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Abstract: This work presents a novel approach to the simulation-based optimisation 

for Autonomous Transportation Systems (ATS) with the use of the proposed parallel 

genetic algorithm. The system being developed uses GPUs for the implementation of 

a massive agent-based model of Autonomous Vehicle (AV) behaviour in an Artificial 

Multi-Connected Road Network (AMСRN) consisting of the “Manhattan Grid” and 

the “Circular Motion Area” that are crossed. A new parallel Real-Coded Genetic 

Algorithm with a Scalable Nonuniform Mutation (RCGA-SNUM) is developed. The 

proposed algorithm (RCGA-SNUM) has been examined with the use of known test 

instances and compared with parallel RCGAs used with other mutation operators 

(e.g., standard mutation, Power Mutation (PM), mutation with Dynamic Rates 

(DMR), Scalable Uniform Mutation (SUM), etc.). As a result, RCGA-SNUM 

demonstrates superiority in solving large-scale optimisation problems when decision 

variables have wide feasible ranges and multiple local extrema are observed. 

Following this, RCGA-SNUM is applied to minimising the number of potential traffic 

accidents in the AMСRN.  

Keywords: Simulation-based optimisation, autonomous transportation systems, real-

coded genetic algorithms, multi-agent systems, scalable nonuniform mutation. 

1. Introduction 

In modern times, a growing interest related to the deployment of Autonomous 

Vehicles (AVs) within the concept of building ‘smarter cities’ is observed. AVs have 

many advantages due to the possibilities of Vehicle-to-Vehicle (V2V) and Vehicle-

to-Infrastructure communications (V2I) (e.g., [16, 17]), that provide road safety and 

traffic efficiency. At the same time, there are many limitations, which prevent the 

wide propagation of AVs, which relate mainly to an increased risk of traffic accidents 

in manoeuvring and an interaction with various agents of the traffic system (e.g., 
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pedestrians, Manned Vehicles (MVs), etc.). An optimisation of Autonomous 

Transportation Systems (ATS) allows for improved traffic safety, because the best 

characteristics of both road networks (e.g., the internal configuration of a traffic area) 

and AVs parameters (e.g., the velocity in conditions of normal and insufficient 

visibility) can be provided.  

There are many studies in the field of intelligent transportation systems (e.g., 

[14, 18, 19, 23, 25, 26, 28]) which confirm the particular importance of providing 

traffic safety in the deployment of AVs. For instance, in works [14] and [25], 

simulations of artificial road networks related to the “Manhattan Grid” are suggested. 

Such models are based on the dynamic motion planning of AVs [26], usage of 

predictive controls to generate an AV’s motion locally [19], and simulation of V2V 

interactions to avoid potential collisions [28], etc. Thus, the main objective function 

of autonomous transportation systems is minimising the total number of traffic 

accidents. Such a problem is related to a large-scale simulation-based optimisation 

problem, where decision-variables that define ATS parameters have wide feasible 

ranges and the objective function is calculated as a result of simulation modelling.   

This paper considers the following simulation-based single-objective 

optimisation problem: 

(1) min ( )F x , 

s.t. 

1 2( ,  ,  ..., )  nx x x  x = , 

where 1 2( ,  ,  ..., )nx x x x =  is a decision variable vector defining parameters of the 

simulated system with dimension ,n  
1

[ ,  ]
n

i i

i

a b


   is the feasible region of the 

search space ( 1,  2,  ...,  i n  is the index of decision variables), and :F   is the 

objective function (the number of traffic accidents) that is computed as a result of the 

simulation modelling. A similar problem statement is formulated in works [2, 7, 10]. 

To solve such a problem, various derivative-free methods can be applied, in 

particular, genetic optimisation algorithms (e.g., [1, 2, 4, 8, 24]), particle swarm 

optimisation (e.g., [29, 30]), differential evolution and various other techniques. 

Among these methods, parallel Real-Coded Genetic Algorithms (RCGAs) are the 

most preferable in solving large-scale optimisation problems when the objective 

function has a complex relief (e.g., in an availability of multiple local extrema and 

discontinuities, etc.). This is due to real-coded heuristic operators for both crossover 

and mutation, which provide the best conditions for seeking optimal decisions in wide 

feasible ranges, overcoming jamming in the local optima. Moreover, RCGAs allow 

more effective parallelisation of the heuristic search procedure, providing the best 

potential decision exchanges between processes through the global population [2]. At 

the same time, standard mutation operators such as Power Mutation (PM), Mutation 

with Dynamic Rate (DMR) and Scalable Uniform Mutation (SUM), etc., (e.g., [2, 11, 

13, 15]), have some drawbacks. These are caused by limited possibilities of the 

effective use of computing resources to generate the best potential decisions along 

iterations. In particular, most of the solutions obtained through the standard mutation 

operators are highly randomised and remote from a global minimum. The use of SUM 
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[2] allows for quantifying feasible regions in small equal subranges, making it 

scalable [6]. Thus, the effectiveness of SUM depends on the number of computational 

processes involved. However, the transition from SUM towards Scalable 

NonUniform Mutation (SNUM) can significantly improve the evolutionary searching 

procedure because it narrows the floating borders of feasible subranges and focuses 

on clusters with the highest number of potential decisions.  

The purpose of this work is to suggest an approach for the simulation-based 

optimisation for Autonomous Transportation Systems (ATS) with the use of the 

proposed parallel Real-Coded Genetic Algorithm with Scalable NonUniform 

Mutation (RCGA-SNUM). The proposed algorithm (RCGA-SNUM) is aggregated 

with AMСRN through an objective function, such as the total number of traffic 

accidents. Moreover, it can be applied for optimising parameters of various 

simulation-based systems, such as environmental agent-based models [3], cargo 

transportation models [18] and evacuation models (e.g., [1, 9]).  

2. A model of an autonomous transportation system’s behaviour 

The behaviour of AVs interacting with MVs in an Artificial Multi-Connected Road 

Network (AMСRN) consisting of the “Manhattan Grid” (MG) and “Circular Motion 

Areas” (CMAs) is considered here (Fig. 1). 

 

 
Fig. 1. Artificial multi-connected road network 

 

The AMСRN consists of N  rows, N  columns and M embedded circular 

motion areas crossed by the road grids, containing two-lane, one-way roads, which 

connect adjacent nodes in each section (Fig. 1). The main challenge of such a system 

is the prevalence of traffic jams caused by traffic density together with arrival 
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intensities of both AVs and MVs in conditions of insufficient vehicle velocities. AVs 

use the circular motion area to avoid such traffic congestion.  

Traffic density is estimated with the help of the hierarchical clustering 

method [21] using data on all agent-vehicles (AVs and MVs) located in the 

AMRCN within one-way road lanes. At the same time, each AV chooses the 

most preferable road, characterised by the lowest traffic density when the 

agent-vehicle has reached the decision-making area where the MG crosses the 

CMAs (Fig. 2).  

 

 

Fig. 2. Choosing the most preferable road based on the traffic density estimation 

 

The proposed multi-connected traffic system (AMСRN) has various control 

parameters, such as the number of rows and columns in the ‘Manhattan Grid’, the 

number of circular motion areas crossing the road grid, and the edge length of each 

node, etc. All of these parameters impact on the traffic density and the number of 

potential traffic accidents. The first time such dependencies have been described is 

in [12], where relationships between many-particle interactions, traffic density and 

collisions have been studied. Further, in [4], a phenomenological approach have been 

proposed for the simulation of human crowd behaviour in an emergency. As shown 

in [4], the main reason for agent collisions are “turbulence” and “crush”, caused by 

panic and high traffic density, respectively (Fig. 3).  

Under conditions of high-density traffic surrounding an agent-vehicle, its 

personal space is firstly compressed, and after reaching a super-dense traffic density, 

the radius of the personal space increases immediately; pushing edge agents outside 

of their lanes (Fig. 3). The specification for the radius lengths of the personal space 
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of AVs is shown in Fig. 4. Unlike MVs, AVs have the ability to compress their own 

personal space even in conditions of super-dense traffic.   

 

 

Fig. 3. Illustration of the “turbulence” and “crush” effects 

 

 
Fig. 4. Personal space of an agent-vehicle depending on traffic density 

 

An abstract description of the proposed model for the behaviour of ATS is 

presented in a simplified form. 

Here: 

 T  is the set of time moments in the simulation, T is the total number of time 

moments; 0t T  and 
T

t T  are initial and finite moments, kt T , 0,  ...,  ,k T  is 

all indices of all time moments; 

 {1,  2,  ... ,  | |}I I  is the set of indices of AVs, where I  is the total number 

of AVs; 

 {1,  2,  ... ,  | |}O O  is the set of indices of CMAs, where O  is the total 

number of CMAs; 
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 { ( ),  ( )},  ,  ,i k i k kx t y t i I t T   are the coordinates of the i-th-AV within 

AMСRN consisting of MG and CMAs; 

 ( ) {0,  1, 2},  ,  ,i k ks t i I t T    is the state of an agent-vehicle: ( ) 0i ks t   is 

the vehicle in the accident state, ( ) 1i ks t   is the vehicle in the normal state and 

located in the MG, ( ) 2i ks t   is the vehicle in the normal state and located in the 

CMA; 

 ( ),  ,  ,i k kr t i I t T   is the radius length of an agent-vehicle’s personal space 

depending on the traffic density surround the agent; 

 ( ),  ,  ,i k kv t i I t T   is the velocity of the i-th-AV; 

 
3

( ) 0,  ,  , ,  2
2 2

i kt
 

  
 

 
 

, ,  ,ki I t T   is the directional angle of the 

movement of the i-th-AV which is in the state of motion within the MG ( ( ) 1)i ks t   

and moving towards its target direction without meeting any obstacles (e.g., other 

vehicles); 

 ( ),  ,  ,  ,io k kt i I t T o O     is the directional angle of movement of the i-th 

-AV which is in the state of circular motion within the o-th-CMA ( ( ) 2)i ks t   and 

moving towards its target direction to avoid traffic jams without meeting any 

obstacles;  

 ( ),  , ,  ,  ,ij k kt i j I i j t T     is the adjusted angle of shifting of the i-th -AV 

regarding its target direction for bypassing the nearest j-th-vehicle that is an obstacle; 

 ( ),  , ,  ,  ,ij k kt i j I i j t T     is the rebound angle of the i-th-AV from the 

nearest j-th-vehicle if their mutual distance is less than the sum of the radius lengths 

of their personal spaces; 

 ( ),  ,  ,i k kr t i I t T   is the radius length of the personal space of the i-th-AV; 

 ( ),  ,  ,  ,io k kd t i I t T o O    is the distance between the i-th-AV and the 

centre of the o-th -CMA, where the AV is located, with coordinates ˆ ˆ{ ,  }o ox y ; 

 ˆ ( ),  ,  ,  ,  ,ij k kd t i j I j i t T    is the distance between the i-th-AV and the 

nearest j-th-neighbour; 

 1 2{ ,  }c c  are coefficients that define the rebound power at motion within the 

MG and CMA, respectively.       

Thus, the number of potential traffic accidents at moment kt , ,kt T  is 

(2)   TA( ) ( ),k i k

i I

t m t


  

where 

11 if ( ) 0 and ( ) 0,
( )

0 else,

i k i k

i k

s t s t
m t

 
 


 

.i I  
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Thus, the spatial dynamics of the i-th-AV ( )i I  in AMСRN without taking 

into account manoeuvring in lane changing is described by the following system of 

finite difference equations with variable structure at moment kt , :kt T  

(3) 
 

 

1 1

1 1

1
1 1 1 1

1

2
1 1 1

( ) ( )cos ( ) if I is true,

ˆ ( )cos ( ) if II is true,

( ) cos ( ) ( ) cos ( ) if III is true,
ˆ ( )( )

( ) cos ( ) ( )
ˆ (

i k i k i k

O io k io k

i k i k ij k ij k

ij ki k

i k io k ij k

ij k

x t v t t

x d t t

c
x t t t t

d tx t

c
x t t t

d t





  

 

 

 

   



  







  


   1

1

1

cos ( ) if IV is true,
)

( ) if V is is true,

ij k

i k

t

x t

 















 

(4)  
 

 

1 1

1 1

1
1 1 1 1

1

2
1 1 1

( ) ( )sin ( ) if I is true,

ˆ ( )sin ( ) if II is true,

( ) sin ( ) ( ) sin ( ) if III is true,
ˆ ( )( )

( ) sin ( ) ( )
ˆ (

i k i k i k

O io k io k

i k i k ij k ij k

ij ki k

i k io k ij k

ij k

y t v t t

y d t t

c
y t t t t

d ty t

c
y t t t

d t





  

 

 

 

   



  







  


   1

1

1

sin ( ) if IV is true,
)

( ) if V is true.

ij k

i k

t

y t

 















 

Here: 

I. 1 1 1
ˆ ( ) ( ) ( )ij k i k j kd t r t r t     for all j I , ,i j   and 1( ) 1i ks t   , 

II. 1 1 1
ˆ ( ) ( ) ( )ij k i k j kd t r t r t     for all j I , ,i j   and 1( ) 2i ks t   , 

III. 1 1 1
ˆ ( ) ( ) ( )ij k i k j kd t r t r t     for the nearest j I , ,i j  and 1( ) 1i ks t   , 

IV. 1 1 1
ˆ ( ) ( ) ( )ij k i k j kd t r t r t     for the nearest j I , ,i j   and 1( ) 2i ks t   , 

V. 1( ) 0i ks t   . 

The conditions of system (3)-(4) can be modified to take into account 

manoeuvres in lane changing, turning manoeuvres, emergency deceleration and some 

other features of AVs.  

The following control parameters, which affect the AV’s dynamics, are used: 

 ,  ,M M O  is the total number of CMAs crossing the MG with the central 

coordinates of ˆ ˆ{ ,  },  ,o ox y o O  belonging to the available crossroads of AMRCN; 

 L  is the edge length of each node in the MG; 

 w  is the width of each two-lane one-way road in the MG; 

 1 2{ ,  }R R  are the radius lengths of external and internal circular motion areas 

in the CMA, respectively; 

 0( )iv t  is the velocity of the AV that is set up at the initial moment 0t  for all 

i I ; 
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 a  is the fixed number of AVs to arrive to the AMRCN with the frequency 

of  .  

Thus, the following main optimisation problem for autonomous transportation 

systems based on the movement within the AMCRM can be formulated. 

Problem A. Minimisation of the total number of potential traffic accidents with 

the set of control parameters: 

(5) 
 1 2 0ˆ ˆ, , w, { , }, { , }, ( ), ,  

1

min TA( ),
o o i

k

T

k
M L R R x y v t a

t

t




  

s.t., 

M M M  , L L L  , w w w  , 

1 1 1R R R  ,  2 2 2R R R  , ˆˆ
ox X ,  ˆˆ

oy Y , o O , 

0( )v v t v  ,  a a a  ,      . 

Here, 
1 2{ ,  ,  ,  ,  ,  ,  ,  }M L w R R v a   and 1 2{ ,  ,  ,  ,  ,  ,  ,  }M L w R R v a   are the lower 

and upper limits of the control parameters, respectively; ˆ ˆ{ ,  }X Y  is the set of 

coordinates of the AMRCN that can be the centres of the CMAs. 

Problem A is related to the simulation-based single-objective optimisation 

problems that can be solved with the use of the proposed genetic algorithm  

RCGA-SNUM.   

3. Real-Coded Genetic Algorithm with Scalable NonUniform Mutation 

(RCGA-SNUM) 

The proposed algorithm RCGA-SNUM is based on the approach suggested earlier in 

work [2], where the parallel Multi-Agent Real-Coded Genetic Algorithm (MA-

RCGA) has been developed. In particular, MA-RCGA uses a combination of 

different crossover and mutation operators, such as LX, SBX, MSBX, PM and SUM, 

etc. Among them, the Scalable Uniform Mutation (SUM) operator should be 

highlighted. This operator enables the splitting of the feasible ranges of decision 

variables to small equal subranges to implement multiple mutations in narrow 

segments and avoid potential jamming in local extremums. The effectivity of SUM 

directly depends on the total number of agent-processes involved (i.e., process cores) 

and decreases together with extending boundaries of feasible ranges. On the other 

hand, the potential decisions have a nonuniform distribution within their feasible 

ranges, which can be taken into account in the scalable multiple mutation. The growth 

of density of potential decisions that are localised in some segments rise the 

probability of new potential decisions with the best characteristics to be found in 

same areas. Therefore, the scalable nonuniform mutation operator is proposed here. 

The proposed algorithm is based on the paralleled processes of evolving individuals 

consisting of the vector of decision-variables and the value of the corresponding 

objective function (i.e., the fitness function value).  

At the first stage, clustering of all individuals with their decision variables is 

performed to find the cluster with the most evolved potential decisions: 
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(6) ˆarg min ( )c c
c C

c f


 x ,    
1

1ˆ ( ) ( ).
c

c

c

J

c c j

jc

f f
J 

 x x  

Here: 

 {1,  2, ..., C}C   is the set of indices of decision variable clusters, where C  

is the total number of decision variable clusters computed with the use of the 

hierarchical clustering algorithm [21];  

 {1,  2,  ...,  },  ,c cJ J c C   is the set of indices of individuals (potential 

decisions) belonging to the c-th-cluster, where 
cJ  is the total number of appropriate 

individuals; 

 
cj

x , ,c cj J  is the vector of decision variables belonging to the  

jc-th-individual of the c-th-cluster; 

 ˆ ( ),  ,c cf c Cx  is the value of the fitness function equal to the value of the 

objective function ( )
cj

f x  computed in result of the simulation modelling; 

 c C is the index of the cluster with the most evolved decisions.  

Next, boundary values of the decision variables for the mutation operator can 

be computed with the use of cluster characteristics. Further, the new notification of  

indices of decision variables i I  and indices of agent-processes k K  will be used 

to simplify the description of the genetic algorithm: 

(7) 

ˆ ˆ if , 

ˆ if ,

ˆ if ,

ic i ic i

ic i ic i

i ic i

a a a b

a a a a

b a b

 


 
 

   
max min

ˆ min
c c

c cc c

c
c c

ij ij
j Jj J

ic ij k
j J

k

x x
a x g k

G K






  , 

(8) 

ˆ ˆ if , 

ˆ if ,

ˆ if ,

ic i ic i

ic i ic i

i ic i

b a b b

b a b a

b b b

  


 




    
max min

ˆ ,
c c

c cc c

ij ij
j Jj J

ic ic

k

x x
b a

G K




   

where 

 {1,  2,  ...,  }I I  is the set of indices of decision variables, where I  is the 

total number of decision variables; 

 {1,  2, ..., }K K  is the set of indices of interacting agent-processes (e.g., 

[1, 2]), where K  is the total number of agent-processes, 1, 2,  ...,  k K  are agent-

process numbers;  

 {1,  2, ..., }k kG G  is the set of indices of internal iterations of RCGA-

SNUM within each k-th-agent-process ( k K ), where 
kG  is the total number of 

internal iterations, 1, 2,  ...,  k kg G  are iteration numbers;  

 { ,  },  ,  ,ic ica b i I c C   are the boundary values of decision variables 

corresponding to the -th-c cluster with the most evolved decisions; 

 { ,  },  ,i ia b i I  are lower and upper bounds of the feasible range. 
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Following this, the main parameters of SNUM such as mean and standard 

deviation are defined with the use of the distribution of cluster decisions: 

(9) 
1

1 c

c

c

J

ic ij

jc

m x
J 

  ,   2

1

1
( )

c

c

c

J

ic ij ic

jc

x m
J




  , 

where 

 [ ,  ],  ,  ,  ,
cij i i c cx a b i I j J c C     is the value of the i-th-decision variable of 

the -indiv-th idualcj  belonging to the clu- sth r;- tec  

 ,  ,  ,icm i I c C   is the mean value of the i-th-decision variable for the  

clu- sth r;- tec  

 ,  ,  ,ic i I c C    is the standard deviation for the i-th-decision variable for 

the clu- sth r.- tec  

Finally, new offspring are generated at each internal iteration of RCGA-

SNUM using the set of distribution functions in the range of [ ,  ]ic ica b :  

(10) 1

( ,  ,  ,  ) if (0,  1) ,  

ˆ ( ,  ),  (0,  1) ,  

( ),  (0,  1),

k

k

k

ic ic ic ic g

i ic ic g

ic g

l m a b p p p

x l a b p p p

l m p p

  



  

 

 

(11)    
2

( ,  ,  ,  ) if (0,  1) ,  

ˆ ( ,  ),  (0,  1) ,  

( ),  (0,  1),

k

k

k

ic ic ic ic g

i ic ic g

ic g

s m a b p p p

x s a b p p p

s m p p

  


  




 

c C ,  i I ,  c cj J ,  k K ,  .k kg G  

Here: 

 1 2
ˆ ˆ{ ,  }i ix x is the pair of offspring that are formed in the result of the mutation;  

 { ( ,  ,  ,  ),  ( ,  ,  ,  )}ic ic ic ic ic ic ic icl m a b s m a b   are the random values with 

truncated normal distribution with the expected value of icm , standard deviation of 

ic  and lower and upper limits of  ( ,  )ic ica b ; 

 { ( ,  ),  ( ,  )}ic ic ic icl a b s a b  are the random values with uniform distribution in 

the range of  [ ,  ]ic ica b ; 

 { ( ),  ( )}ic icl m s m  are the random values with exponential distribution with the 

expected value of icm ; 

 are the random values with uniform distribution in the range of [ ,  ]ic ica b  with 

the expected value of icm  and standard deviation of ic ; 

 (0,  1)
kgp  is the random value with uniform distribution in the range of 

[0,  1] ; 
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 ,  ,  p p p  are threshold values used in choosing different distribution functions 

to form offspring.    

 

 
Fig. 5. General scheme of the proposed algorithm (RCGA-SNUM) 

 

The common scheme of RCGA-SNUM implemented at the individual level of 

each agent-process is shown in Fig. 5. The most important steps of the proposed 
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algorithm are highlighted. In Fig. 5, {1,  2, ..., }k kT T  is the set of indices of external 

iterations of RCGA-SNUM within each k-th-agent-process ( k K ), where 
kT  is the 

total number of external iterations, 1, 2,  ...,  k kt T  are iteration numbers.  Each 

agent-process generates new offspring-individuals with the use of one of the 

crossover operators such as the Laplace Crossover (LX) or the Simulated Binary 

Crossover (SBX), and the proposed mutation operator SNUM. After that, the best 

potential decisions are exchanged between agent-processes through the global 

population.   

4. Results and discussion 

Table 1 presents the test instances (FT1-FT2) used for examination of RCGA-SNUM 

and assessment of its efficiency in comparison with single-objective RCGAs based 

on other mutation operators.  

The following parallel RCGAs are used for the validation of five RCGA-

SNUM. 

 RCGA1 is the parallel real-coded genetic algorithm using the uniform 

mutation [13] to generate the pair of offspring 

1,
ˆ ( ,  )i i ix q a b ,   2,

ˆ ( ,  )i i ix q a b ,   i I , 

where ( ,  )i iq a b , ( ,  )i iq a b  are the random values with uniform distribution in the 

range of [ ,  ]i ia b , 1, 2,
ˆ ˆ{ ,  }i ix x  is the pair of offspring generated as a result of the 

mutation operator;   

 RCGA2 is the parallel real-coded genetic algorithm using the Power 

Mutation (PM) [11]: 
mut

mut

1, 1, 1,

1,

1, 1, 1,

(0,  1) ( ) if ( ) / ( ) (0,  1),
ˆ

(0,  1) ( ) if ( ) / ( ) (0,  1),

i i i i i i i

i

i i i i i i i

x u x a x a b a h
x

x u b x x a b a h





     
 

    
 

mut

mut

2, ,2 2,

2,

2, 2, 2,

(0,  1) ( ) if ( ) / ( ) (0,  1),
ˆ

(0,  1) ( ) if ( ) / ( ) (0,  1),

i i i i i i i

i

i i i i i i i

x u x a x a b a h
x

x u b x x a b a h





     
 

    
 

i I , 

where mut  is the parameter of the mutation operator, mut0 1  , (0,  1)h  is the 

random value with uniform distribution in the range of [0,  1] , 1, 2,{ ,  }i ix x  is the pair 

of individuals before the mutation (e.g., it is generated as a result of a crossover);  

 RCGA3 is the parallel real-coded genetic algorithm using the Dynamic 

Mutation Rates (DMR) [27]: 

1,

1,

1
( ,  ) if  (0,  1) ,

ˆ ( )
1

( ) if  (0,  1) > ,

i i

k

i k

i k

k

q a b r
t

x t

x t r
t





 



   2,

2,

1
( ,  ) if  (0,  1) ,

ˆ ( )
1

( ) if  (0,  1) ,

i i

k

i k

i k

k

q a b r
t

x t

x t r
t





 
 


 

i I ,  k kt T ,  k K , 



 139 

where (0,  1)r , (0,  1)r  are the random values with uniform distribution in the range 

of [0,  1] ; 

 
Table 1. Test instances for RCGA-SNUM 

Name Title Objective to be minimised and solution Feasible ranges 

FT1 
Rastrigin 

function 

 2

1

( 10 10cos(2 )
n

i i

i

F n x x


 x) = , 

(0,  0, ..., 0) = 0F  

[ 5,  5]ix   ,  
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function 
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, 

(2.5,  2.5, ..., 2.5) = 0F  

[ 5.12,  5.12]ix   ,  

1,  2,  ...,  i n  

 

 RCGA4 is the parallel real-coded genetic algorithm using the directed 

variation mutation (DVM) [33]: 

1, 1, 1,
ˆ rand( ,  ),i i ix x B  2, 2, 2, 

ˆ rand( ,  ),i i ix x B  

where 1, 1, 2, 2,rand( ,  ),  rand( ,  ),  ,i i i ix B x B i I  are the values randomly generated 

between the selected individuals 1, 2,{ ,  }i ix x  and the centres of the first and second 

neighbouring intervals 1, 2,( ,  )i iB B  where the potential decisions should be moved. 

The centres of neighbouring intervals for the i-ths-individuals are computed based on 

the fitness function estimation.   

 RCGA5 is the parallel real-coded genetic algorithm using the Scalable 

Uniform  Mutation (SUM) [2]: 

https://en.wikipedia.org/wiki/Rastrigin_function
https://en.wikipedia.org/wiki/Rastrigin_function
https://en.wikipedia.org/wiki/Ackley_function
https://en.wikipedia.org/wiki/Ackley_function
https://en.wikipedia.org/w/index.php?title=Eggholder_function&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Eggholder_function&action=edit&redlink=1
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,1
ˆ ( ,  )i i ix l a b ,   ,2

ˆ ( ,  )i i ix l a b , 

( )i i
i i k

k

b a
a a g k

G K


 


,      

( )i i
i i

k

b a
b a

G K


 


, 

where ( ,  )i il a b , ( ,  )i il a b  are the random values with uniform distribution in the 

range of [ ,  ]i ia b . 

All RCGAs above use the well-known SBX-crossover [13] in combination with 

its mutation operator.  

The performance metrics values computed for the suggested RCGA-SNUM in 

comparison with the other RCGAs are presented in Table 2.  

 
Table 2. Comparison of RCGA-SNUM with other RCGAs using well-known test instances 

RCGAs 
Performance 

metrics 

Test instances 

FT1 FT2 FT3 FT4 FT5 

RCGA1 

( )F x  16.12 0.558 –953.1121 0.4999 621.12 

CR 0.431 0.556 0.651 0.0001 0.0002 

PT, s 99 91 17 981 1531 

RCGA2 

( )F x  13.21 0.431 –954.6753 0.4968 554.21 

CR 0.565 0.668 0.742 0.0011 0.0012 

PT, s 34 31 15 655 451 

RCGA3 

( )F x  11.54 0.332 –955.4224 0.4891 182.55 

CR 0.398 0.456 0.872 0.0025 0.0022 

PT, s 48 45 11 221 364 

RCGA4 

( )F x  5.64 0.221 –957.4312 0.3212 0.4512 

CR 0.2312 0.1231 0.976 0.1321 0.1211 

PT, s 74 68 12 121 212 

RCGA5 

( )F x  2.21 0.115 –957.8813 0.0099 0.0121 

CR 0.1121 0.1967 0.932 0.8731 0.8212 

PT, s 58 63 14 765 932 

RCGA-

SNUM 

( )F x  0 0 –959.6401 0.0001 0.0069 

CR 0.9871 0.8542 0.999 0.9999 0.9991 

PT, s 69 65 19 951 1214 

Reference value of 

objective function 
0 0 –959.6407 0 0 

 

In conducting the optimisation experiments, the following control parameters 

have been used for all RCGAs: 4K   is the total number of agent-processes, 

10,  kG k K   – the total number of internal iterations, 100n   is the number of 

decision variables in FT1, FT2, FT4, FT5 and 2n   in FT3. 

At the same time, the following performance metrics are used: ( )F x  is the 

objective function value; CR is the convergence rate that defines as a ratio the 

deference between finite and initial values of objective functions to the total number 

of external iterations of RCGA; and PT is the processing time (in s) defined by a 

period spent on reaching the extremum (i.e., when the convergence of RCGA is 

reached). 
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As shown in Table 2, the proposed algorithm RCGA-SNUM performs better in 

the objective function values and the convergence rate in comparison with other well-

known RCGAs based on appropriate mutation operators. At the same time, some 

increase in the processing time for RCGA-SNUM is caused by more time needed for 

clustering the population of potential decisions in mutation (i.e., for the SNUM).  

Fig. 6 shows the evolutionary dynamics of cluster centroids for RCGA-SNUM 

in comparison with the most effective RCGAs (e.g., RCGA4 and RCGA5) using FT5 

with two decision variables (i.e., the Lunacek bi-Rastrigin Function, where 2n  ) as 

the case study.   

 

 
Fig. 6. Evolutionary dynamics of cluster centroids for RCGA-SNUM 

 

As can be seen in Fig. 6, the evolution rate and convergence rate of potential 

decisions in RCGA-SNUM are significantly better than in other RCGAs, because the 

Scalable NonUniform Mutation (SNUM) provides an improved shift of new 

offspring towards clusters with the most evolved solutions, using a combination of 

different distribution functions (10)-(11). Unlike other well-known heuristic 

operators such as cluster-based crossover, fuzzy-controlled crossover, directed 

variation mutation operators, etc., (e.g., [22, 27, 31, 32]), SNUM provides better 

scaling through embedding the agent-process characteristics to the proposed mutation 

operator (7)-(8). The operator allows splitting of feasible ranges of decision variables 

into subranges with unequal lengths, differing by the adaptation level of potential 
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solutions included to appropriate clusters. This leads to improved speed in solving 

large-scale simulation-based optimisation problems. 

After examination of the proposed algorithm RCGA-SNUM, it was applied to 

solving Problem A and finding the optimal configuration of AMСRN, consisting of 

12 rows and columns of the “Manhattan Grid” combined with variable counts of 

circular motion areas that enable the minimisation of traffic accidents. The computed 

configuration of AMCRN is presented in Fig. 7.      

 

 
Fig. 7. Optimal configuration of AMСRN obtained with RCGA-SNUM 

  

In Fig. 7, red points are AVs, blue points are MVs and brown rectangles are 

the centres of car clusters (i.e., traffic jams). 

Optimisation experiments have been performed with the use of the CUDA 

powered supercomputer based on the QUADRO RTX 6000. The simulation model 

has been implemented with the use of a high-performance agent-based simulation 

framework FLAME GPU [20], and the AMСRN scheme reconfiguration provides 

generation of up to 100,000 agent-vehicles as a result of the optimisation achieved 

with RCGA-SNUM. The total number of potential traffic accidents has been 

decreased 4 times with the optimisation of AMСRN using RCGA-SNUM.       

5. Conclusion 

The study aims to develop a novel framework for simulation-based optimisation for 

autonomous transportation systems using the proposed parallel Real-Coded Genetic 

Algorithm with Scalable NonUniform Mutation (RCGA-SNUM). The proposed 

genetic algorithm (Fig. 5) has been examined with the use of known test instances 

(Table 1) and compared to other parallel RCGAs (Table 2). RCGA-SNUM shows 

superior behaviour in the accuracy of obtained solutions and the convergence rate 
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(Fig. 6). After examination of RCGA-SNUM, it was applied to finding the optimal 

configuration of AMСRN that enables the minimisation of traffic accidents (Fig. 7).  

Further research will aim to optimise an artificial multi-connected road network 

with more complex internal configurations (e.g., multi-layer multi-connected road 

networks with many heterogeneous agents of the traffic system) to minimise traffic 

accidents and eliminate traffic congestion.      
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