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Abstract: The survey presents the evolution of Short Weierstrass elliptic curves after 
their introduction in cryptography. Subsequently, this evolution resulted in the 
establishment of present elliptic curve computational standards. We discuss the 
chronology of attacks on Elliptic Curve Discrete Logarithm Problem (ECDLP) and 
investigate their countermeasures to highlight the evolved selection criteria of 
cryptographically safe elliptic curves. Further, two popular deterministic and 
random approaches for selection of Short Weierstrass elliptic curve for cryptography 
are evaluated from computational, security and trust perspectives and a trend in 
existent computational standards is demonstrated. Finally, standard and non-
standard elliptic curves are analysed to add a new insight into their usability. There 
is no such survey conducted in past to the best of our knowledge.  
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1. Introduction 

Computation of elliptic curve requires extensive mathematical research to compute 

curve’s parameters over large prime field for its use in cryptography [1]. There are 

several agencies like National Institute of Standards and Technology (NIST), 

Standards for Efficient Cryptography Group (SECG), Brainpool, etc., who have 

recommended standard elliptic curves over various prime field orders. However, it is 

important to note the rationale behind the approaches adopted for selection of elliptic 

curve parameters from computational, security and trust perspectives. The scope of 

this article is limited to the Short Weierstrass form of elliptic curves which are used 

for constructing most of the present cryptosystems such as Public Key Infrastructure 

(PKI) [2], Secure SHell (SSH), Transport Layer Security (TLS), IPSec, JSON Web 

Encryption (JWE) [3], etc.  

The key contributions of this paper enlist: 

1. A comprehensive survey for evaluation of the computational approaches of 

cryptographically secure elliptic curves is presented. 

2. Evolution of Elliptic Curve Cryptography (ECC) with theoretical 

advancements in cryptographic mathematics and their significant impact on 

standardization of computational methods is presented. 
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3. Chronology of attacks on Elliptic Curve Discrete Logarithm Problem 

(ECDLP) and their countermeasures is presented.  

4. Selection criteria of cryptographically secure elliptic curves are discussed. 

5. A trend in computational approaches of elliptic curves in standards 

recommended by various agencies is demonstrated.  

6. Standard and non-standard elliptic curves are compared from computational, 

trust and security perspectives to add a new insight into their usability.  

Rest of the paper is organized as follows: Section 2 gives preliminaries on 

elliptic curves in Short Weierstrass form and ECDLP. Section 3 describes evolution 

of ECC with time and theoretical advancements in applied mathematics to establish 

present computational standards and selection criteria of elliptic curve. Section 4 

focuses on evaluation of two popular approaches to compute cryptographically secure 

elliptic curves. Section 5 demonstrates the trend of approaches for computation of 

elliptic curve parameters adopted by various agencies in their proposed standards. 

Section 6 differentiates between standard and non-standard elliptic curves in various 

contexts. Finally, Section 7 concludes the paper with future directions. 

2. Preliminaries 

2.1. Elliptic curve in short weierstrass form 

Let the finite field 𝔽q has characteristic greater than 3. An elliptic curve 𝔼 over 𝔽q is 

the set of all solutions (x, y) to an equation 

(1)   𝔼: y2 = x3 + ax +b,  
where the coefficients a, b ∈ 𝔽q and 4a3 + 27b2 ≠ 0, together with a special point ∞ 

called the point at infinity which serves as the identity element of 𝔼 which is known 

to be an abelian group [4]. 

2.2.  The elliptic curve discrete logarithm problem 

Definition 1 (ECDLP). Given an elliptic curve 𝔼 defined over a finite field 𝔽q, a 

point P ∈ 𝔼(𝔽q) of order n, and a point Q ∈ 〈P〉, determine the integer l ∈ ⦋0, n – 1⦌ 
such that 

(2)   Q = l P. 
The integer l is called the discrete logarithm of Q to the base P, denoted as 

l=logpQ [5]. 

The definitions: Definition 2 [6], Definition 3 [7], Definition 4 [8] and 

Definition 5 [9] define supersingular curve, embedding degree, prime field 

anomalous curve and class number of elliptic curves respectively which need to be 

carefully considered for selection of elliptic curves with intractable ECDLP for 

cryptography. 

Definition 2 (Supersingular Elliptic Curves). If #𝔼(𝔽q)=q+1 – t denote the 

order of elliptic curve then 𝔼(𝔽q) is said to be supersingular if p divides t where p 

be the characteristic of 𝔽q and t be the trace of 𝔼. 

𝔼(𝔽q) is supersingular provided the trace (t) of the curve, t2=0; q; 2q; 3q or 4q 

[6]. Supersingular elliptic curves are vulnerable to attack due to Menezes, Okamoto 

and Vanstone (MOV) which solves Discrete Logarithm Problem (DLP) of 
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supersingular curves to the DLP in a finite field with sub-exponential complexity  

[6, 10]. 

Definition 3 (Embedding Degree of Elliptic Curve). If 𝔼(𝔽q) be the elliptic 

curve over 𝔽q then 𝔼 is said to have embedding degree k, a smallest positive integer, 

such that n | (qk – 1) where n be the base point order. 

It is also observed that ECC standards do not allow elliptic curves with low 

embedding degrees. 

Definition 4 (Prime Field Anomalous Curves). An elliptic curve 𝔼 defined 

over a prime field 𝔽p is said to be prime field anomalous if #𝔼(𝔽p)=p, i.e., the curve 

has trace 1.  

Prime field anomalous curves are trace one curves for which the ECDLP can be 

solved in linear time [10]. The prime field anomalous attack does not extend to any 

other classes of elliptic curves but the one having trace one [8]. 

Definition 5 (Class Number). Let h(N) denotes the class number of the order 

N of elliptic curve 𝔼. Then h(N) is the minimum degree of a number field over which 

the elliptic curve 𝔼 admits a faithful lift. 

3. Evolution of elliptic curves for cryptography 

Table 1. Evolution of Short Weierstrass elliptic curves for cryptography 
Year Event Impact on ECC Standardization 
1985 Elliptic curves were proposed for use in cryptography ECC were extensively studied to develop 

cryptosystems 
1987 Efficient point counting algorithm on elliptic curves by Schoof, 

Elkies and Atkin called SEA Algorithm was developed [17-18] 
Uses complexity O(ln5p) for point 
counting 

1992 Elliptic Curve based Digital Signature Algorithm (ECDSA) was 
developed [19] 

Considered as a mature signature scheme 
in NIST standard 

1993 Reduction of ECDLP of supersingular elliptic curves having trace 
zero to logarithm in a finite field [6] 

Became selection criteria for safe elliptic 
curve in all standards 

1994 Proposal of Shor algorithm [20] generalizes to solve ECDLP 
Random Quantum Polynomial (RQP) time using quantum 
computers 

Led to realization that elliptic curves will 
be unsafe once sufficient quantum 
capability is built. So, new computational 
standard required for quantum resistance 

1996 It was proved that the condition N|(qk – 1) is sufficient to realize 
the MOV algorithm under mild condition. Further, it was proved 
that randomly generated curves have k>log2q [21] 

Became selection criteria for safe elliptic 
curve in all standards 

1997 Proposal of a linear algorithm to solve ECDLP of trace one  
[10, 22] 

Became selection criteria for safe elliptic 
curve in all standards 

1999 NIST recommendation of 15 elliptic curves [23] Widely accepted standard later 
2000 SECG recommendation of elliptic curves [24] Widely accepted standard later 
2005 Recommendation of Brainpool first set of elliptic curves for 

standardization [25] 
International effort for elliptic curve 
standardization 

2010 Brainpool revised their specifications and published Request for 
Comment (RFC) 5639 [26] 

Standard established 
 

2014 Review of existing elliptic curves generation mechanisms by 
B e r n s t e i n  and L a n g e  [27] who coined two terms: 
ECDLP security and ECC security. They observed that Short 
Weierstrass form of elliptic curves are dominant in both the 
software and hardware implementations 

Two new terms: ECDLP security and 
ECC security became important 
verification criteria for curve selection 
with side channel attack resistance 

2014 NUMS-curve (Nothing Upon My Sleeves) were proposed under 
IETF standard [28] 

Curves with better performance proposed 
under IETF Standard 

2015 NIST Call for next generation elliptic curves with new models and 
optimized parameters resistant to side channel analysis was placed 
[28] 

NIST wanted to replace its standard 
elliptic curves 

2016 NIST report [29] on Post Quantum Cryptography (PQC). 
Resistance of elliptic curve cryptosystems was looked for 
quantum computing 

Isogenies of supersingular elliptic curves 
were discussed as resistant to PQC 
instead of ECDLP 

2017- 
2020 

Proposal of Quantum resources required to run Shor algorithm to 
solve ECDLP in polynomial time [30] 

Roeteller et. al. suggested quantum 
resource estimates to break ECDLP 

Note: N=Order of elliptic curve, q=prime power, k=embedding degree. 
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Table 2. Chronology of attacks on ECDLP and their countermeasures 
Attack Description type Countermeasure type  
Pohlig-
Hellman, DLP 
attack 

Private key can be recovered using Chinese Remainder 
Theorem [31] 

N must be a prime or near prime with 
small cofactor, N≥2160 [5] 

Pollard-rho, 
DLP attack 

A parallelized Pollard-rho on r processors can solve ECDLP 
in √(𝜋𝑛)/√(2𝑟)  steps [5, 32] 

n≥2160 [13, 32] 

Pollard’s 
Lambda,  
DLP attack 

Faster method than Pollard-rho when ECDLP lies in 
subinterval [1, b] of [1, n – 1], where b<0.39n [13] 

Private key should be selected 
uniformly at random within interval 
[1, n – 1] [30] 

Index-Calculus, 
DLP attack 

ECDLP can be solved using multiplicative group 𝔽q* of the 
finite field 𝔽q [13] 

Small prime fields should be 
avoided, i.e., n≥2160  [13] 

Exhaustive 
Search, 
DLP attack 

Computes successive multiples of base point till public key 
is achieved 

n should be sufficiently large [8] 

Shanks’ Baby 
step 
Giant step, 
DLP attack 

Fully exponential deterministic algorithm to determine n on 
𝔼(𝔽q) which requires approximately √𝑁 steps and around 
√𝑁 storage 

n≥2160  [13] 

Weil pairing 
and 
Tate pairing 
attacks, 
Pairing based 
attack 

ECDLP of 𝔼(𝔽q) can be reduced to ordinary DLP on 
extension field 𝔽*qk for some k≥1 where the number field 
sieve algorithm can be used to solve ECDLP [4, 6]. 
MOV reduction attack [6] 

n ∤ (qk – 1) ∀k ≥ 20 [7, 18]  
and ∀k ≥ (q –1)/100 [5] 
 
p ∤ t and t2≠0, 2q, 3q or 4q [6] (Non-
supersingularity) 

Multiple 
logarithm, 
DLP attack 

Multiple instances of ECDLP for the same elliptic curve 
parameters 

n≥2160  

Prime field 
anomalous 
curve, 
Pairing based 
attack 

Trace of 𝔼(𝔽p)=1, i.e., # 𝔼(𝔽p)=p [8, 12] N≠p [5] 

Note: q=size of underlying field, p=prime characteristic, n=order of a point on 𝔼, N=order of 𝔼, 
r=number of processors,  k=embedding degree, t=trace of curve. 

Table 3. Elliptic curve parameters selection criteria 
Elliptic  
curve  
parameter 

Criteria Benefit(s) 

Prime p 1. Crandall prime 2α –
γ where γ<210 [33, 34] 
2.Montgomery-
friendly prime  
2α(2β–γ) –1 where  
α, β, γ ≥ 0  
3. p≡3 mod 4 
 
 
4. Mersenne prime 
p=2k – 1 
5. p= random value 
6. Length of p≥221 
bits [27] 

1. For best possible performance by limiting carry propagation during multiply-
reduce and γ is small [34] 
2. Accelerates Montgomery arithmetic [33] 
3. Such primes can compute modular square root in constant time countering 
constant time attack using Side channels [33]. The point compression method 
allows representing one point (x, y) of 𝔼 only its abscissa x and one bit 
discriminating between the two possible values ±y. However, recovering y 
requires computing a square root in 𝔽p. This is easier when p≡3 mod 4 since 
in this case, c(p+1)/2 is a square root of c if c is a square [9] 
4. Mersenne primes are special primes of unique form which enables fast 
arithmetic [33] 
Minimizes time for modular multiplication [35] 
5. No pre-studied value or special structure vulnerable to cryptanalysis 
6. To counter brute-force attack 

Coefficient 
a 

1. a= –3 
 
 
2. a= random value 

1. For efficiency reasons. Practically all curves have low-degree isogenies to 
curves with a= –3, so this choice does not affect security. P1363 allows 
y2=x3+ax+b without the requirement a=–3 [9] 
2. No pre-studied value or special structure 

Coefficient 
b 

1. Should not be 
square in 𝔽p  [9] 
2. b=random value 

1. To avoid compressed representations of elliptic curve points as (0, 0) and  
(0, x) would be identical as x=√b with least significant bit as 0 [26] 
2. No pre-studied value or special structure 

Elliptic 
curve 
order N 

1. N should be prime 
[13, 18] 
2. N should be 
composite 

1. Prime order curve selected to resist Pohlig-Hellman and Pollard’s Rho 
attacks [5, 9]. Small subgroup attacks are avoided [9, 13] 
2. Prime group order curves do not have points with y=0 [36]. Special points 
of the form (x, 0) exist if the curve has an even order [9] 

Base point 
order n 

n should be prime to 
avoid Weil and Tete 
pairing attacks [5,  9] 

n≥2160  and n ∤ (qk – 1) where k is the embedding degree of elliptic curve 

Cofactor h Preferably 1 For optimal bit security, h=1 though 1≤h≤ 4 for performance gain [5, 9, 36] 
Base point  
Gx, y 

Randomly chosen base 
point [4] 

Prime order of base point gives maximum elliptic  
curve group size 
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Elliptic curves have been extensively studied and reviewed for cryptography 

soon after the proposals of Neal Koblitz and Victor Miller during 1985-1987. ECC 

has evolved with time and theoretical advancements in cryptographic mathematics, 

which subsequently has significant impacts on evolution of elliptic curve 

computational standards, which is discussed in Table 1. Moreover, elliptic curves are 

expected to be resistant to cryptographic attacks that can be ensured through the 

implementation of appropriate countermeasures. Table 2 [8] briefly depicts such 

countermeasures for important discrete logarithm (DLP) based attacks and pairing 

based attacks which resulted in the evolution of cryptographically safe elliptic curve 

selection criteria. Table 3 shows important selection criteria for elliptic curve 

parameters and their benefits to select elliptic curves with desired properties. 

4. Evaluation of computational approaches 

Elliptic curves need to qualify certain mathematical validations in order to certify that 

the elliptic curve has the claimed order, resists all known attacks on ECDLP and base 

point order has also the claimed order [5]. There are usually two approaches either of 

which can be used to compute an elliptic curve over prime field: first, the 

deterministic approach and second, the random approach. However, in both – the 

deterministic and random approaches, following conditions are critical for the elliptic 

curve to meet cryptographic requirements [4, 5, 11]: 

C1: Resistance to Pohlig-Hellman and Pollard’s Rho attack, i.e., n>2L where n 

is sufficiently large prime that divides order of the elliptic curve group #𝔼(𝔽q). Here, 

L≥160, the length in bits. 

C2: Resistance to Semaev-Smart-Satoh-Araki attack (Smart-ASS) [10, 12], i.e., 

L≤⌊log2q⌋ ensures 2L≤q or #𝔼(𝔽q)≠q. It avoids the attack on prime field anomalous 

curves. 

C3: n>4√𝑞 guarantees that 𝔼(𝔽q) has a unique subgroup of order n as 

#𝔼(𝔽q)≤( √𝑞 + 1)2 by Hasse’s theorem [5, 13 ] and so, n2 ∤ #𝔼(𝔽q). 

4.1. Evaluation of deterministic approach 

In this section, we evaluate the deterministic approach of computation of elliptic 

curves with respect to computational method, computational complexity, security, 

trust and specific gains for cryptography. 

4.1.1. Computational method 

Complex Multiplication (CM) is a widely accepted deterministic computational 

approach for standardization of elliptic curves. The CM method proceeds with fixing 

the prime field order p first and then constructs an elliptic curve over the field 𝔽p 

[11]. It gives a choice for selecting primes of special forms, accepts the order of the 

elliptic curve field p as input, and determines the CM discriminant D. The field order 

p is selected such that it meets the conditions C1, C2 and C3. The CM method is 

efficient when the finite field size p and the field order #𝔼(𝔽q)=p+1 – t are chosen 

such that CM-field of 𝔼, i.e., ℚ(√(𝑡2 − 4𝑝)) has small class number [4, 5]. A crucial 

step of CM method is to compute the roots of a special type of class field polynomials 
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called the Hilbert and Weber polynomials [14]. These polynomials are uniquely 

determined by D. Equations (3) and (4) [15], and (5) [16] constitute the basis of 

computation of Short Weierstrass elliptic curves using CM method. 

Definition 6 (Twist). Given 𝔼: y2=x3+ax+b with a, b ∈ 𝔽p the twist of 𝔼 by c 

is the elliptic curve given by 

(3)   𝔼c: y2=x3+ax+b, 
where c ∈ 𝔽p. 

Theorem 1. If the order of an elliptic curve is #𝔼(𝔽p)=p+1 – t, then the order 

of its twist is given as 

(4)    𝔼c(𝔽p*) =   (p+1– t) if c is square in 𝔽p, 
                                 (p+1+t) if c is non-square in 𝔽p. 

Theorem 2 (Atkin-Morain). Let p be an odd prime such that  

(5)   4p=t2+Ds2, 

for some t, s ∈ ℤ. Then, there is 𝔼(𝔽p) such that #𝔼(𝔽p)=p+1–t [16]. 

The CM method is called the Atkin-Morain method when the elliptic curve is 

derived over prime field [37]. Equation (5) observes that D is the integer which can 

be determined from a given prime p called the CM discriminant of p. Algorithm 1 

describes a general CM method [38] for constructing an elliptic curve over a given 

prime field. 

Algorithm 1. Elliptic curve generation over prime field using CM approach 

Input: Nil 

Output: Elliptic curve over a prime field 𝔼(𝔽p) 

Step 1. Choose elliptic curve field order p, a prime 

Step 2. Find smallest CM discriminant D from equation (5) along with trace t  
Step 3. Construct the orders of the two elliptic curve 𝔼(𝔽q)=p+1±t 
Step 4. if one of the curve orders is a prime or nearly a prime 

Step 5. Fix elliptic curve order 

Step 6. else Repeat Step 1 to determine D and t 
Step 7. end if 

Step 8. Construct the class polynomial HD(x) //Class polynomial is independent 

of p 

Step 9. Find a root j0 of HD(x)(mod p)  // j0 is the j-invariant of the desired 

elliptic curve 

Step 10. Set k=j0/(1728 - j0)(mod p)    // such that 𝔼: y2=x3+3kx+2k 

Step 11. if #𝔼≠p+1 – t  
Step 12. Construct the twist 𝔼c    //using a randomly selected non-square c ∈ 𝔽p 

following equations (3) and (4) 

Step 13. return 𝔼c 
Step 14. else  

Step 15. return 𝔼 
Step 16. end if 

4.1.2. Computational complexity 

The bit complexity (β) of CM method depends on b and h where b= length of field 

order p, h= class number, hc= cross over class number for which the random approach 
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and CM approach have the same runtime. When h(D)<hc(b) where D is the CM 

discriminant, then CM method is faster than random approach [11]. CM method can 

generate a prime order elliptic curve in time Õ((logN)4) [38]. 

4.1.3. Security 

Deterministic approach is vulnerable to non-disclosed attacks. B e r n s t e i n  et. al. 

[39] showed that standards can be sometimes purposely designed in such a way that 

it can be manipulated by the agency who recommended those standards. Also, 

sufficient information about the computational mechanisms of curve parameters has 

not been made publicly available [7]. It is always a concern for researchers that the 

ECDLP of deterministically computed elliptic curves can be solvable by using very 

efficient sub-exponential or polynomial time algorithm using non-guessable very 

high computing power unknown to outside world. 

4.1.4. Trust 

The elliptic curve parameters which are selected deterministically are sometimes 

distrusted due to lack of sufficient proofs of their computational mechanisms [40]. 

Moreover, trust in the curve parameters is doubtful due to possibility of intentional 

non-disclosed properties of the curve parameters. There are some serious statements 

of distrust expressed by many reputed scientists and researchers on NIST 

recommended elliptic curves which was generated through deterministic approach. 

Some of such statements of distrust are given as below:  

 “I no longer trust the constants. I believe the National Security Agency 

(NSA) has manipulated them through their relationships with industry.” – B r u c e  

S c h n e i e r  (see [41]). 

 “NIST should generate a new set of elliptic curves for use with ECDSA in 

FIPS 186... The set of high-quality curves should be described precisely in the 

standard, and should incorporate the latest knowledge about elliptic curves.” – 

E d w a r d  F e l t e n  (see [42, 43]).  

 “NIST should ensure that there are no secret or undocumented components 

or constants in its cryptographic standards whose origin and effectiveness cannot be 

explained.” – S t e v e  L i p n e r  (see [42, 43]).  

 “However, in practice the NSA has had the resources and expertise to 

dominate NIST, and NIST has rarely played a significant independent role.” – 

K o b l i t z , K o b l i t z  and M e n e z e s  [7].  

 “We don’t know how Q = [d]P was chosen, so we don’t know if the 

algorithm designer [NIST] knows [the backdoor] d.” – S h u m o w  and F e r g u s o n  

(see [44]).  

 “Consider now the possibility that one in a million of all curves have an 

exploitable structure that “they" know about, but we don’t. Then “they" simply 

generate a million random seeds until they find one that generates one of “their" 

curves.” – S c o t t  [45].  

 Many more. 
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4.1.5. Specific gains of deterministic approach 

CM method adheres to “Performance over slightly sacrificed security” principle for 

computation of elliptic curves. Fast elliptic curve computation is possible in CM 

method due to elimination of the need for a point counting algorithm and fixing of 

certain parameters like prime p with special structures [40]. CM method allows much 

faster arithmetic with elliptic curves as compared to random approach to achieve 

higher performance of elliptic curve cryptosystems [5]. It provides smaller, faster and 

easily implementable software code due to offline precalculations while adopting 

deterministic computational approach [46]. Prime order elliptic curves generated 

using CM method with a= –3 are backward compatible with implementation 

supporting most of the standardized elliptic curves [42]. CM method can only be 

adopted to construct ordinary elliptic curves with low embedded degree k>6 [7]. CM 

method is not efficient if there is no restriction on the class number of the elliptic 

curve [8]. This method is useful in deriving elliptic curves with small class numbers 

for which ECDLP is hard and gives the same security level as given by the elliptic 

curves which are generated randomly [5, 8]. 

4.2. Evaluation of random approach 

Random approach allows obtaining elliptic curves, which are ordinary, and avoids 

any special form or structure. This approach uses ‘early-abort strategy’ to obtain 

desired elliptic curve [5]. A general observation is that elliptic curves generated using 

random approach have not been given preference for standardization. We evaluate 

random approach from computational method, computational complexity, security, 

trust and specific gains perspectives in this section. 

4.2.1. Computational method 

In random approach, the elliptic curve generation algorithm computes curve 

parameters keeping ECDLP security and procedural transparency in consideration. 

Algorithm 2 describes a general random approach as preferred in [3-6, 11, 17, 18, 27, 

33, 38] to derive cryptographically safe elliptic curve over prime field.  

Algorithm 2. Elliptic curve generation over prime field using random approach 

Input: Randomness 

Output: Elliptic curve 𝔼(𝔽p), base point Gx, y, curve order N 

Step 1. Select randomly a prime p of desired size 

Step 2.  Fix K=GF(p)          // Generate Field K of order p 

Step 3.  Choose randomly coefficient a 

Step 4.  Choose randomly coefficient b 

Step 5.  Generate 𝔼(K)         // Elliptic curve over 𝔽p 

Step 6.  if 4a3+27b2≠0   // Non-singularity check 

Step 7.  else go to Step 3 

Step 8.  end if 

Step 9.  Compute order N of 𝔼 

Step 10. if N is prime  // To resist Pohlig-Hellman attack 

Step 11. else go to Step 3 

Step 12. end if 
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Step 13. if 𝔼 is supersingular  // To resist MOV attack 

Step 14. else go to Step 3 

Step 15. end if 

Step 16. if N≠p  // Non-anomalous check 

Step 17. else go to Step 3 

Step 18. end if 

Step 19. Select randomly a base point Gx, y on 𝔼 

Step 20. Compute base point order n     // n≥160 bits and n>4√𝑝 

Step 21. if n≠N    // Check for cofactor as 1 

Step 22. else go to Step 19 

Step 23. end if 

Step 24. Compute Twist 𝔼c    // For twist security of elliptic curve 

Step 25. Compute order N ′ of 𝔼c 

Step 26. if 𝔼c  is non-singular & N ′ is prime & 𝔼c  is non-supersingular  // All 

criteria to be met for 𝔼c 

Step 27. else go to Step 3 

Step 28. end if 

Step 29. return 𝔼(𝔽p), Gx, y, N  // Return elliptic curve parameters 

Here, the prime field p is fixed and coefficients a and b are kept varying until a 

suitable elliptic curve 𝔼 with prime order N is obtained. Some validations to meet the 

cryptographic requirements C1, C2 and C3 are also kept. We observe that all the 

elliptic curve parameters such as p, a, b and Gx, y are randomly generated in order to 

avoid any special structure or known values whose choices are ambiguous. 

4.2.2. Computational complexity 

For random approach, the bit complexity (β) only depends on length of prime (r0) 

and falls in the range O(log5+ϵk0r0) to O(log7k0r0) where ϵ>0 and k0 is the cofactor 

[11]. 

4.2.3. Security 

Random approach does not allow any special structure of curve parameters in order 

to eliminate doubts on intentional non-disclosure of backdoors [5]. Elliptic curves, 

which are randomly computed, have no hidden goals that can be proved in 

determination of the curve parameters. This ensures that the elliptic curve parameters 

are trusted and not suspected to belong to a (not publicly known to be) vulnerable 

class. This approach is favourable when long-term security is desired with an 

ignorable sacrifice of efficiency [7]. Elliptic curves can be frequently changed for 

security reasons when computed randomly [40]. The only way to compromise elliptic 

curve security in such case is to solve ECDLP rather than just attacking particular 

classes of weak elliptic curves. Hence, random approach is specifically preferred to 

obtain elliptic curves for implementation in strategic or military grade cryptosystems. 

4.2.4. Trust 

Random approach ensures that no intentional construction with hidden weakness in 

the elliptic curve parameters is present in order to prevent future exploitation to 
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recover user’s private key [5]. The trust in derivation of the elliptic curve parameters 

is maintained due to the use of absolutely new values drawn randomly each time. 

Moreover, there are no patent issues with randomly selected new curve parameters. 

Random approach protects against attacks in special classes of elliptic curves, which 

may be vulnerable in future [5]. However, random values of elliptic curve parameters 

are always arguable by others for their emanation and random number generation, in 

case they are not explained adequately. 

4.2.5. Specific gains of random approach 

Random approach adheres to the principle of “security over performance” for 

computation of elliptic curve parameters. Computing order of the elliptic curve is a 

time-intensive task and hence, selecting elliptic curve using random approach is a 

slower process as compared to the deterministic approach where one starts with fixing 

the order of the elliptic curve. Point compression and decompression also require 

more computation in randomly generated elliptic curves [40]. Elliptic curves are 

computed with nearly the same probability to ensure that curves are not special in 

any sense when they are computed randomly [5, 11].  

5. Approaches adopted by agencies for elliptic curve computation 

Many agencies have recommended elliptic curves over various security levels for 

standardization. Table 4 depicts the popular standard elliptic curves in Short 

Weierstrass form with their computational approaches. Here, randomly generated 

elliptic curves means those elliptic curves whose parameters like field order p, field 

coefficients a, b and basepoint Gx,y are randomly or pseudo-randomly (a secure hash 

function is used to generate curve parameters from random value given as input to 

the hash function to confirm that parameters are indeed computed pseudo randomly) 

generated or otherwise, they are considered to be obtained from the deterministic 

approach. Clearly, from Table 4, the trend demonstrates that the CM method, i.e., the 

deterministic approach is the preferred computational approach for standardization 

of elliptic curves. 

Table 4. Computational approach adopted for Short Weierstrass elliptic curve computation 
Name of elliptic curve Agency Year Security level in 

bits 

Approach 

NIST [23] National Security Agency (NSA) 2001 112, 128, 192, 

256 

Deterministic 

Brainpool [25, 26] European Consortium of Companies and 

Government 

2005 128, 192, 256 Pseudo-

random 

ANSSI FRP256v1 [39]  ANSSI 2011 128 Random 

SECG [24] Certicom 2000 112, 128, 192, 

256 

Deterministic 

NUMS-Curves [28, 42] Microsoft Research 2014 128, 192, 256 Deterministic 

Russian Standardized 

Curves [47] 

GOST R 34.10-2001 

GOST R 34.10-2012 

GOST R 34.11-2012 

Russian National Cryptographic Standards 2001,  

2012 

128, 256 Deterministic 
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6. Standard and non-standard elliptic curves 

Elliptic curves are standardized to enable compatibility and interoperability across 

diverse applications. Moreover, non-standard elliptic curves are mostly used by 

strategic applications such as military applications or non-military but other critical 

infrastructure applications such as nuclear reactors’ command and control systems 

etc. These applications do not really believe in Kerckhoffs’s principle [48] of 

security, which says “A cryptographic system should be secure even if everything 

about the system, except the key, is public knowledge”. Unlike Kerckhoff’s principle, 

the strategic applications do believe that not only the keys but the algorithm too 

should also be kept private to protect critical information infrastructure better. In such 

cases, they compute elliptic curves preferably using random approach instead of 

deterministic approach. Table 5 compares between the standard and non-standard 

elliptic curves from computation, trust and security perspectives to help the readers 

about their usability concerns.  

Table 5. Standard elliptic curves versus non-standard elliptic curves 
Standard elliptic curve Non-standard elliptic curve 
Prefers deterministic approach of computation to 
get performance benefits in elliptic curve 
arithmetic. This helps in standardization of 
elliptic curves by global acceptance 

Prefers random approach of computation for long 
term security so that any special kind of curve is 
avoided which may lead to vulnerability to an 
unanticipated attack 

Adheres to Kerckhoffs’s principle of security and 
fixes elliptic curves for compatibility and 
interoperability among diverse applications 
across the globe 

Adheres mostly to strategic principle of security 
which says that keys and algorithm both needs to 
be kept secret 

Standard elliptic curves are subject to public 
exposure and often attract cryptanalysis as more 
people use it. Hence, there is always a high 
chance of collision with the secret key [49] 

Negligible chance of collision with the secret key 
that’s why random approach is preferred 

Distrust comes with presence of special 
structures of the curve parameters 

Trusted new values of curve parameters known to 
designer only. Prefers random approach to compute 
elliptic curve parameters 

Standard elliptic curves are globally accepted and 
trusted 

Not published and mostly not supported by the 
standards. Hence, trusted by their proposers or/and 
in closed group only 

Compatible across applications and interoperable 
due to standardization 

Not compatible. Applications need to be made 
interoperable explicitly 

Better approach in case where elliptic curve 
needs to be computed over large prime fields 

Better approach in case where elliptic curve needs 
to be transparently computed without any special 
structures known to others [50] 

Curve parameters and compression techniques 
have patent issues 

No patent issues 

Already published and analysed thoroughly. Non 
deniable chances of hiding backdoors 

Derivation procedure of curve parameters are 
known to the proposers only and hence, negligible 
chances of backdoors. High degree of trust 
observed by the proposers of non-standard elliptic 
curves 

Standard elliptic curves are fixed to maintain 
compatibility among applications 

Non-standard elliptic curves have edge over the 
standard ones as they can be replaced frequently for 
added security 

More prone to get attacked by sophisticated 
advancements in mathematics and discoveries 

In case of randomly selected curve parameters, 
curve is safe until sub-exponential algorithm is 
known to break it in particular [33] 

7. Conclusion and future directions 

Short Weierstrass elliptic curves are widely used for cryptographic purposes. An 

evolution chart of events is presented which has significant impact on introducing 
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elliptic curves for use in cryptography. We discuss about important attacks on 

ECDLP and their countermeasures, which became the basic selection criteria of 

elliptic curves for their consideration in cryptography. This paper also discuss 

rationale behind the selection criteria used to compute cryptographically suitable 

elliptic curve parameters. Two popular approaches, i.e., deterministic and random 

approaches to compute cryptographically secure Short Weierstrass elliptic curves and 

rationale behind them are evaluated in detail. A trend of approaches for computation 

of elliptic curve parameters for cryptographic purposes is also demonstrated which 

favours deterministic approach in standardization so far. We also differentiate 

between standard and non-standard elliptic curves with respect to their computational 

approaches, trust and security and bring out the desirable facts to choose either of 

them on need basis. Hence, it is inferred that this comprehensive evaluation and 

analysis of computational approaches of cryptographically safe elliptic curves will be 

helpful to those who wish to compute Short Weierstrass elliptic curves for design of 

cryptosystems with desired properties of the elliptic curves. 

Standardization of elliptic curves, which are computed using random approach 

will be, preferred in future citing the trust requirements of strategic applications. 
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