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Abstract: Intrusion Detection Systems (IDSs) utilise deep learning techniques to 

identify intrusions with maximum accuracy and reduce false alarm rates. The feature 

extraction is also automated in these techniques. In this paper, an ensemble of 

different Deep Neural Network (DNN) models like MultiLayer Perceptron (MLP), 

BackPropagation Network (BPN) and Long Short Term Memory (LSTM) are stacked 

to build a robust anomaly detection model. The performance of the ensemble model 

is analysed on different datasets, namely UNSW-NB15 and a campus generated 

dataset named VIT_SPARC20. Other types of traffic, namely unencrypted normal 

traffic, normal encrypted traffic, encrypted and unencrypted malicious traffic, are 

captured in the VIT_SPARC20 dataset. Encrypted normal and malicious traffic of 

VIT_SPARC20 is categorised by the deep learning models without decrypting its 

contents, thus preserving the confidentiality and integrity of the data transmitted. 

XGBoost integrates the results of each deep learning model to achieve higher 

accuracy. From experimental analysis, it is inferred that UNSW_ NB results in a 

maximal accuracy of 99.5%. The performance of VIT_SPARC20 in terms of 

accuracy, precision and recall are 99.4%. 98% and 97%, respectively. 

Keywords: Accuracy, Backpropagation network, Intrusion detection, Multilayer 

perceptron, Long short term memory. 

1. Introduction 

A substantial evolution has been observed in the growth of network traffic for 

different types of technologies such as the Internet of things, smart grids and 5G 

communications. This has raised serious security concerns over the insecure 

communication protocols used on the Internet. IDSs can be built to protect against 

cyber-attacks by adopting additional security processes such as encryption, access 

control and authentication mechanisms. A network attack is where an attacker gains 

unauthorised access to the network to perform malicious activities, which may be of 
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two types: Passive and Active. In the former attack, access to the network is obtained 

and monitored. Valuable information may also be phished, but no changes are made 

to the data or system.  The active attack, despite gaining unauthorised access, also 

modifies the data.  

Deep learning enforces the analysis of a tremendous amount of data, and as it is 

a self-adaptive algorithm, it improves the study and produces better results. Several 

classification engines like BPN and DNN [22] handle complex classification tasks, 

and hence they are successfully applied to intrusion detection. 

Deep neural network techniques are implemented in IDS for the following 

reasons: 

 to detect modern attacks in the network [3, 11, 25] excluding those being 

used in the training model; 

  to identify attributes in a set of packets or in a record flow that are significant 

[24] for an attack identification. 

  To enhance the accuracy of the model and categorise the various type of 

attacks in the network. 

 Can learn necessary knowledge for its final result and correct classification 

by directing the entire network’s parameters. 

The contributions of this work are: 

 Three deep learning approaches, namely MLP, BPN and LSTM, are stacked 

to form an ensemble. Each of these models is analysed on various test ratios, learning 

rate, epoch size, and batch rate to identify the best-fit parameters that result in optimal 

accuracy for both datasets. The XGBoost ensemble integrates the results of the 

individual models.  

 Benchmarking the proposed model with other twinning deep learning models 

on various performance measures. 

 A well-known benchmark dataset is tested along with the VIT_SPARC20 

dataset containing unencrypted normal and malicious traffic, encrypted normal and 

malicious traffic of different MIME types. 

This paper is structured as follows: Section 2 discusses an extensive review of 

IDS using deep learning techniques in recent studies. An anomaly identification 

model is developed, which is discussed in Section 3. The performance of individual 

deep learning approaches on various learning parameters is analysed. Also, the 

optimal accuracy is determined in Section 4 using different test sets on the proposed 

ensemble. We also compare the performance of various test ratio sizes and machine 

learning techniques. Lastly, Section 5 presents the conclusions. 

2. Related work 

Deep learning approaches effectively detect sophisticated associations within raw 

samples with various stages of abstraction without human interference. Feature 

learning and classification tasks in IDS have been implemented by many deep 

learning techniques as discussed in the literature given below in chronological order 

in the last few years. A CNN data filter is deployed for packet-data anomaly detection 

[6] by storing incident signatures. An accuracy of 98.7% is obtained in the fully 
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connected layer with 512 neurons. Backpropagation neural networks with sample-

query and attribute-query have been proposed to develop IDS [8] which is feasible 

and results in effective execution by choosing the specific attributes to analyse, model 

and identify the complex attacks on a network. The benchmark KDD dataset has been 

used to evaluate and prove that the proposed system classifies effectively with less 

training cost. A review of 10 DNN papers, 7 RNN papers and 7 CNN papers with 

different hidden neurons and learning rates is available [11]. In comparison to DNN 

and RNN, CNN exhibits higher accuracy of 97.376 % for the CIC_IDS2018 dataset 

and 98.371% for the Bot-IT dataset, respectively, with 100 hidden neurons and a 0.5 

learning rate.  

Deep neural networks and association analysis [13] are deployed for a two-level 

anomaly detection system. The raw data is collected and preprocessed, which is then 

used to train the model to categorise the data. The association rules between the 

various features of the dataset are framed using the apriori approach. Then the 

classified data is matched with the rules, and mismatched information is identified as 

malicious traffic and alarm logs are generated. This system results in reduced false-

positive rates when tested against the KDDCup 1999 dataset. The deep neural 

network with four hidden layers and using the ReLu activation function reveals the 

highest accuracy of 82.74% when compared to networks with different hidden layers 

and other models. However, the precision is 0.88, which is less in comparison to other 

models.  

Similarly, the DNN-4 model is trained and tested with other networks to prove 

that the accuracy of intrusion detection is higher with four hidden layers. An 

ensemble of machine learning techniques, namely, decision tree, random forest, KNN 

and DNN, is deployed for intrusion detection [14]. NSL-KDD dataset is used to test 

the proposed model, resulting in an accuracy of 85.2%, which is effective compared 

to other models. 

A network intrusion detection based system using LSTM [16] is developed, 

which acts as a multi-class classifier to detect the anomalies and classify the attacks 

as normal, suspicious, unknown, attacker and victim. It avoids long-term dependency 

problems by achieving disappearing gradient descent to identify the weights in the 

network. RMSprop optimiser is used to efficiently calculate large datasets with a 

learning rate of 0.01, 6 hidden layers, and 200 epochs, which results in higher 

accuracy, precision, and recall than SVM, MLP and Naive Bayes. Multi-channel IDS 

by LSTM neural network is developed [17] and reported a detection rate, accuracy 

and FAR of 99.23%, 98.94% and 9.86%, respectively, on the NSL-KDD dataset. The 

authors analysed several neural network models with different activation functions 

and learning algorithms [20]. The results obtained are diversified to greater extents 

depending on the group of data used to analyse the best activation functions. There is 

no much difference in improvements on using recurrent networks over multilayer 

networks; however, characterisation of the features and selecting the most 

appropriate activation function is essential to get the best performance in terms of 

accuracy.   

A cyber-physical IDS is developed [21] to identify cyber-attacks against 

vehicles. The system uses both RNN and deep MLP to achieve higher accuracy with 
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maximum consistency than machine learning approaches such as SVM and k-Means 

clustering. The proposed method is tested for vulnerabilities such as command 

injection, DoS and malware attacks. Deep learning techniques [25] enhance the 

functionality of intrusion detection systems to deal with real-time threats in a reactive 

manner. The raw data collected is preprocessed, transformed, allied to the association 

rules, and time-based hold out validation is performed. The models perform better in 

terms of minimal prediction error and better steadiness. LSTM derivatives are the 

best models for performance. The performances of the models are worse if very few 

data samples are present. Different machine learning techniques have been performed 

on the VIT_SPARC20 dataset and have determined that Random Forest performs 

superior to other approaches with 98% accuracy [26].  

Deep learning is used for detecting anomalies in real-time by Restricted 

Boltzmann Machine (RBM) and Deep Belief Networks (DBN) [29]. RBM and AE 

are self-learning algorithms that extract features from unlabeled data and stacking 

them with undirected connections. A deep belief network is created by passing an 

RBM with one hidden layer to another RBM. The dataset is fine-tuned by Logistic 

Regression (LR) approach using multi-class softmax. Contrastive divergence is used 

for the efficient training of the network. The network is fine-tuned by adding the 

hidden units set corresponding to the labels and implementing a wake-sleep 

algorithm, LR with softmax classifier, which outperforms other algorithms in fine-

tuning to classify more than one type of attack. DBN improves the detection rate to 

97.9% with a minimal FNR of 2.47%. An IDS [31] using deep neural networks is 

developed to automatically identify and categorise cyber-attacks at the network and 

host levels. The unforeseen and unpredictable cyberattacks are dangerous to locate 

because of the continually changing nature of the malicious attacks and occurrence 

in large volumes causing tremendous effects. Various publicly available datasets 

have been experimented with by selecting the optimal network parameters. It is 

observed that the performance of deep neural networks is higher than the classical 

machine learning classifiers. The results outperformed SVM and MLP. An intrusion 

detection model is built [38] using chi-square feature selection and integration of 

classifiers like SVM, Modified Naive Bayes (MNB) and LPBoost. The class label is 

predicted by majority voting of SVM, MNB and LPBoost which is an optimal 

solution in comparison to a single classifier. 

A network intrusion model using a convolutional autoencoder is built and tested 

on the CTU-UNB and the Cotnagio-CTU-UNB datasets [33]. The neural network 

model is made by the Theano tool. The pre-training and fine-tuning process have 

used a learning rate of 0.001 and 0.1, respectively. A 0.99 value of the ROC curve is 

obtained for both 6-class and 8-class classification. The model has achieved an 

accuracy of 99.59%. Anomaly traffic detection is developed using a neural network 

with two layers [34]. An improved LetNet-5 CNN is used in the first layer to extract 

the spatial attributes. The temporal features of the flow are extracted using LSTM in 

the second layer. CICIDS2017 dataset has been used for analysis, and the 

performance has been surpassed by 94%. The proposed system achieves higher 

accuracy, recall, precision, and F1-score than other supervised machine learning and 

ensemble approaches. A model is built using CNN for an online transaction in a 
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viable bank [35]. One month data has been divided into train and test sets. A precision 

of 91% and a recall of 94% have been obtained. A Deep-Full Range (DFR) is 

developed [36], a lightweight framework for identifying novel attacks in encrypted 

traffic.  

Table 1 summarises the most cited IDS research in the recent few years using 

deep learning approaches. Besides, the structure of the model, datasets used and 

performance results are also discussed. Literature on the domain of deep learning for 

anomaly detection deploy older datasets (generally KDD99 and NSL-KDD) for 

model training and evaluation. The drawback of these datasets is that they do not 

contain contemporary network traffic, encrypted traffic and incidents. Therefore, 

these datasets cannot be used for validating novel techniques. It is highly 

recommended recent intrusion detection datasets [28] to be used by researchers to 

build models. All models in the literature use flow records, and no analysis at the 

packet level is performed [12]. Different varieties of ensemble neural networks can 

also be used in building IDS to analyse the performance. 
 

Table 1. IDS using Deep learning techniques 

Model type Model structure Dataset Results 

LSTM with 20 

hidden nodes [29] 
20 hidden nodes KDD99 Acc=93.82% 

DBN [4] 
4 layers in DBN with 150,122,90 and 50 

nodes with a softmax layer 

NSL-KDD 

(40% subset) 
Acc=97.45% 

LSTM [19] One hidden LSTM layer of  80 nodes KDD99 

Acc=96.3%,  

Rec=98.88%, 

FAR=10.04% 

DBN+LR [5] 
4 layers of DBN with 72,52,40 and 5 

nodes integrated with logistic regression 

KDD99  

(10% subset) 

Acc=97.9%,  

Recall=97.5%, 

FNR=2.47% 

DBN+DNN [18] DNN is initialized by pre trained weights 
Custom  

CAN dataset 

Acc=97.8%, 

FAR=1.6%, 

FNR=2.8% 

Autoencoder +  

Softmax [1] 

3 layers with 150,120 and 50 nodes in 

stacked AE with a softmax 
NSL-KDD 

Acc=99.2%; 

Recall=99.27%; 

FAR=0.85% 

DNN [10] 
245 nodes in four hidden layers. 

Activation function is ReLu 
NSL-KDD 

Acc=98.27%, 

Recall=96.5% 

Multiple  

LSTM [17] 

Training different LSTM nets with one 

hidden layer and integrated by majority 

voting 

NSL-KDD 

Acc=98.94%,  

Recall=99.23%, 

FAR=9.86% 

DNN [31] 

5 hidden layers containing 

1024,768,512,256 and 128 nodes. 

Activation function is ReLu 

NSL-KDD 

Acc=78.5%, 

Prec=81.0%, 

Rec=78.5%,  

F1=76.5% 

3. Proposed model 

3.1. Motivation 

An ensemble of LSTM, BPN and MLP is chosen for the proposed method as a two-

level deep machine learning model is well suited for anomaly detection [23]. Diverse 
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deep learning solutions can analyse and estimate their suitability and performance for 

different network traffic loads. This is due to the following reasons [2]: 

 LSTM is well-suited to process and predict time series lags of unspecified 

length.  

 Insensitivity to gap length is a benefit of LSTM over different RNNs, hidden 

Markov models and other sequence learning approaches. 

 Backpropagation is a fast, simple, standard and flexible method that does not 

require prior knowledge about the network. 

 There is no assumption in MLP about essential probability density functions. 

Besides, no assumption about the pattern classes probability in comparison to other 

probability-based approaches. 

3.2. Proposed model 

Fig. 1 shows the proposed ensemble deep learning model for intrusion detection. Two 

different datasets are used for analysis, namely benchmark UNSW-NB dataset and 

VIT_SPARC20. Preprocessing is performed initially to remove any anomalies like 

missing values or outlier values in the dataset. Overfitting or under-fitting problems 

are also checked and are prepared to fit the model well. A best-first search classifier 

for feature reduction in the dataset is highlighted in appendix table B to enhance the 

model accuracy. The dataset is split into train and test sets. Three network models, 

namely MLP, BPN and LSTM, obtain the training data as input. Each model performs 

10-fold cross-validation with various hyperparameters. These parameters include the 

number of epochs, learning rates, activation function and optimisers. The validation 

sets which yield the best cross-validation accuracy and low MSE are detailed in the 

experimental section. Each model output is sent to the XGBoost in the model 

evaluation stage. In the model prediction stage, XGBoost is fed with new data 

samples to determine the class labels. Different test sets are given as input to the 

XGBoost, and the average metrics of all test sets are considered the final result.  

 

 
Fig. 1. Proposed High Level Intrusion Detection Model 



 181 

3.3. Parameter analysis of Deep learning models 

Fig. 2 shows the parameter tuning approach of the MLP neural network model. MLP 

neural network is trained with various hidden nodes, epochs and learning rate. Each 

of the deep learning models such as BPN and LSTM are analyzed in a similar manner 

comprising of parameter setting, model training and model verification. The results 

are discussed in experimental analysis section. In BPN, the parameter settings can be 

tuned for hidden layer, learning rate, momentum term, number of hidden neurons, 

and learning cycle. In LSTM, the parameters which can be tuned are hidden nodes, 

timesteps, input dimensions and dropout value. Parameter settings play a significant 

role in the increase in accuracy and reduction in error rate in the learning models. 

 

 
Fig. 2. Parameter Tuning for the MLP neural network 
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4. Experimental results 

4.1. UNSW_NB15 

This dataset contains real recent normal events and synthetic current attack activities 

generated in the ACCS Cyber Range lab using the IXIA PerfectStorm tool. The 

tcpdump tool has been utilised to capture raw traffic approximately around 100GB. 

There are 49 features in the dataset, including the class label generated using the 

Argus and Bro-IDS tools. 

4.2. VIT_SPARC20 

This dataset is generated in our institute, VIT, and is captured using network 

monitoring tools. The entire dataset of VIT_SPARC20 is described in table B of the 

appendix section. Different packet types are generated using protocols like HTTP and 

HTTPS. Different mime types are sent from source to destination in the testbed 

network like a text document, audio, video, and image. Malicious viruses embedded 

in one of the MIME types are also sent over HTTP and HTTPS. Thus, different types 

of data that are generated and captured are normally unencrypted traffic, normal 

encrypted traffic, malicious unencrypted traffic and malicious encrypted traffic. 

Certain features in the traffic that play a minimal role in classification are removed 

and extracted using a best-fit search. Table 2 shows a sample of different types of 

packets generated by sending normally unencrypted traffic, malicious unencrypted 

traffic, normal encrypted traffic and malicious encrypted traffic. These are the four 

broad categories of traffic. Also, major traffic categories are split based on the nature 

of messages communicated between two ends of the network [30]. For example, 

unencrypted traffic over a network is categorised into HTTP, HTTP get and HTTP 

post; unencrypted malicious traffic contains specific HTTP ok packets. In total, there 

are thirty-two attack categories of packets. This is described in the GitHub link 

(https://github.com/sparc2020/VIT_SPARC20). 

4.3. Analysis 

Various deep learning models, namely MLP, BPN and LSTM, are trained and tested 

against different epochs, learning rates, and other optimisers to identify the superior 

model. Each model performs 10-fold cross-validation. Different epoch values of 10, 

20, 50 and 100 are cross-validated with various learning rates of 0.01, 0.1 and 0.3 

with varying validation sets. Table 3 displays the cross-validation accuracy results 

for the sample sets on the chosen parameter values. 

The experiments on the first MLP model in the ensemble are performed with 

four hidden layers. The weights of the neurons initialised and bias values are 

calculated based on the attributes and weights of the initial neuron. Hidden layers use 

the sigmoid activation function, and the output layer uses the ReLu function. The 

final result obtained is optimised using softmax cross-entropy classifier and Gradient 

Descent optimiser. 

 

 

 

https://github.com/sparc2020/VIT_SPARC20
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Table 2. Sample Dataset Attribute Values of VIT_SPARC20 

Attributes 
Normal  

traffic packet 

Encrypted  

traffic packet 

Malicious  

traffic packet 

Encrpyted malicious  

traffic packet 

Frame size 342 92 349 1454 

Protocols in frame HTTP TLS HTTP TLS 

Colouring rule name HTTP TCP HTTP TCP 

Sequence 155 1777 1 1401 

Ack 1 5623 314 518 

Duration 288 38 295 1400 

Data in File 27 0 0 0 

Total size 328 78 335 1440 

Time to live 51 128 58 88 

TCP payload 288 38 295 1400 

TCP segment data 288 0 0 1277 

 

The model exhibits higher accuracy for 100 epochs and a learning rate of 0.3 for 

both datasets when the test size is 0.2. The use of linear and softmax activation 

functions reduces the error rate but exhibits the same or lower accuracy values than 

sigmoid and ReLu functions. The MLP model results in an accuracy of 93.23% and 

97.79% for the UNSW-NB15 and VIT_SPARC20 datasets, respectively, for 100 

epochs, 0.3 learning rate and 80 % training. 
 

Table 3. Comparative Analysis of Various MLP Attributes 

Dataset 
Validation  

ratio 
Epochs 

Learning  

rate 

Cross- 

Validation  

Accuracy 

MSE 
Execution time  

(in min) 

UNSW-NB15 

0.8 100 0.3 93.23 5.2967 86.1 

0.7 100 0.3 91.53 9.1545 60.1 

0.6 100 0.3 92.86 6.3105 100.2 

VIT_SPARC20 

0.8 100 0.3 97.79 6.9053 88.1 

0.7 100 0.3 96.34 1.9505 91.3 

0.6 100 0.3 96.32 19.5900 87.9 

 

The comparative measures of the MLP parameter values are specified in  

Table 3. Table 4 shows the second model of the ensemble, the BPN and its parameters 

tested on various test sizes of 20, 30 and 40%, respectively. BPN is experimented 

with two hidden layers, the number of repetitions set to 2, and the network training 

algorithm applied is backpropagation. The start weights of the neurons are initialised 

to random values. The model is tested against learning rates 0.01, 0.1 and 0.3 and 

threshold values of 0.1, 0.2 and 0.5. UNSW-NB15 dataset produces higher accuracy 

at 0.3 learning rate. Maximum accuracy of 96.99% is obtained for the 0.2 train ratio. 

Higher accuracy of 94.31% is obtained for the self-generated dataset when the 

learning rate is 0.01, and the threshold is 0.1. The highest results obtained for the 

various model parameters are listed in Table 4. 

The final model in the ensemble is the LSTM model, which displays different 

results for different optimisers, like Adam, Anagrad, SGD, Nadam and RMSprop, 

respectively. These optimisers are tested against three batch sizes of 1, 32, and 128 

with various test ratios of 20%, 30% and 40% for the two datasets implemented in 

the study with ReLu activation function and 100 epochs. However, the results 
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obtained both for train and test accuracies are undesirable. This model has exhibited 

diverse accuracy values for any test ratio, batch size, and optimiser used. The highest 

cross-validation accuracy of 99.5% is obtained for the UNSW-NB15 dataset when 

the validation ratio is 80 %; the batch size is 32, and Adam optimiser is used. The 

execution time to obtain the best parameters is 72 minutes. However, a cross-

validation accuracy of 99.4% is obtained for the self-generated dataset when the the 

validation ratio is 30% with a batch size of 1, and Adam and Nadam optimisers are 

deployed. The execution time of the model is 27 min. 
 

Table 4. Comparative Analysis of Various BPN Attributes 

Dataset 
Validation 

ratio 
Threshold 

Learning 

rate 

Cross- 

Validation 

Accuracy 

MSE 

Execution  

time  

(in min) 

UNSW-NB15 

0.8 0.1 0.3 96.99 8.693438×10–14 90.4 

0.7 0.2 0.3 94 0 92.6 

0.6 0.5 0.3 93 0 70.7 

VIT_SPARC20 

0.8 0.1 0.01 94.31 0.0152 20.2 

0.7 0.2 0.01 92.38 0.06143 19.1 

0.6 0.5 0.01 90.09 0.0471 18.9 

 

The corresponding results with higher values for the different attributes and 

optimisers are depicted in Table 5. 
 

Table 5. Comparative analysis of various LSTM attributes  

Dataset 
Validation  

size 

Batch  

size 
Optimiser 

Cross-Validation  

accuracy (%) 

Execution time 

(in min) 

UNSW-NB15 

0.8 1 SGD 96.5 15.3 

 32 Adam 99.5 27.8 

 128 Adagrad 95.12 20.2 

0.7 1 SGD 92.76 50.4 

 32 SGD 91.1 56.5 

 128 RMSprop 90.1 60.1 

0.6 1 Adam 92.9 28.1 

 32 Nadam 93.7 22.5 

 128 Adagrad 90.1 10.1 

VIT_SPARC20 

0.8 1 Adagrad, SGD 95.5 28.4 

 32 SGD 96.3 27.2 

 128 SGD 95.6 27.1 

0.7 1 Adam, Adagrad, Nadam 99.4 20.0 

 32 RMSprop 95.4 30.1 

 128 SGD 95.5 27.1 

0.6 1 SGD 95.5 72.8 

 32 SGD 97.7 60.2 

 128 SGD 96.4 60.1 

4.4. Discussion 

All the deep learning models, namely; MLP, LSTM, and BPN, are deployed and 

evaluated on UNSW-NB15 and VIT_SPARC20 datasets. XGBoost integrates all 

three deep learning models to result in a maximum accuracy of 99%. Table 6  

shows the performance metrics of the proposed model on different test sets on the 
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UNSW-NB15 dataset. The reason for selecting ten different subsets is 10-fold cross-

validation which is deployed in the datasets. However, the VIT_SPARC20 dataset 

has fewer samples. The additional performance metrics are derived on the complete 

dataset in a single iteration with an accuracy of 99.4%, precision of 98%, recall and 

an F1-Score of 97%. Table 7 shows that the proposed deep learning ensemble 

performs superior to other deep learning-based IDS developed in recent years. 

However, there is an increase in training time compared to the existing DBN+DNN 

approach because of the three learning approaches deployed in the proposed model 

ensemble. The training time can be reduced by minimising the number of nodes in 

the final hidden layer of deep learning models. 

LSTM has been tuned with different hyper-parameters, namely batch size and 

optimisers, to produce an optimal result in the model training phase. The optimal 

hyper-parameters for the maximum cross-validation accuracy are the batch size of 32 

tuned with Adam optimiser. Nearly 60000 iterations are executed, and fusion by 

XGBoost is performed to obtain optimal accuracy of 99.5% on the UNSW-NB15 

dataset. Also, a cross-validation ratio of 80% also resulted in superior results.  

 
Table 6. Performance Metrics obtained on Proposed Ensemble on different Test Sets on UNSW-NB15 

dataset 

Subset size Accuracy Precision Recall F1-score 

10% 99 96 94 95 

20% 98 95 93 92 

30% 97 97 95 96 

40% 97 96 98 97 

50% 98 97 96 95 

60% 99 99 97 96 

70% 97 95 96 97 

80% 99 98 97 95 

90% 99 96 98 97 

100% 99 97 96 96 

 
Table 7. Accuracy Comparison on the various machine and deep learning techniques used for IDS on 

UNSW-NB dataset 

Technique 
Accuracy 

(in %) 

Precision 

(in %) 

Recall 

(in %) 

F-score 

(in %) 

Time to train 

(in min) 

Stacking ensemble [27] 94 96 93 95 80 

SVM 89.63 88.99 90.27 88.12 49 

CNN+BiLSTM [15] 77.16 75.80 77.26 78.78 52.7 

Pelican [32] 86.64 80.30 86 88 66 

TSDL [37] 89.13 81.06 88.89 82 93 

RF [9] 92.5 88.9 88.7 92.93 60.92 

Random Tree [9] 92.16 90.6 90.3 89.9 65 

Neural Network with minimal feature set [2] 95.85 98.07 97.19 98.36 105.5 

Proposed XGBoost deep learning ensemble 99.5 99.45 99.42 99.52 70.5 

5. Conclusion 

Intrusion detection plays a primary role in identifying novel incidents in network 

traffic. Neural network-based anomaly detection proves beneficial for professionals 
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and researchers as they improve accuracy and minimise FAR. Industry solution 

providers such as CISCO use machine learning and deep learning models extensively 

in various security solutions such as advanced threat solutions, intrusion detections, 

etc. In this paper, we have built an anomaly identification model integrating 

approaches like MultiLayer Perceptron (MLP), BackPropagation Network (BPN) 

and Long Short Term Memory (LSTM) by XGBoost. Each of the individual 

approaches is executed on various cross-validation sizes and various learning 

parameters. Multiple iterations have been run with various learning parameters to 

obtain the best cross-validation accuracy. XGBoost integrates the trained results of 

all three models to produce the best prediction result. It is observed that during 

training, the Adam optimiser deployed on LSTM resulted in an increase in cross-

validation accuracy on UNSW-NB15 and VIT_SPARC20 dataset. LSTM is highly 

sensitive to different attribute modifications and random weights of the neurons, 

which is the reason for maximum accuracy. However, it also takes a longer time 

compared to other models to train the network. LSTM can be exceptionally functional 

to classify the packets into various types without decrypting their contents. Also, it 

can predict new types of attacks for which the model is not trained by learning from 

complex relations between the attributes and does not impose any restrictions on the 

input variables. The proposed model is compared with the existing deep learning 

ensembles to show the accuracy and other derived metrics. Further, it will be possible 

to deploy such an ensemble for online neural network-based anomaly detection as an 

enhancement. 
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