1( ( ))p pZ x  ( )*

2pZ x  *

2( ( ))p pZ x  

1Z  75 133 106 88.74 0.96 94.27 0.67 

2Z  80 32 60.5 43.37 0.83 47.95 0.67 

3Z  130 83 53.5 107.11 0.5 78.91 0.67 
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In the fuzzy approach used the linear membership function, both objective 

functions are satisfied at the same satisfactory level. In our proposed approach, in 

which the hyperbolic membership function is used, the 1Z  and 
2Z  objectives have 

reached a very high level of satisfaction compared to the linear one. In particular, the 

1Z  objective function is really close to the full satisfaction level. On the other hand, 

a slight decrease was observed in the satisfaction level of the 3Z  in our proposed 

approach. While both solutions obtained with linear and hyperbolic membership 

functions are Pareto-optimal, our proposed approach gives a better average 

satisfaction value of 0.76 as can be seen from Fig. 2, the linear one gives an average 

satisfaction value of 0.67. Table 2 also presents the objective function values of 

single-objective problems in which each , 1, 2, 3,pZ p =  is optimized with three 

different sets of penalties under the same constraints. As can be seen from these 

values, although the solutions of the multi-objective problems cannot reach all the 

individual optimal values, these solutions fulfill all the objectives at a common 

satisfaction degree. 
 

 
Fig. 2. The hyperbolic membership functions of all objectives and satisfaction levels 

5. Conclusion  

When decision-makers try to optimize conflicting goals in multi-objective problems 

and some available information is uncertain, their task is very difficult. 

Zimmermann’s fuzzy approach, which uses fuzzy set theory developed to deal with 

such uncertain situations, is one of the most widely used methods in the literature. In 

Zimmermann’s approach, the linear membership function is used to scale the 

objective functions. However, the non-linear membership function is much more 

versatile than linear types and can generate better results for objective functions’ 

satisfactory levels. Therefore, a hyperbolic membership function is used instead of a 

linear membership function for solving the mixed constraint form of MSTP which is 

a more general structure. The advantages of using the hyperbolic membership 

function can be pointed out in two aspects. Firstly, when the Pareto-optimal solutions 

obtained by fuzzy approaches using hyperbolic and linear membership functions are 

compared, it can be stated that the hyperbolic approach achieves a better satisfaction 

level on average. Secondly, the usage of the hyperbolic membership function is more 
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realistic than the linear one in some practical applications. That is, the decision-maker 

can opt for the membership function, which is presenting a better solution for the 

objectives being of higher priority. 
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