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Abstract: In recent years, we are witnessing artificial intelligence being deployed 

on embedded platforms in our everyday life, including engineering design practice 

problems starting from early stage design ideas to the final decision. One of the most 

challenging problems is related to the design and implementation of neural networks 

in engineering design tasks. The successful design and practical applications of 

neural network models depend on their qualitative properties. Elaborating efficient 

stability is known to be of a high importance. Also, different stability notions are 

applied for differently behaving models. In addition, uncertainties are ubiquitous in 

neural network systems, and may result in performance degradation, hazards or 

system damage. Driven by practical needs and theoretical challenges, the rigorous 

handling of uncertainties in the neural network design stage is an essential research 

topic. In this research, the concept of robust practical stability is introduced for 

generalized discrete neural network models under uncertainties applied in 

engineering design. A robust practical stability analysis is offered using the 

Lyapunov function method. Since practical stability concept is more appropriate for 

engineering applications, the obtained results can be of a practical significance to 

numerous engineering design problems of diverse interest.  

Keywords: Neural networks, engineering design, practical stability, uncertainties, 

robustness. 

1. Introduction 

The great progress in the development of artificial intelligence methods affects every 

sphere of life. The necessity of using such methods and technologies arises naturally 

in a wide variety of tasks such as integrating information, analysing data, and 

improving the decision-making. 

Advancements in artificial intelligence methods and approaches expand the 

opportunities for neural networks applications, and hence, artificial neural network 

systems become widely used models in engineering. Neural networks can be 

successfully applied in modelling, pattern recognition, optimization, classification, 

forecasting, estimation and much more. See, for example, [1-3] and the references 
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therein. In recent decades, there has been a substantial growth of research interest in 

the development and applications of neural networks comprising engineering design. 

For example, in the paper [4] a specific type of neural networks is proposed in interior 

design to identify products in scenes and finding stylistically similar products. In [5] 

artificial neural networks are used for the design of a manufacturing system and 

providing an efficient decision-making framework for selecting the best design 

alternative. In [6] a neural network system is proposed for retrieval of engineering 

designs. The paper [7] offers a neural network approach to analyse the relationship 

between product design forms and their images. Authors found that based on the 

proposed design model, the designer can also grasp the image feeling of the whole 

product in the idea development stage. This is due mainly to the key advantages of 

neural networks such as learning ability, storage ability, fault tolerance, inductive 

ability, parallel handling ability. In [8] an approximation method for engineering 

design problems is presented using neural networks. The paper [9] is devoted to the 

application of neural networks in the design of the exterior form of running shoes. 

More results on the applications of different classes of neural network systems in 

engineering design can be found in [10-12]. Some very recent results are presented 

in [13-15]. 

Since the efficient applications of a neural network model in engineering design 

depend on its dynamic behaviour; the qualitative analysis of the dynamic behaviours 

is an essential step in the practical design of the neural networks. 

Stability of the states is known as one of the most important problems in the 

qualitative analysis of neural networks. In engineering design problems, achieving 

stable steady states is crucial for many applications since such states are the feasible 

design solution [16, 17]. For example, if a neural network is used to solve 

optimization design problems, the steady state represents the optimal solution [8, 10]. 

In pattern recognition problems, the equilibria are pattern [5, 6]. If a steady state is 

not stable, then small variations in the initial data (inputs, initial design ideas) may 

lead to huge perturbations in the output values.  

The most studied stability type is the asymptotic stability of the states [18-22]. 

This is due mainly to the fact that it guarantees the fastest convergence rate. In the 

case when the neural network is used to solve pattern recognition problems, the global 

asymptotic stability guarantees a very fast recognition of the patterns (even in case 

when some initial information is missing). In case of solving optimization problems, 

the global asymptotic stability guarantees a fast approaching to the optimal solution 

(the best design concept) independently of the initial data [23]. 

However, the concept of practical stability is considered to be more appropriate 

in numerous practical engineering problems [24-26]. In fact, in many cases, though 

a system is stable or asymptotically stable in the classical mathematical (Lyapunov) 

sense, it is actually useless in practice because of undesirable characteristics [27-29]. 

Also, for practically stable models, the system may not be stable mathematically, but 

can oscillate close to the desired state, in which the performance is still acceptable. 

In addition, the practical stability properties are useful for models with multi-stable 

dynamics [30], as well as, in the cases when not only the qualitative behaviour but 

also the quantitative data, such as specific trajectory bounds are of importance [26]. 
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However, most of the contributions to the practical stability theory for neural network 

models are related to deterministic models. The practical stability results for discrete 

systems are relatively few [31-33]. 

On the other hand, due to the modelling and product information inaccuracies, 

errors in measurement or random errors, parametric uncertainty occur in the neural 

network models. Such uncertainties may affect the stability, and therefore, may 

degraded the performance of the system and the design quality. Hence, robust 

stability analysis of neural networks is an important part of their qualitative analysis. 

Since robust design methods may greatly contribute to increase the product quality, 

recently the robustness in engineering design systems based on neural networks is a 

very hot research topic [34-37]. 

One of the most applied method in stability analysis of neural network systems 

is the Lyapunov function method [24, 38, 39]. It is applied to continuous [19-23, 28, 

29] as well as to discrete models [18, 31-33, 40, 41]. The application of the method 

is based on the use of an auxiliary function (Lyapunov function) with specific 

properties. No knowledge on the solutions are necessary. Due to the simplifications 

offered in the applications, the method is not losing its popularity today [42]. 

For robust stability analysis, researchers have actively developed efficient 

robust design methods in order to reduce the unstable and/or inconsistent data results 

arising from the uncertainties and achieve an optimal design. Among all methods, the 

Lyapunov function method has been successfully applied to investigate the 

robustness in a variety of models with uncertain terms [43-47], including models in 

engineering such as robotic manipulators [48, 49], high speed rotors [50], aircraft and 

aerospace systems [51, 52]. In [53] the Lyapunov-based approach is applied in the 

lithium-ion batteries accurate state estimation in order to maintain accuracy and 

robustness. In most of the results, the Lyapunov method is again applied to 

deterministic models. There are not so many results for robust stability of discrete 

models [54-57]. 

Despite the high importance of the robust practical stability notion it has not 

been developed for discrete neural networks or for specific models used in 

engineering design, which is the basic aim of the paper. 

In this paper, motivated by the above discussion we will introduce the hybrid 

concept of global robust practical exponential, defined for a class of generalized 

discrete neural networks applied in engineering design tasks. By using the Lyapunov 

function method, some sufficient conditions that guarantee the defined stability 

behaviour are established. The proposed results extend and complement some 

existing stability criteria for discrete neural networks and can be used in the robust 

product design process to help designers search for an optimum combination of 

variable characteristic values for a given product design problem. 

2. The model 

A network model, in general, is a collection of nodes (vertices) joint in pairs by edges 

(links). The connection between the nodes is organized into a logical sequence of 

layers. At the start of the sequence, a neural network applies a layer of functions to a 
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set of input variables. Subsequent layers take as input the output of some of the 

functions in the previous layer. Finally, the last layer in the network maps to the 

output data. Indeed, much of today's engineering design work consists of running 

design variables (inputs) x and receiving output of responses (outputs) y. The input 

variables represent initial design concepts or input design variables in different design 

tasks. The output variables describe the final design solution (final design concepts 

or the optimal design solution). 

Several neural network models with an architecture represented in Fig. 1 have 

been applied in the study of the product form of mobile phones [12] to determine the 

best combination of product form elements for matching a desirable product image.  

 

 
Fig. 1. A three layers neural network [12] 

 

The inputs variables (inputs neurons, 𝑥 ) in most of the proposed neural network 

models represent top shape, body shape, bottom shape, length and width ratio of 

body, function buttons style, number buttons arrangement, screen size, screen mask 

and function buttons and outline division style, and the output variables y are the 

desirable product images. In some of the proposed neural network models not all 

input variables have been used. The type of function and the connection between 

layer outputs and inputs defines the neural network topology. The variables in the 

output layer in [12] have been obtained by the model 

(1)   𝑦𝑘 = 𝑓(∑ 𝑤𝑗𝑘𝑥𝑗𝑗 − 𝜃𝑘),   1 ≤ 𝑘 ≤ 𝑝, 

where the authors used a sigmoid activation function 𝑓(𝑡) =
1

1+𝑒−𝑡, 𝜃𝑘 are threshold 

values, 𝑤𝑗𝑘  represent the weights for the connection between neuron  

𝑗, 𝑗 = 1, 2, . . . , 𝑚 and neuron 𝑘, 𝑘 = 1, 2, . . . , 𝑝, respectively. 

The model (1) has been generalized in [18] to the discrete-time neural network 

system, 

(2)    𝑥𝑖(𝑘 + 1) = − 𝑎𝑖𝑥𝑖(𝑘) + ∑ 𝑤𝑖𝑗𝑔𝑗(𝑥𝑗(𝑘)𝑗 ) + 𝐽𝑖, 

where:  1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑛  is the number of the units (nodes, neurons, respectively) in 

the neural network model (2); 𝑥𝑗(𝑘) is the state of the input 𝑗 at the discrete time 𝑘; 

𝑘 = 0, 1, 2, …, 𝑤𝑖𝑗 are the connection weights; 𝑔𝑗(𝑥𝑗(𝑘)) denotes the activation 

function of the neuron 𝑗, 𝑗 = 1, 2, … , 𝑛; 𝐽𝑖 represents i-th external bias of the neuron 



 7 

𝑗. By adding the constants 𝑎𝑖, the model (2) takes into an account the opportunity of 

the neuron 𝑖, 𝑖 = 1, 2, … , 𝑛, to resets its potential to the resting state when isolated 

from other nodes and inputs with a constant rate 𝑎𝑖. This is an important requirement 

for a neural network model to reach steady states. 

It is well known that uncertainties can often lead to a trial and error approach to 

design, where a designer may never uncover the functional relationship between  

𝑥(𝑘) = (𝑥1(𝑘), 𝑥2(𝑘), … , 𝑥𝑛(𝑘)), and 

y= 𝑥(𝑘 + 1) = (𝑥1(𝑘 + 1), 𝑥2(𝑘 + 1), … , 𝑥𝑛(𝑘 + 1)), 

and therefore may never identify the best settings for input values. Therefore, 

investigating neural network models with uncertainties that can be applied in 

engineering design tasks is important for applications and a challenging issue. 

In this paper, in order to study the effects of uncertainties on the practical 

stability behaviour of the model (2), we will consider the following neural network 

system with uncertainties 

(3)     𝑥𝑖(𝑘 + 1) = −(𝑎𝑖 + 𝑎𝑖
∗)𝑥𝑖(𝑘) + ∑ (𝑤𝑖𝑗+𝑤𝑖𝑗

∗ )𝑔𝑗(𝑥𝑗(𝑘)𝑗 ) + 𝐽𝑖 + 𝐽𝑖
∗,  

where:   1 ≤ 𝑖, 𝑗 ≤ 𝑛;   𝑎𝑖
∗ denote unknown bounded parameters in the constant rate 

𝑎𝑖; 𝑤𝑖𝑗
∗  are the constant uncertain parameters in the connection weights; 𝐽𝑖

∗ represents 

the uncertainty in the external input of the i-th unit. 

3. Robust practical stability definitions 

We will denote by 𝑥(𝑘) = 𝑥(𝑘; 𝑘0, 𝑥0), 𝑥(𝑘) = (𝑥1(𝑘), 𝑥2(𝑘), . . . , 𝑥𝑛(𝑘)), the state 

of the model (2) at the time (step) 𝑘 with initial data 

                                                       𝑥(𝑘0) = 𝑥0, 

where: 𝑘0 is some initial time; 𝑘, (𝑘 ≥ 𝑘0), 𝑘0 are nonnegative integers (at the first 

step 𝑘0 = 0); 𝑥0 = (𝑥01, 𝑥02, . . . , 𝑥0𝑛) represents the original sequence of data [12].  

In this paper, the norm of the n-dimensional vector  

𝑥(𝑘) = (𝑥1(𝑘), 𝑥2(𝑘), . . . , 𝑥𝑛(𝑘)), 

will be defined as 

||𝑥(𝑘)||    =   ∑ |𝑥𝑖(𝑘)|𝑛
𝑖=1 ,   𝑘 = 0, 1, 2, …  

Some global exponential stability criteria have been proposed in [18] for the 

steady state of the model (2). The goal of this research is to establish robust practical 

stability results for the model (2) investigating the effects of the uncertainties. To this 

end, following [24, 28, 31, 32, 33] we will introduce the following definitions. 

Definition 1. The model (2) is said to be globally practically exponentially 

stable, if there exist constants 0 < 𝜆 < 1, 𝑀 ≥ 0  and 𝐴 > 0 such that 

||𝑥(𝑘)||    ≤  𝑀 ||𝑥(0)||𝜆𝑘 + 𝐴,    𝑘 = 0, 1, 2, … 

Remark 1. A comparison between Definition 1 for global practical stability of 

system (2) and Definition 1 in [18] for global exponential stability of a steady state 

of the system (2) again shows that both concepts are quite independent, and in 

general, neither imply nor exclude each other. The practical stability concept is more 

useful in engineering since it can be achieved in a setting time which can highly 

improve the effectiveness in real applications [24-29, 31-33]. In addition, it can be 

applied for multi-stable systems [30]. 
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Definition 2. The model (2) is said to be globally robustly practically 

exponentially stable}, if the model (3) is globally practically exponentially stable for 

any values of the uncertain parameters 𝑎 𝑖
∗, 𝑤𝑖𝑗

∗  and 𝐽𝑖
∗. 

The model (2) is known as the “nominate” system for the neural network model 

(3) [44, 47]. 

4. Basics of the Lyapunov function method 

The use of the Lyapunov function method in the stability and stabilization of systems 

involves the construction of a nonnegative control Lyapunov function V with specific 

properties. For continuous time systems, it is required that the derivative of the 

function with respect to the states of the system under consideration to be negative 

[19-23, 28, 29]. For discrete time systems, such a requirement is considered for the 

difference between two consecutive values of the function [18, 31-33, 40, 41]. 

In this paper, we will use Lyapunov functions 𝑉(𝑘, 𝑥(𝑘)) > 0 for any  
𝑘 = 0, 1, 2, … The difference between two consecutive values of the function will be 

denoted by 
Δ𝑉(𝑘, 𝑥(𝑘)) = 𝑉(𝑘 + 1, 𝑥(𝑘 + 1)) − 𝑉(𝑘, 𝑥(𝑘)), 𝑘 = 0, 1, 2, ... 

The following result from [33] will be useful in our robust practical stability analysis. 

Lemma 1. If there exist a Lyapunov function 𝑉(𝑘, 𝑥(𝑘)) > 0 for any  
𝑘 = 0, 1, 2, …, and positive constants  𝑐1, 𝑐2, 𝑐3, 𝑎 and 𝜌, such that 𝑐3 < 𝑐2, 

(i) 𝑐1||𝑥(𝑘)|| ≤ 𝑉(𝑘, 𝑥(𝑘)) ≤ 𝑐2||𝑥(𝑘)|| + 𝑎, 𝑘 = 0, 1, 2, …, 

(ii) Δ𝑉(𝑘, 𝑥(𝑘)) ≤ −𝑐3𝑉(𝑘, 𝑥(𝑘)) + 𝜌, 𝑘 = 0, 1, 2, …, 

then 

𝑉(𝑘, 𝑥(𝑘; 0, 𝑥0)) ≤ 𝑉(𝑘, 𝑥(0))𝜎𝑘 +
𝛼1

1−𝜎
, 

where 𝜎 = 1 −
𝑐3

𝑐2
,  𝛼1 =

𝑎𝑐3

𝑐2
+ 𝜌. 

5. Global robust practical stability analysis 

We will study the global robust practical exponential stability of the neural network 

model (2) under the following assumptions on the system’s parameters: 

A1. Any system output  𝑥(𝑘) can be measured and its initial values are assumed 

to be in a compact set. 

A2. The activation functions 𝑔𝑖 are such that functions 𝑔𝑖(0) = 0 and 
|𝑔𝑖(𝑢) − 𝑔𝑖(𝑣)|    ≤   𝐿𝑖 |𝑢 − 𝑣|, 

for any real numbers 𝑢 and 𝑣, where 𝐿𝑖  are positive constants for any  1 ≤ 𝑖 ≤ 𝑛.  

A3. The constants  𝑎𝑖,  𝑤𝑖𝑗  and  𝐽𝑖are real numbers for  1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

A4. The uncertain constants  𝑎𝑖
∗,  𝑤𝑖𝑗

∗  and  𝐽𝑖
∗are real numbers for  1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

Theorem 1. Assume that: 

(i) Assumptions A1-A4 hold; 

(ii) The uncertain parameters 𝑎 𝑖
∗, 𝑤𝑖𝑗

∗  and 𝐽𝑖
∗ are bounded,  𝑎𝑖 + 𝑎𝑖

∗ > 1, and 

there exist positive constants c3 and ,  𝑐3 < 1 and  𝜌 > 0 such that 

(4)    min
1≤𝑖≤𝑛

(𝑎𝑖 + 𝑎𝑖
∗ − 1) − max

1≤𝑗≤𝑛
𝐿𝑖(∑ (|𝑤𝑗𝑖| + |𝑤𝑗𝑖

∗ |)𝑗 ) ≥ 𝑐3, 
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(5)    ∑ (𝐽𝑖 + 𝐽𝑖
∗)𝑛

𝑖=1 < 𝜌 for any  1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

Then the model (2) is globally robustly practically exponentially stable. 

P r o o f: Let 𝑥(𝑘) be the system (2) output with initial data 𝑥(0), that belong to 

a compact set. 

Consider a Lyapunov function of the type 

(6)    𝑉(𝑘, 𝑥(𝑘)) = ||𝑥(𝑘)|| + 𝑎   =   ∑ |𝑥𝑖(𝑘)|𝑛
𝑖=1 + 𝑎. 

The function (6) satisfies condition (i) of Lemma 1 for some positive constants 

 𝑐1 and 𝑐2 (𝑐2 ≥ 1). 

For the difference between two consecutive values of the function with respect 

to system (3), we get 

Δ𝑉(𝑘, 𝑥(𝑘)) = 𝑉(𝑘 + 1, 𝑥(𝑘 + 1)) − 𝑉(𝑘, 𝑥(𝑘)) = ∑(|𝑥𝑖(𝑘 + 1)| − |𝑥𝑖(𝑘)|)

𝑛

𝑖=1

= 

= − ∑ (𝑎𝑖 + 𝑎𝑖
∗ − 1)|𝑥𝑖(𝑘)| + ∑ ∑ (|𝑤𝑖𝑗| + |𝑤𝑖𝑗

∗ |)  |𝑔𝑗(𝑥𝑗(𝑘)𝑗 |𝑛
𝑖=1

𝑛
𝑖=1 +

+ ∑ ((𝐽𝑖 + 𝐽𝑖
∗))𝑛

𝑖=1 . 

From the above estimate, applying A2 and conditions (4) and (5) of Theorem 1, 

we have 

Δ𝑉(𝑘, 𝑥(𝑘)) ≤ − min
1≤𝑖≤𝑛

(𝑎𝑖 + 𝑎𝑖
∗ − 1) ∑ |𝑥𝑖(𝑘)|𝑛

𝑖=1 + ∑ ∑ (|𝑤𝑖𝑗| +𝑗
𝑛
𝑖=1

|𝑤𝑖𝑗
∗ |)𝐿𝑗|𝑥𝑗(𝑘) |+ 𝜌 ≤ 

≤ −min
1≤𝑖≤𝑛

(𝑎𝑖 + 𝑎𝑖
∗ − 1)𝑉(𝑘, 𝑥(𝑘)) + max

1≤𝑖≤𝑛
𝐿𝑖(∑ |𝑤𝑗𝑖|𝑗 )𝑉(𝑘, 𝑥(𝑘))  + 𝜌, 

(7)    ≤ −𝑐3𝑉(𝑘, 𝑥(𝑘)) + 𝜌,  𝑘 = 0, 1, 2, … 

Since the constant 𝑐3 in (7) is such that 𝑐3 < 1, and 𝑐2 ≥ 1, then 𝑐3 < 𝑐2 and condition 

(ii) of Lemma 1 is satisfied. 

From Lemma 1, we have 

𝑉(𝑘, 𝑥(𝑘; 0, 𝑥0)) ≤ 𝑉(𝑘, 𝑥(0))𝜎𝑘 +
𝛼1

1−𝜎
, 

where 𝜎 = 1 −
𝑐3

𝑐2
,.𝛼1 =

𝑎𝑐3

𝑐2
+ 𝜌. 

Hence, 

||𝑥(𝑘; 0, 𝑥0)|| ≤ ||𝑥(0)||𝜎𝑘 +
𝛼1

1−𝜎
, 

which proves that the model (2) is globally robustly practically exponentially stable. 

The result in Theorem 1 can be generalized, if instead of constants we use 

functions of the Hahn class K of continuous and strictly increasing functions that are 

zero at zero. 

Lemma 2. If in Lemma 1, the constants 𝑐1, 𝑐2, 𝑐3 are replaced by functions 

 𝑐1(𝑟), 𝑐2(𝑟), 𝑐3(𝑟) from the class 𝐾, then its assertion remains true. 

Theorem 2. If in Theorem 1, the constant 𝑐3 is replaced by a function 𝑐3(𝑟),
0 < 𝑐3(𝑟) < 1, from the class 𝐾, then the model (2) is globally robustly practically 

exponentially stable. 

Remark 2. Theorems 1 and 2 offer efficient global robust practical stability 

criteria for a neural network model (2) used in engineering design. In fact, practical 

stability is one of the most important aspects of the stability theory and applications 

of neural networks. Despite the great possibilities for application, the robust practical 

stability concept has not been applied to neural networks of type (2). With this 

research, we extend and improve some existing practical stability results for discrete-
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time neural networks [39-41] to the robustness case. The obtained results can be also 

used for different types of discrete neural networks applied in engineering design 

tasks. 

Remark 3. The new feasible conditions in Theorems 1 and 2 are formulated in 

terms of the system’s parameters and can be easily checked in particular applications. 

In addition, in the case of global practical exponential robustness, the desired stability 

behaviour can be achieved without any constraints on the initial states (initial design 

parameters). 

6. Discussion  

It is well known that neural networks are used as models in engineering design to 

describe the evolution of a design process. 

In different engineering design tasks, the input variables and output variables 

have different meaning. For example, in the I-beam design problem discussed in [8], 

there are three input design variables 𝑥1, 𝑥2, 𝑥3, where  𝑥1 denotes the web height,  𝑥2 

denotes the web thickness,  𝑥3 denotes the area of the flange, and the output is the 

minimum cross-sectional area design of a welded I-beam (optimal solution). Paper 

[9] considers a design support system for the exterior form of running shoes using 

neural networks. The structure of the used model is represented in Fig. 2, where there 

are 30 input design variables x, and 4 output design variables y. For the particular 

meaning of these variables, see [9]. In paper [10] the inputs are the initial design 

concepts, and the outputs are the final conceptual design alternatives. The authors 

propose three final conceptual alternatives. Indeed, as the authors in [10] state 

“selecting the best product concept is one of the most critical tasks in a new product 

development environment.”  
 

 
Fig. 2. A neural network model structure used in [9] 

 

For numerous engineering design applications that use the neural network 

approach, there is not only one steady state [10]. In most of the cases the designers 

have used multi-stable neural network systems. For such cases, the concept of 

practical stability is the most appropriate one. For example, in [14] the authors 

propose a scheme using two neural networks to reduce the computational burden of 

battery design. The stability of both neural networks is essential. 
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In addition, making decisions at this stage becomes very difficult due to 

imprecise and uncertain product requirements. So, the determining the most 

satisfying conceptual design under uncertainties is a very challenging and important 

issue. In fact, uncertainties in the neural network parameters can cause unexpected 

behaviours and variation in performance [34]. 

In this paper, some global robust practical exponential stability criteria are 

presented for a discrete-time neural network models used in the product design. The 

practical meaning of the results being proposed is that if the uncertainties are 

bounded, and the system’s parameter satisfy the conditions of Theorem 1 or  

Theorem 2, then the corresponding neural network system is globally robustly 

practically exponentially stable. Since, the parameter variations in neural networks, 

particularly in their implementation are ubiquitous, our results can be used by 

designers to avoid decision-making mistakes under uncertainties. We addressed the 

practical robustness by using the Lyapunov function method and exploring the 

bounds of the system parameters. 

The obtained results and the proposed approach can help designers 

comprehensively consider design parameters and make fast and accurate design 

evaluation. Since the proposed robust practical stability concept and the Lyapunov 

function control technique have a great potential in applications, it is expected that 

our research will inspire the researchers to apply the proposed approach to different 

neural networks models of diverse interest. 

7. Conclusion 

Engineering design is a multiplex process requiring tasks such as decision-making, 

optimization steps, forecasting, etc. during the elaboration of the product being 

designed. An efficient solution of these tasks is offered by the neural network 

systems. The fast development in the artificial intelligence methods, large-scale 

computers and parallel computations expand the opportunities for neural networks 

applications in the product design. Knowledge and understanding of these 

technologies have led to the development of new models, novel methods and 

extending the existing techniques for analysis of the neural network dynamics.  

The stability of the feasible solutions is one of the main tasks in the analysis of 

the systems dynamics since the use of a stable model leads to a better modelling, 

ensures enhanced effectiveness of the final design solution and guarantees reaching 

performance [17].  

In this paper, in order to take the advantages of the practical stability concept, a 

generalized notion of global robust practical exponential stability for neural networks 

used in engineering design [12, 18] is introduced. By the Lyapunov function analysis 

efficient new criteria are established that involve inequalities for the systems 

parameters. Since practical stability is an essential qualitative property for numerous 

neural network models with multi-stable dynamics, the analysis of such systems is of 

a considerable interest to more applications. Practical stability is very important in 

numerous cases when the model can be unstable mathematically, but its performance 

may be sufficient for the practical point of view. Also, since improving robustness is 
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very crucial in the robust product design process under bounded uncertainties [49] in 

order to increase the efficiency and effectiveness of product design, our approach can 

be applied to many engineering problems.  
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