
 119

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 21, No 4

Sofia 2021 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2021-0046

A Three-Tier Authentication Scheme for Kerberized Hadoop

Environment

M. Hena, N. Jeyanthi

School of Information Technology and Engineering, VIT Vellore, Tamilnadu, India

E-mails: henashabeebvit@gmail.com njeyanthi@vit.ac.in

Abstract: Apache Hadoop answers the quest of handling Bigdata for most

organizations. It offers distributed storage and data analysis via Hadoop Distributed

File System (HDFS) and Map-Reduce frameworks. Hadoop depends on third-party

security providers like Kerberos for its security requirements. Kerberos by itself

comes with many security loopholes like Single point of Failure (SoF), Dictionary

Attacks, Time Synchronization and Insider Attacks. This paper suggests a solution

that aims to eradicate the security issues in the Hadoop Cluster with a focus on

Dictionary Attacks and Single Point of Failure. The scheme roots on Secure Remote

Password Protocol, Blockchain Technology and Threshold Cryptography. Practical

Byzantine Fault Tolerance mechanism (PBFT) is deployed at the blockchain as the

consensus mechanism. The proposed scheme outperforms many of the existing

schemes in terms of computational overhead and storage requirements without

compromising the security level offered by the system. Riverbed Modeller (AE)

Simulation results strengthen the aforesaid claims.

Keywords: Apache hadoop, authentication, bigdata, blockchain, Kerberos.

1. Introduction

A tremendous increase in the generation of data has been witnessed in recent years

and this data needs to be processed innovatively and efficiently to get useful

information that can lead to strategic business decisions. Big data is the term used to

indicate these voluminous, unstructured, heterogeneous data that cannot be stored

and processed by traditional computing systems. Apache Hadoop is a big data

platform based on Java that offers distributed storage and processing termed as

Hadoop Distributed File System and MapReduce, respectively.

The security of Bigdata is a very serious issue to be taken care of to make the

best use of big data analytics benefits. Most of the issues were caused due to

unauthorized access and resultant manipulation or retrieval of data. Apache Hadoop

came without any security features in its initial versions as it was designed to work

 120

in an internal project environment. Most of the recent Hadoop technologies rely on

third-party security systems like Kerberos Protocol for incorporating security into it.

The user is issued with Ticket Granting Tickets and Service Tickets to get the session

key for its communication with the secured Hadoop Cluster. However, the Kerberos

Protocol itself has some in-built pitfalls, which include Single Point of Vulnerability

or Failure (SoV/SoF), Password Guessing or Dictionary Attacks, Insider Attacks and

Time Synchronization Problem. Active researches are happening across the globe to

enhance the security issues in Kerberos Enabled Hadoop Clusters. For instance,

R a h u l and K u m a r [1], put forward an authentication framework that combines

cryptographic techniques, hashing and random number generation to get a unique key

for clients. But this solution made the system slower and adds computational

overhead.

In a Kerberos-enabled Hadoop Cluster, the Key Distribution Center (KDC) is a

Single Point of Failure in the sense that any failure or attack on the KDC affects the

entire authentication system. The KDC comprises an Authentication Server (AS), a

Ticket Granting Server (TGS) and a local database. This paper proposes a three-tier

authentication framework that has its roots in Secure Remote Password Protocol

(SRP), One Time Passwords (OTP) and Threshold Cryptosystems. The focus of this

work is to eradicate Password Guessing Attacks and Single Point of Failure Problem

in the Kerberized Hadoop Clusters. For that, the local database at the KDC is replaced

with a Blockchain network for distributed storage. This is tamper-proof storage and

cannot be hence compromised. This eradicates the issues that arise when the local

storage at the KDC is compromised. Next, as in Secure Remote Password (SRP)

Protocol [2], the password or any details about it are not directly shared with the

KDC. Instead, a salted hash of the password along with the user public key is shared.

This is verified using the result mined from blockchain storage. Thus, password-

guessing attacks can be avoided and the session key for the user to communicate with

the Ticket Granting Server is securely shared. An enhanced One Time Password is

used as proposed by H e n a and J e y a n t h i [3], to verify that the session key is

computed correctly at both ends, that is, at the user and the AS. The user needs to

respond correctly as per the pre-agreement which will be further elaborated in the

coming sections. The threshold cryptography ensures the authentication system

availability by deploying multiple Ticket Granting Servers. Thus, even if one of the

Ticket Granting Server is failed or compromised, a prefixed threshold number of

Ticket Granting Servers (TGSs) can collaborate and accomplish the authentication

function. The proposed system achieves the desired level of security suitable for real-

time big data systems with less communication and computational overhead.

Moreover, the usage of tamper-proof blockchain technology pushed out storage

management from the KDC. Practical Byzantine Fault Tolerance (PBFT) [4]

Mechanism is used as the consensus mechanism at the blockchain network. It

demands more than 2/3 of the total number of nodes need to honest in contributing

the mined result. The nodes in the network are arranged such that each node can

communicate with each other and there is no permanent leader. The nodes leadership

comes in turn.

 121

The remaining of this paper is organized in six sections. Section 2 explains the

Preliminaries and Mathematical Intuitions. Section 3 discusses the related works.

Section 4 presents the system being proposed. The implementation details and result

analysis are described in Section 5. Section 6 concludes the paper.

2. Preliminaries and mathematical intuitions

2.1. Secure remote password protocol

Secure Remote Password Protocol (SRP), zero-knowledge proof protocol, in which

the client/user demonstrates to the server that he/she knows the right password. The

password or any other information from which the password can be deducted is not

directly sent via the network. In other words, the password stays within the client

system itself and the server or any other entity has no clue about what it is. The

protocol is hence resilient to dictionary attacks and doesn’t rely on any trusted third

parties.

To register, the client submits username 𝑢𝑛𝑎𝑚𝑒, a random salt, 𝑠 and salted

hash of client’s password 𝑝, 𝑥 as verifier, and verifier v:

(1) 𝑣 = 𝑔𝑥 ,
and

(2) 𝑥 = 𝐻(𝑠, 𝑝).

Here, 𝑔 is a generator of predetermined group Ǥ, which is an additive group with a

multiplication operation. This information is stored by the server in its local database

for future authentication.

To authenticate the user, the user chooses a random number 𝑎 as its secret and

generates the public key as

(3) 𝐴 = 𝑔𝑎.
This value along with the username is sent to the server as an authentication

request. The server looks up the corresponding verifier and salt values stored against

the username in its database. Also, it generates its public key as

(4) 𝐵 = 𝑣 + 𝑔𝑏 .
where 𝑏 is a random number generated at the server side.

Hence, the server’s public key is blinded with 𝑣, a value derived from the user’s

password. A random value 𝑢 is also generated on the server-side. The server sends

these values, that is, the salt 𝑠, its public key 𝐵 and random 𝑢 to the client. The client

re-computes the value of 𝑥 using hid/her password and salt 𝑠 received from the server.

A common secret, 𝑆 is computed at both sides as

(5) 𝑆 = {
(𝐵 − 𝑔𝑥)𝑎+𝑢𝑥 at client side,

(𝐴 × 𝑣𝑢)𝑏 at server side.

Both sides then hash the value of shared secret 𝑆 to obtain the session key 𝐾 as

(6) 𝐾 = 𝐻(𝑆).
To verify the key, both sides make use of this key to send messages 𝑀1 and 𝑀2:

(7) Client to Server: 𝑀1 = 𝐻(𝐴, 𝐵, 𝐾),
(8) Server to Client: 𝑀2 = 𝐻(𝐴, 𝑀1, 𝐾).

 122

Both sides re-compute the messages received and verify the messages received

from the other end are the same as the computed one. If same, the user is

authenticated.

2.2. The e-OTP mechanism

The e-OTP or Enhanced OTP mechanism works as follows.

Instead of just entering the OTP received by the user in this mobile number or

email as such, the user should reply with a code as per the pre-agreement. The user

and the Authentication Server shares a Pre-Shared Key (PSK) during the registration

process. This will be some random number. During authentication process the

authentication server sends an OTP code to the user, which is another random

number. User has to respond back with the digits in the PSK located at positions

denoted by digits in the OTP. That is, for example, assume the digits in the PSK is

“81 52 13 74 65 26 37 98 49” and the OTP send by the AS is “2 1 4 7”. The user has

to reply with digits at 2nd, 1st, 4th and 7th positions in the received file. That is,

“5 8 7 3” in this case.

2.3. Threshold cryptography

Threshold Cryptography is a technique that encrypts the information and splits it into

parts to store in different fault tolerant systems. Asymmetric Cryptosystem is used

here. The information is encrypted using public key and the private key to decrypt it

is distributed among the shareholders. A prefixed threshold number of shareholders

need to collaborate and contribute their shares to get the decryption key to decrypt

the information. If n be the total number of shareholders or participants, and t be the

pre-fixed threshold number, then at least t number of participants should contribute

their shares to decrypt the message correctly.

3. Related works

Many satisfactory proposals have been put forward by researchers across the globe

in the field of big data security. L i et al. [5] have proposed Distributed

Authentication and Authorization Scheme (DAAS) to solve the problem of

Authentication, Authorization and Auditing (AAA) in Bigdata. It also safeguards

Bigdata veracity, secure key exchange, and confirmation of user identity. The scheme

deploys Identity-based Signature for user authentication and Ciphertext Policy

Attribute-Based Encryption (CP-ABE) for authorization. The problem here CP-ABE

is less efficient for its difficulty to manage users and specify policies when the size

of the universe attribute increases. Moreover, the Identity-based Signature scheme

has the inherent problem of key escrow property. W a n g et al. [6] have proposed a

pre-authentication approach wherein the data at cloud is shared with others with full

knowledge of users. The users who satisfy certain conditions are only given access

to the secured data. However, the method involves complex computations. W a n g

et al. [6] have proposed a Software-defined architecture to improve the security and

performance of the Industrial Internet of Things (IIoT). However, it’s difficult to

 123

standardize Software Defined Networking (SDN). Also, centralized control system

leads to delay in data forwarding. To address the issue of latency, A a z a m,

Z e a d a l l y and H a r r a s [8] have proposed to deploy Fog Computing between the

IoT devices and the cloud. O m o n i w a et al. [9] also have recommended to

introduce Fog computing. But, both the works have given the least priority to

security.

A One-Time Pad (OTP) based method has been proposed by S o m u, G a n g a a

and S r i r a m [10]. The method uses two servers – the registration server and the

backend server. The authors recommend encrypting the user’s password with a OTP

and are further secured with modular operations before storing it in the registration

server. This is again encrypted with the users’ password and stored along with

username in the backend server. During the authentication phase, the user provides

only the username. The backend server sends a key encrypted with the user’s

password and if the user successfully decrypts it user is authenticated. This method

incurs avoidable communication overhead and the method is later proved to be

vulnerable to offline password guessing attack as investigated by S a r v a b h a t l a e t,

C h a n d r a, and V o r u g u n t i [11]. The authors proposed to hash values of

passwords and usernames before transmitting over the internet. Though it adds

security, additional computational and communicational overhead and consequent

latency should be expected. This is not an acceptable feature for a big data platform

security system.

E s f a h a n i et al. [12] have proposed a lightweight authentication for machine-

to-machine message exchange in the IoT Environment. The method relies on simple

XOR operations and Hashing. Secure Elements (SE) in the sensor devices and

Trusted Platform Modules (TPM) in the network devices like routers are used for

authenticating. The reliability of the Trusted Platform Module in terms of bugs and

other online attacks is a concern here. A privacy-preserving authentication protocol

based on biometrics using Elliptic Curve Cryptography (ECC) is proposed by L i

et al. [13]. Complex computations at sensor nodes and gateway nodes for

authentication are not an ideal deal as sensors in most cases have less computational

power. A blockchain-based approach is proposed by L i n et al. [14] using Attribute-

Based Signature (ABS) and Certificateless Multi-Receivers Encryption (CL-MRE).

The performance is not optimized and hence causes considerable degrading of system

performance. K a r a t i, I s l a m and K a r u p p i a h [15] have proposed a secure

scheme based on Certificateless Signatures using bilinear pairing. Although the

authors claim the scheme to be computationally efficient, the execution cost stands

high if some pairing computations are not discarded. Z h a n g et al. [16] later have

proved the failure of K a r a t i, I s l a m and K a r u p p i a h [15] scheme against some

signature falsification attacks and proposed a robust Certificateless Signature Scheme

for data authentication. The scheme introduces partial private key generation. The

problem with this scheme is the complex computations involved. A blockchain-based

scheme with a deep reinforcement scheme is proposed by L i u, L i n and W e n [17]

and a credit-based consensus mechanism is proposed by H u a n g et al. [18]. These

methods have storage overhead and computational complexity. The schemes fail to

 124

control the quality of collected data as well and hence are not practical in a big data

scenario.

As per the above study, it is understood that each method has got one or other

setback. Decentralizing the authentication task while guaranteeing the security of the

user and/or data is a challenging chore. The network and processing delay also need

to be taken care of.

4. Proposed system

The proposed system has its roots in Secure Remote Password (SRP) Protocol [22],

threshold cryptography and blockchain technology. The existing Kerberos enabled

Hadoop Cluster environment is modified as follows:

1. The user demonstrates to the KDC that he knows the password without

plainly sharing it. A salted hash of it is shared (as exponent of generator of a pre-

determined cyclic group Ǥ).

2. Blockchain network stores user details instead of local storage.

3. Single Ticket Granting Server (TGS) at KDC is substituted with many Ticket

Granting Servers (TGSs) as in [23], wherein a pre-determined threshold number of

TGSs should work together to get the decryption key to decrypt the Ticket Granting

Ticket (TGT).

The client’s details is kept in the blockchain as quadruplets

{username, verifier, salt, PSK} [where salt is a random number, 𝑥 is salted

hash of the password and verifier 𝑣 is calculated by exponentiation of 𝑔 the

generator, of the pre-determined Group with 𝑥]. The Client submits a request for a

authentication at the Key Distribution Center (KDC). The Authentication Server (AS)

posts the user information to the Blockchain. The miners in the get the user

information and send corresponding salt and verifier to the AS. The user obtains its

𝑠𝑎𝑙𝑡 stored at the KDC during registration (at blockchain) under his username, along

with the public key of the AS and an unsigned integer 𝑢. Both user and the AS

computes a common secret 𝑆 using their own formula. The session key 𝐾 is computed

as hash of the value of 𝑆.

To confirm the correctness of the generated session key, the AS in the proposed

system, a a random key keyRand is sent to the user. The user encrypts the reply with

the computed session key 𝐾. The response is decided as per the pre-agreement. The

session key K is considered to be vaild if and only if:

 the user’s reply can be successfully decrypted by the Authentication Server

(AS), as only the AS and the user know the key 𝐾

 the user responded appropriately as per the pre-agreement; it indicates that

the client is authenticated as only the client has the Pre-shared key (obtained from AS

during registration) to figure out the e-OTP (enhanced – One Time Password) as per

the pre-agreement

As illustrated in Fig. 1, the scheme consists of three entities:

a. The user.

b. The KDC with blockchain storage.

c. The secured Hadoop Cluster which user wants to access.

 125

Table 1. Summary of related existing authentication mechanisms in the Big Data Environment
Scheme

from
Problem Addressed Methodology Comments

[5] Single Point of Failure Identity-based cryptography –

signature verification

Ciphertext-Policy Attribute-based

encryption (CP-ABE) – for

authorization

- CP-ABE scheme – difficulty in

managing users and specifying

policies, overhead increases with

increase in the size of the

universe attribute set

- IBS is key escrow property

[8] Need for middleware in IIoT

4.0 environment

Introduce fog as middleware -Least priority to security

[11] Password Guessing attack - Hash values of password and

usernames before transmitting over

the internet

- OTP

Communicational and

computational overhead

[12] Password guessing attack - Only hash and XOR operations

- Secure Elements (SE)in the sensor

devices and Trusted Platform

Modules (TPM) in the network

devices like routers are used for

authenticating

- The sensors communicate using the

alias identity to prevent

eavesdropping

- Infrastructural changes need to

be made in the sensor devices for

incorporating SEs

- Reliability of TPMs to be

considered

[13] User anonymity - Elliptic Curve Cryptography

- Biometrics

Complex computations at sensor

nodes and gateway nodes

[14] Mutual authentication with

fine-grained access control

- Blockchain

- Attribute signature

- Multi-receivers encryption

- Message authentication code

Performance not optimized –

degrades system performance

[15] Data authentication and

untrustworthiness of third

parties

Certificateless signature scheme

using bilinear pairing

- High execution cost

- Vulnerable to signature

falsification attacks

- Not robust as secure channel

needed between the third party and

DOs

[16] Data authentication in IIoT Partial private key generation - Complex computations

[17] Secure sharing and

exchanging data

- Deep reinforcement learning

- Blockchain

- Storage overhead

- Computational complexity

[18] Single Point of Failure and

other malicious attacks

A credit-based Proof-of-Work (PoW)

consensus mechanism

- Sensor data quality control

- Storage limitations

[19] Bigdata storage privacy Only users who satisfy certain

attributes are given access to data

- Computational complexity

[20] Security challenges in

Industrial IoT and

information-based interaction

for the industrial environments

in Industry 4.0

Software-defined IIoT architecture to

regulate network resource

provisioning and speed up

information exchange mechanisms

by an effortlessly customizable

networking protocol

- Difficult to standardize Software

Defined Networking (SDN)

- Centralized control system leads

to delay in data forwarding

[21] Password Guessing attack -Communication of password over

the network is avoided by using OTP

based authentication

- User’s password is encrypted using

an OTP and stored in the registration

server

- The backend server further encrypts

it with user password and store for

future authentication purposes

- Avoidable communication

overhead

- Offline Password Guessing

Attack

 126

Fig. 1. Proposed system architecture

The AS grants the Ticket Granting Server Ticket which comprises the session

key for the user to communicate with the Ticket Granting Server (TGS). The user

submits the Service Ticket request by providing the Ticket Granting Ticket (TGT).

The shareholders at the TGS pool their resources to get the decryption key to decrypt

the Ticket Granting Server Ticket (TGT). TGS then sends the Service Ticket and a

Session Key for the user to encrypt its communication with Hadoop Name node and

vice-versa. The user places then access to secured Service by providing the Service

Ticket along with a sequence number. The Namenode in the Hadoop Cluster adds

one to the sequence number and replies to the user. This is for server’s identity

verification.

The proposed user authentication framework comprises the following steps:

a. User registration,

b. User Authentication.

4.1. User registration phase

 To register the user sends her identity IDu, a random salt 𝑠, and a salted hash of

the password 𝑥 to the KDC where

(9) 𝑥 = 𝐻(𝑠, Pw),
𝐔𝐬𝐞𝐫−→ 𝐊𝐃𝐂: IDu ∥ 𝑠 ∥ 𝑣 = 𝑔𝑥 mod 𝑁.

 The KDC checks if these user ID details already exist in the blockchain

storage.

 If no, the KDC sends back a PSK to the user for safe storage

𝐊𝐃𝐂−→ 𝐔𝐬𝐞𝐫: PSK.

 KDC posts this user info (ID, 𝑠, 𝑣 = 𝑔𝑥mod 𝑁, PSK) to the blockchain for

future authentication purposes by calling the smart contract of the blockchain,

𝐊𝐃𝐂−→ 𝐁𝐥𝐨𝐜𝐤𝐜𝐡𝐢𝐚𝐧: IDu ∥ 𝑠 ∥ 𝑣 ∥ PSK.
Table 2 defines various variables used in the proposed algorithm.

 127

Table 2. Symbols Used

Symbol Definition Symbol Definition

Ǥ An additive group with multiplicative

operation
𝑇𝑥 Ticket to access entity x

N, ꞡ Group Parameters (Prime & Generator

of group Ǥ)
SHA3() Secure Hash Function

ID𝑥 Identity of entity x 𝑠 Random salt

KDC Key Distribution Center 𝑥 Salted hash of password

AS Authentication Server 𝐾𝑥𝑦 Session Key for x & y

Pw Password e_OTP Enhanced OTP

PSK Pre-Shared Key KEY_RAND Randomly Generated Key

𝐾𝑥
pub

 Public key of x 𝐾𝑥
pvt

 Private key of x

E() Encryption function 𝛼, 𝛽 Public parameters for ElGamal

Encryption

4.2. Authentication Step

 The user places an authentication request to the KDC with his IDu and the identity

of the Ticket Granting Server (TGS) IDTGS, it wants to get access into, together with

his public key

(10) 𝐾u
pub

 = 𝑔𝐾u
pvt

,

where 𝐾u
pvt

 is the secret key of the user.

𝐔𝐬𝐞𝐫−→ 𝐊𝐃𝐂: IDu ∥ IDTGS ∥ 𝐾u
pub

.

 The Authentication Server (AS) publishes this to the Blockchain Network so

that the blockchain miners retrieve the user’s verifier 𝑣 and salt 𝑠 from the BC,

𝐀𝐒−→ 𝐁𝐥𝐨𝐜𝐤𝐜𝐡𝐚𝐢𝐧: IDu ∥ IDTGS ∥ 𝐾u
pub

,
𝐁𝐥𝐨𝐜𝐤𝐜𝐡𝐚𝐢𝐧−→ 𝐀𝐒: 𝑣 ∥ 𝑠.

 If user details already exist, the Authentication Server chooses a random 𝐾AS
pvt

as the secret key and compute analogous public key masked with the verifier 𝑣 of the

user as per following equation:

(11) 𝐾AS
pub

= 𝑣 + 𝑔𝐾AS
pvt

.

 A 32-bit value 𝑢 is calculated as follows:

(12) 𝑢 = 𝐻 (𝐾u
pub

, 𝐾AS
pub

).

 Then, the salt 𝑠, public − key 𝐾AS
pub

 and 𝑢 are shared with the user.

𝐀𝐒−→ 𝐔𝐬𝐞𝐫: 𝑠 ∥ 𝐾AS
pub

∥ 𝑢.

 The shared secret is calculated at the user side as follows:

(13) 𝑆 = (𝐾AS
pub

− 𝑔𝑥)𝐾u
pvt

+𝑢𝑥 .

 At the KDC side, the AS computes the shared secret as

(14) 𝑆 = (𝐾u
pub

× 𝑣u)𝐾AS
pvt

.

 Then, the shared secret 𝑆 are hashed at both sides and get the session key,

𝐾ua for use in further communication between the user and the Authentication Server

as

(15) 𝐾ua = 𝐻(𝑆).

 128

 The AS then sends a random key to the user,

𝐀𝐒−→ 𝐔𝐬𝐞𝐫: keyRand.

 The user needs to submit the correct response as per the pre-agreement and

revert to the AS. That is, the user should submit the numerals in the Pre-Shared

Key, PSK, that are at places indicated by the numerals in the keyRand. This is

considered as an enhanced type of OTP (e_OTP). This e_OTP is encrypted using the

session key 𝐾ua,

𝐔𝐬𝐞𝐫−→ 𝐀𝐒: 𝐸𝐾ua
(e_OTP).

 If the AS is successful decrypting the above message and confirms the

correctness of e_OTP then a Ticket Granting Server Ticket (TGT) is allotted to the

user.

 The Ticket Granting Ticket (TGT) is then encrypted with Ticket Granting

Server’s (TGS’s) the public key as

(16) 𝑇t = 𝐸
𝑘TGS

pub(𝐾tu ∥ IDu).

 Elliptic Curve ElGamal Encryption is deployed here. That is,

(17) Encrypt (𝑇t) = 𝑐1, 𝑐2 = 𝛼𝑘 , 𝑇t. 𝛽𝑘,

where 𝑘 ∈ ℤ𝑝 is a arbitrarily selected integer by the TGS.

𝐀𝐒−→ 𝐔𝐬𝐞𝐫: {𝐸
𝐾u

pub(𝐾tu)∥ 𝑇t}.

 The user places a request to the Ticket Granting Server (TGS) to access the

secured Hadoop Server Service by presenting the Ticket Granting Server Ticket

(TGT),

User TGS: IDu ∥ 𝑇t ∥ IDh.

 TGS is arranged as several TGSs so that a pre-determined threshold number

of TGSs should collaborate to compute the secret key’s shares to decrypt the TGT:

o The TGS has divided it into n shareholders to allow multi-party

authentication.

o A predetermined threshold k number of shares of the secret key

contributed by participant TGS is required here to decrypt the Ticket Granting Server

Ticket (TGT). This ensures that the TGS is continuously accessible. The decryption

key share of i-th shareholder is calculated as:

(18) 𝑑𝑖 = (𝑐1)𝐾𝑖
pvt

.
o The decryption key is then calculated using the shares as follows:

(19) 𝑑 ≡ ∏ 𝑑𝑖
Λ𝑖

𝑖∈𝐼 ,

where Λ𝑖 is calculated using LaGrange’s Construction Method and 𝐼 is the set of

contributors. Then, the Ticket Granting Ticket (TGT) is decrypted as

(20) 𝑇t = 𝑐2𝑑−1.
o The client’s authenticity is verified and the TGS issues the Hadoop

Service Ticket (𝑇h) to the user.

𝐓𝐆𝐒−→ 𝐔𝐬𝐞𝐫: {𝑇h, 𝐸
𝑘u

pub(𝐾uh)},

where

(21) 𝑇h = 𝐸
𝑘h

pub(𝐾uh,IDu).

 With Service Ticket, user accesses the Hadoop Server as follows:

 129

𝐔𝐬𝐞𝐫−→ 𝐇𝐚𝐝𝐨𝐨𝐩: {IDu ∥ 𝑇h ∥ 𝐸𝑘uh
(seq#)}.

 Then, the Hadoop server answers, and hence the user can confirm the

authenticity of the Hadoop server as follows:

Hadoop−→User: {𝐸𝑘uh
(seq# + 1)}.

The kerberized Hadoop Server Identity should also be confirmed. As a last step

in the proposed method, the user sends a sequence number encrypted with the session

key shared between the client and secured Hadoop Server. So, only the secured

Hadoop server can decrypt it and it returns a one- added value of the sequence number

encrypted with their session key. This endorses that the user got a response from the

same Hadoop server from which it requested the service and is thus mutually

authenticated.

4.3. Blockchain-assisted consensus mechanism

The proposed scheme deploys the Practical Byzantine Fault Tolerance (PBFT)

Mechanism to reach at an agreement on the data being mined from the blockchain

storage for registration/authentication purposes. When the user places a registration

request, the Authentication Server forwards the details to the blockchain as follows:

𝐊𝐃𝐂−→ 𝐁𝐥𝐨𝐜𝐤𝐜𝐡𝐢𝐚𝐧: IDu ∥ 𝑠 ∥ 𝑣 ∥ PSK.
The consensus process occurs as per the following steps:

Step 1. Generate. The leader node amongst the endorsement nodes receives the

above transaction when its turn comes, and a candidate block is created to add to the

blockchain network.

Step 2. Pre-prepare. The leader node then broadcasts the candidate node just

created to all other endorsement nodes in the network.

Step 3. Prepare. The endorsement nodes check whether this block data is

already existing one and hashes the block data otherwise. This is then broadcasted to

other endorsement nodes in the network.

Step 4. Commit. According to PBFT, every node must receive prepare

messages from more than 2/3 of the total number of nodes to reach on a decision

(consensus). Upon reaching the consensus, every node broadcasts a commit message

to every other nodes.

Step 5. Import. This new block is then added to the chain if consensus is

reached and the Authentication server is notified.

5. Implementation and result analysis

Riverbed Modeler (AE) Simulator [24] is opted here to simulate the Kerberos enabled

Hadoop Environment. As depicted in Fig. 2, it consists of the User Workstations, the

Key Distribution Center (KDC) with an Authentication Server (ASr), and numerous

Ticket Granting Servers (TGSs) and secured Hadoop Cluster with Namenode and

Datanodes. The ppp_wkstn_adv node object is deployed as a user workstation and is

accepted as the originator of all the communications. ppp_server_adv node object is

deployed as the Authentication Server, Ticket Granting Server and as Namenode.

The Internet node discards 0.0% of inward traffic and augments 100 ms delay to the

 130

network packets. The authentication request size is presumed to be 2 KB and the user

devotes 4 s to prepare this message. The Blockchain network required 0.5 s to retrieve

the user’s salt and verifier. Next phases, namely SRP Verification and PSK

validation, together needs 4.5 s. The tickets in this model are presumed to be of size

1 KB and the ticket encryption takes 5 s. The size of encrypted exchanges between

the user and the Hadoop Server is homogeneously distributed between 1 KB and

10 KB.

5.1. Security analysis

The proposed approach has dealt with most of the security challenges faced by

Kerberized Hadoop Clusters. The following are the details.

5.1.1. Password guessing attacks

Assumption 1. An intruder guesstimates the password of a genuine user, he used to

log into the secured system during previous communications.

P r o o f: A zero-knowledge-proof security is guaranteed in the proposed scheme

as password or any information about it isn’t openly shared with the KDC during

registration or authentication processes. Adversary 𝒜 won’t thus get any chance to

guesstimate the password and enter them into the system. Again, the session key is

computed from a common shared secret at the user (13) and server (14) sides

separately.

Fig. 2. Simulation environment

The passwords are stored in a manner that is not directly usable to an attacker.

Even if the password database is hacked, the adversary still needed an expensive

dictionary search to get the correct password. The computations which involves

exponentiation operations to validate the guess are further time-consuming and

 131

difficult to solve. The SRP protocol mentions the client terminate the communication

when 𝐾AS
pub

= 0 in order to protect the system from offline guessing threats.

The values salt 𝑠, 𝐾AS
pub

, 𝐾u
pub

, u and keyRand are public parameters, computed

according to (12), (13), (14), and (15). Conversely, 𝑥 is private parameter computed

as

(22) 𝑥 = SHA3(𝑠, Pw).
Suppose adversary 𝒜 gets a dictionary from (12), (13), (14), and (15).

Adversary 𝒜 can’t even guess 𝑥, because the key 𝐾ua is verified by e_OTP

scheme where the user’s reply to KDC is encrypted with 𝐾ua. Only the AS and the

user know it and can decode the e_OTP, which is a innovative feature of the proposed

system.

5.1.2. Compromise on Key Distribution Center

Assumption 2. The adversary 𝒜 hacks the KDC to get access to user credentials.

P r o o f: The deployment of a distributed tamper-free blockchain storage as

storage at the Key Distribution Centre and the threshold cryptography which

demands shares from prefixed threshold number of TGS for the authentication

process to proceed ahead makes sure that there is no effect of any single node

shutdown or compromise. The system is protected from the DoS attacks and

henceforth the Single Point of Vulnerability. The Key Distribution Center is freed

from storage and management of the credentials and hence the security is enhanced

to a great extent. There is no probability that the adversaries target on the Key

Distribution Centre as nothing is stored there.

For example, consider the following scenario, where user submits the request

for service ticket by providing the Ticket Granting Ticket he/she has. Upon receipt

of this request, the TGS asks the participant TGSs to contribute their shares to decrypt

the TGT. That is,

User TGS: IDu ∥ 𝑇t ∥ IDh,

 𝑑𝑖 = (𝑐1)𝐾𝑖
pvt

,

𝑑 ≡ ∏ 𝑑𝑖
Λ𝑖

𝑖∈𝐼

.

Here, 𝑑𝑖 is the decryption key share hold by TGSi and a threshold number of these

share are sufficient to compute d. If any of the participants contribute wrong shares,

that won’t affect the authentication process.

5.1.3. Replay attacks

Assumption 3. An adversary 𝒜 gets Authentication Dialogue

User TGS: IDu ∥ 𝑇t ∥ IDh,

and retransmit it to get access to the secured Hadoop Server.

P r o o f: An adversary 𝒜 fails replay the messages at any stage of the

authentication process as the secrets are not ever communicated over the network. It

is tremendously tough to figure the discrete log and if at all be successful in that, the

credentials are kept in a manner that is not valuable to the adversary as it is.

 132

Here, the Ticket Granting Server replies with the Authentication Dialogue:

TGS−→ User: {𝑇h, 𝐸
𝑘u

pub(𝐾uh)}; where 𝑇h = 𝐸
𝑘h

pub(𝐾uh,IDu). The key 𝐾uh is

encrypted with the user’s public key and thus only the user can decode it. Hence,

adversary cannot use it for reply attacks.

A comparative security analysis of the proposed scheme with that of related

schemes in [1] and [25] is presented in Table 3.

Table 3. Comparative analysis of security features

Security feature

R a h u l and

G i r i s h k u m a r

[1] scheme

A l g a r a d i and

R a m a [25]

scheme

Proposed

scheme

No single point of failure

Resist the insider attack

Resist dictionary attacks

Resist replay attack

5.2. Key sensitivity analysis

Any deliberate or accidental modification of a single bit of the private key creates a

severe consequence on the whole authentication mechanism. The computation of

secure hash function separately at the server and client side senses any change in the

value of shared secret as described in Table 4. The e_OTP scheme make sure that the

key generated at both the sides are same. If the keys are different on both sides, the

AS fails to decrypt the reply message from the user that is encrypted with the derived

session key.

Table 4. The value of Secret S computed same at both sides

User KDC

𝑆 = (𝐾AS
pub

− 𝑔𝑥)𝐾u
pvt

+𝑢𝑥 𝑆 = (𝐾u
pub

× 𝑣u)𝐾AS
pvt

𝑆 = (𝑣 + 𝑔𝐾AS
pvt

− 𝑔𝑥)𝐾u
pvt

+𝑢𝑥 𝑆 = (𝑔𝐾u
pvt

× 𝑔𝑥u)𝐾AS
pvt

𝑆 = (𝑔𝑥 + 𝐾AS
pvt

− 𝑔𝑥)𝐾u
pvt

+𝑢𝑥 𝑆 = (𝑔𝐾u
pvt

+𝑢𝑥)𝐾AS
pvt

𝑺 = (𝒈𝑲𝐀𝐒
𝐩𝐯𝐭

)𝑲𝐮
𝐩𝐯𝐭

+𝒖𝒙 𝑺 = (𝒈𝑲𝐀𝐒
𝐩𝐯𝐭

)𝑲𝐮
𝐩𝐯𝐭

+𝒖𝒙

5.3. Key space analysis

A perfect key for any security mechanism should not be too long or too short. The

Greater key sizes result in slowing down the encryption. This is not a suitable option

for real-time big data systems. If the key sizes are small, it is susceptible to easy

cracking also. As per reports in [26], the keys space should be greater than or equal

to 2100 to attain high level security. The proposed scheme a key of size 40 bytes which

is equal to 320 bits. Thus with 320 bits the key space is 2320. This key space is

sufficiently large for preventing any brute force attacks or password guessing attacks.

5.4. Performance analysis

The performance of the proposed scheme is compared with the traditional Kerberos

enabled Hadoop systems that rely on RSA (Rivest-Shamir-Adleman) cryptosystem.

As shown in Fig. 3, the duration for completion of all tasks in the Initial Login

Process to get the TGT in RSA-based traditional system is h compared to the

 133

proposed system. The difficult computations in RSA and larger key sizes can be a

cause for this.

The computational cost of the proposed system is compared with some of the

related systems [1] and [25]. 𝑇h indicates computational cost for hash operations 𝑇e

for exponentiation functions and 𝑇s for cryptographic functions. A comparative

analysis of these costs are shown in Table 5. The computational cost of the proposed

scheme is 𝑇h + 𝑇e during the registration step and 6𝑇s + 3𝑇h + 6𝑇e during the user

authentication step. The scheme in [1] costs 4𝑇s + 𝑇h during registration step and

21𝑇s during user authentication step. The scheme in [25] costs 2𝑇s + 3𝑇h + 𝑇e for

registration step and 8𝑇s + 2𝑇h for authentication step. To account the above costs,

the values of 𝑇h, 𝑇e and 𝑇s are considered as approximately equal to 0.0023 ms,

0.0046 ms and 2.226 ms, respectively. These values are taken as reported by authors

in [27]. Then, R a h u l and G i r i s h K u m a r [1] scheme incurs

4𝑇s + 𝑇h + 21𝑇s ≈ 25⨉(2.226) + 0.0023 ≈ 55.65 ms.

For A l g a r a d i and R a m a [25] scheme, it is

10𝑇s + 5𝑇h + 𝑇e ≈ 10⨉(2.226) + 5⨉(0.0023) + 0.0046 ≈ 22.28 ms.

At the same time, in the proposed system this is

6𝑇s + 4𝑇h + 7𝑇e ≈ 6⨉(2.226) + 4⨉(0.0023) + 7⨉(0.0046) ≈ 13.40 ms.

Table 5. Comparative analysis of computational cost

Phase

R a h u l and

G i r i s h Kumar

[1] scheme

A l g a r a d i and

R a m a [25]

scheme

Proposed

scheme

Registration 4𝑇s + 𝑇h 2𝑇s + 3𝑇h + 𝑇e 𝑇h + 𝑇e

Authentication 21𝑇s 8𝑇s + 2𝑇h 6𝑇s + 3𝑇h + 6𝑇e

Estimated cost

(ms)
≈ 55.65 ≈ 22.28 ≈ 13.40

The graphical representation of the same is illustrated in Fig. 4. Thus, the

proposed scheme is more efficient than the existing schemes in terms of

computational cost as well.

Fig. 3. Initial login task – response time

Fig. 4. Comparative analysis of computational cost

 134

5.5. Time complexity

As seen in Table 5, the operations in the proposed system involve the following

operations.

The registration phase involves a hashing operation and an exponentiation

operation. Similarly, the authentication phase involves six encryption/decryption

operations, three hashing operations, and six exponentiation operations. It is observed

that hashing is involved in both phases. Hence, the time complexity of the SHA-256

hashing algorithm is taken into account which is 𝛰(𝑀 × 𝑛) where M is the message-

length to be hashed. The Elliptic Curve ElGamal Cryptosystem has a time complexity

of 𝛰(𝑛) whih includes the time for exponentiation and modular inverse operation.

Hence, the total time complexity is 𝛰(𝑀 × 𝑛) + 𝛰(𝑛) + 𝛰(𝑛)+ 𝛰(𝑛) which

approximates to 𝛰(𝑛).

The traditional system under study that is RSA-based. It has an overall time

complexity of 𝑂(𝑛2) for key generation and 𝑂(𝑛3) for encryption and decryption.

Thus, the proposed system is efficient in terms of time complexity.

6. Conclusion

With the increased popularity of Big Data Analytics and consequent industrial

benefits, security issues have also popped up. Many researchers and experts have

already proposed various solutions to address these issues. In this paper, a novel

three-tier authentication framework is proposed to secure Kerberos-enabled Hadoop

clusters. The proposed scheme depends on the Secure Remote Password Protocol,

enhanced One Time password and threshold cryptosystem. The Blockchain network

replaces the local database at the KDC. The proposed authentication system which

mainly aims to eliminates single point of failure and password guessing attacks

secures the Hadoop clusters from other main attacks like replay and insider attacks.

The blockchain which is a tamper-proof storage also avoids the issues that can happen

due to the compromise on local database at the KDC. The Riverbed Modeller (AE)

Simulation evaluated the performance of the proposed system and found it be highly

efficient. In the future, the time synchronization problem in Kerberized Hadoop

Clusters will be addressed and real-time implementation results will be presented to

prove the validity of the above claims.

R e f e r e n c e s

1. R a h u l, P. K., T. G i r e e s h K u m a r. A Novel Authentication Framework for Hadoop. –

Advances in Intelligent Systems and Computing, Vol. 324, 2015, pp. 333-340.

2. L i n g a p p a, R. What Is Secure Remote Password (SRP) Protocol and How to Use It? The Startup,

Medium. 2019. Accessed 15 March 2021.

https://medium.com/swlh/what-is-secure-remote-password-srp-protocol-and-how-to-

use-it-70e415b94a76

3. H e n a, M., N. J e y a n t h i. Authentication Framework for Kerberos Enabled Hadoop Clusters. –

Int. J. Eng. Adv. Technol., Vol. 9, 2019, No 1, pp. 510-519.

4. C a s t r o, M., B. L i s k o v. Practical Byzantine Fault Tolerance. – In: Proc. of 3rd Symposium on

Operating Systems Design and Implementation, New Orleans, USA, February 1999, pp. 1-14.

 135

5. L i, R., H. A s a e d a, J. L i, X. F u. A Distributed Authentication and Authorization Scheme for

In-Network Big Data Sharing. – Digit. Commun. Networks, Vol. 3, November 2017, No 4,

pp. 226-235.

6. W a n g, K., J. Y u, X. L i u, S. G u o. A Pre-Authentication Approach to Proxy Re-Encryption in

Big Data Context. – IEEE Trans. Big Data, May 2017, p. 1.

7. A b d u l l a h, N., A. H a k a n s s o n, E. M o r a d i a n. Blockchain Based Approach to Enhance Big

Data Authentication in Distributed Environment. – In: Proc. of 9th International Conference

on Ubiquitous and Future Networks (ICUFN’17), 2017, pp. 887-892.

8. A a z a m, M., S. Z e a d a l l y, K. A. H a r r a s. Deploying Fog Computing in Industrial Internet of

Things and Industry 4.0. – IEEE Trans. Ind. Informatics, Vol. 14, October 2018, No 10,

pp. 4674-4682.

9. O m o n i w a, B., R. H u s s a i n, M. A. J a v e d, S. H. B o u k, S. A. M a l i k. Fog/Edge Computing-

Based IoT (FECIoT): Architecture, Applications, and Research Issues. – IEEE Internet Things

J., Vol. 6, Jun 2019, No 3, pp. 4118-4149.

10. S o m u, N., A. G a n g a a, V. S. S h a n k a r S r i r a m. Authentication Service in Hadoop Using

One Time Pad. – Indian J. Sci. Technol., Vol. 7, 2014, No April, pp. 56-62.

11. S a r v a b h a t l a, M., M. R. M. C h a n d r a, C. S. V o r u g u n t i. A Secure and Light Weight

Authentication Service in Hadoop Using One Time Pad. – Procedia Computer Science,

Vol. 50, 2015, pp. 81-86.

12. E s f a h a n i, A., et al. A Lightweight Authentication Mechanism for M2M Communications in

Industrial IoT Environment. – IEEE Internet Things J., Vol. 6, February 2019, No 1,

pp. 288-296.

13. L i, X., J. N i u, M. Z. A. B h u i y a n, F. W u, M. K a r u p p i a h, S. K u m a r i. A Robust ECC-

Based Provable Secure Authentication Protocol with Privacy Preserving for Industrial Internet

of Things. – IEEE Trans. Ind. Informatics, Vol. 14, August 2018, No 8, pp. 3599-3609.

14. L i n, C., D. H e, X. H u a n g, K. K. R. C h o o, A. V. V a s i l a k o s. BSeIn: A Blockchain-Based

Secure Mutual Authentication with Fine-Grained Access Control System for Industry 4.0. –

J. Netw. Comput. Appl., Vol. 116, 2018, No February, pp. 42-52.

15. K a r a t i, A., S. K. H. I s l a m, M. K a r u p p i a h. Provably Secure and Lightweight Certificateless

Signature Scheme for IIoT Environments. – IEEE Trans. Ind. Informatics, Vol. 14, August

2018, No 8, pp. 3701-3711.

16. Z h a n g, Y., R. H. D e n g, D. Z h e n g, J. L i, P. W u, J. C a o. Efficient and Robust Certificateless

Signature for Data Crowdsensing in Cloud-Assisted Industrial IoT. – IEEE Trans. Ind.

Informatics, Vol. 15, January 2019, No 9, pp. 5099-5108.

17. L i u, C. H., Q. L i n, S. W e n. Blockchain-Enabled Data Collection and Sharing for Industrial IoT

with Deep Reinforcement Learning. – IEEE Trans. Ind. Informatics, Vol. 15, Jun 2019, No 6,

pp. 3516-3526.

18. H u a n g, J., L. K o n g, G. C h e n, M. Y. W u, X. L i u, P. Z e n g. Towards Secure Industrial IoT:

Blockchain System with Credit-Based Consensus Mechanism. – IEEE Trans. Ind. Informatics,

Vol. 15, Jun 2019, No 6, pp. 3680-3689.

19. W a n g, K., J. Y u, X. L i u, S. G u o. A Pre-Authentication Approach to Proxy Re-Encryption in

Big Data Context. – IEEE Trans. Big Data, May 2017, pp. 1-11.

20. W a n, J., et al. Software-Defined Industrial Internet of Things in the Context of Industry 4.0. – IEEE

Sens. J., Vol. 16, October 2016, No 20, pp. 7373-7380.

21. S o m u, N., A. G a n g a a, V. S. S h a n k a r S r i r a m. Authentication Service in Hadoop Using

One Time Pad. – Indian J. Sci. Technol., Vol. 7, May 2014, No Supplementary 4, pp. 56-62.

22. T a y l o r, D., T. W u, N. M a v r o g i a n n o p o u l o s. Using the Secure Remote Password (SRP)

Protocol for TLS Authentication. 2007.

23. H e n a, M., N. J e y a n t h i. Blockchain Based Authentication Framework for Kerberos Enabled

Hadoop Clusters. – In: 10th International Conference on Soft Computing for Problem Solving

(SocProS’20), 18-20 December 2020.

24. S e t h i, A. S. The Practical OPNET User Guide for Computer Network Simulation. Chapman and

Hall/CRC, 2012.

25. A l g a r a d i, T. S., B. R a m a. Static Knowledge-Based Authentication Mechanism for Hadoop

Distributed Platform Using Kerberos. – Int. J. Adv. Sci. Eng. Inf. Technol., Vol. 9, 2019,

No 3, pp. 772-780.

 136

26. S c h n e i e r, B. Applied Cryptography : Protocols, Algorithms and Source Code in C. 2nd Ed. John

Wiley & Sons, Inc., 1996.

27. K i l i n c, H. H., T. Y a n i k. A Survey of SIP Authentication and Key Agreement Schemes. – IEEE

Commun. Surv. Tutorials, Vol. 16, 2014, No 2, pp. 1005-1023.

28. I v a n o v a-R o h l i n g, V. N., N. R o h l i n g. Evaluating Machine Learning Approaches for

Discovering Optimal Sets of Projection Operators for Quantum State Tomography of Qubit

Systems. – Cybernetics and Information Technologies, Vol. 20, 2020, No 6 pp. 61-73.

29. P r a b a d e v i, B., N. J e y a n t h i. TSCBA-A Mitigation System for ARP Cache Poisoning

Attacks. – Cybernetics and Information Technologies, Vol. 18, 2018, No 4, pp. 75-93.

30. P e n c h e v a, E. N., I. I. A t a n a s o v, V. G. V l a d i s l a v o v. Mission Critical Messaging Using

Multi-Access Edge Computing. – Cybernetics and Information Technologies, Vol. 19, 2019,

No 4, pp. 73- 89.

31. B r i n d h a, K., N. J e y a n t h i. Secured Document Sharing Using Visual Cryptography in Cloud

Data Storage. – Cybernetics and Information Technologies, Vol. 15, 2015, No 4, pp. 111-123.

32. S r i v a s t a v a, M., J. S i d d i q u i, M. A. A l i. A Review of Hashing Based Image Copy Detection

Techniques. – Cybernetics and Information Technologies, Vol. 19, 2019, No 2, pp. 1-27.

33. P r a b a d e v i, B., N. J e y a n t h i. Security Solution for ARP Cache Poisoning Attacks in Large

Data Center Networks. – Cybernetics and Information Technologies, Vol. 17, 2017, No 4,

pp. 69-86.

34. U s h a, S., S. K u p p u s w a m i, M. K a r t h i k. A New Enhanced Authentication Mechanism

Using Session Key Agreement Protocol. – Cybernetics and Information Technologies,

Vol. 18, 2018, No 4, pp. 61-74.

Received: 14.06.2021; Second Version: 27.10.2021; Accepted: 08.11.2021

