
 85

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 21, No 3

Sofia 2021 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2021-0031

Hybrid Role and Attribute Based Access Control Applied

in Information Systems

Maria Penelova

Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia,

Bulgaria

E-mail: i_n_f@abv.bg

Abstract: It this paper it is proposed a new access control model – Hybrid Role and

Attribute Based Access Control (HRABAC). It is an extension of Role-Based Access

Control (RBAC). HRABAC is designed for information systems and enterprise

software and combines the advantages of RBAC and Attribute-Based Access Control

(ABAC). HRABAC is easy configurable, fine-grained and supports role hierarchies.

The proposed model HRABAC describes the access control scheme in Laravel

package laravelroles/rolespermissions, which is developed by the author of the

paper, as an answer to the requirements of practice of fine-grained and easy

configurable access control solution. Laravel is chosen, because it is the most

popular and the most widely used PHP framework. The package

laravelroles/rolespermissions is developed on Laravel so that maximum number of

programmers could use it. This package contains working and tested functionalities

for managing users, roles and permissions, and it is applied in accounting

information system.

Keywords: Access control, authorization, access decision, HRABAC, hybrid role and

attribute access control.

1. Introduction

Information technology security consists of authentication [8, 9] authorization [9],

and audit [7, 9]. Authentication is the way of proving the identity of a user, usually

via entering the credentials of the user. Authorization determes whether to grant or

deny access to a resource. Another term for authorization is Access Control (AC).

The formal representation of authorization is AC model. An AC model consists of

set of subjects, and set of objects and policies. A subject is mapping of user, which is

assigned to many roles or attributes. The subject is an active entity. An object is the

requested resource and it is a passive entity. The policy is a rule, which decides

whether to grant or deny the access of a subject to object.

mailto:author@boulder.nist.gov

 86

Granularity is a characteristic that refers to the ability of an AC model to provide

a detailed check for access control purposes. If an AC model does not have an ability

to provide a detailed check, then it is coarse-grained AC model. If the AC model does

additional checks, like a verification whether a user is the owner of the requested

object, then the model is fine-grained.

RBAC [2] and ABAC [5] are AC models, widely used in enterprise software.

RBAC uses roles in its policies.

RBAC has easy for maintaining policy and it is easy to be configured. Limitation

of RBAC is that it is coarse-grained.

Using attributes provides to ABAC better granularity than RBAC. Policies with

attributes check in more detail, that is why ABAC is fine-grained. But the complex

policies and tree-based structure of attributes are hard to be maintained and

configured, and have become disadvantages of ABAC.

There is a trend to combine RBAC and ABAC, in order to use the advantages

and to avoid the drawbacks of these two AC models for enterprise software and to

provide fine-grained and easy configurable AC model [1].

Nowadays, AC models are created in areas, such as blockchain [12, 14, 15, 17,

20], Internet of things [14], cloud computing [16, 22, 23] and distributed systems

[11]. Fine-grained AC models [13, 19] are introduced. Lately, there are researched

dynamic AC schemes, based on RBAC [10, 12] and models, which are based on

ABAC [14, 21], as well as hybrid models [18] for big data.

Personal data should not be shown to all people indiscriminately. Such data in

information systems should be protected via fine-grained control. The requirements

of the practice for an easily configurable and fine-grained access control model for

information systems and enterprise software, are still not satisfied.

This motivates the author of this paper to create a new model for access control.

Thus, Hybrid Role and Attribute Based Access Control (HRABAC) is proposed. It is

designed for information systems and enterprise software and is an extension of

RBAC. HRABAC preserves the easy configurability of RBAC and the expressive

power of ABAC policies. The proposed model describes the access control scheme

that is implemented in Laravel package laravelroles/rolespermissions [25, 26]. This

package is developed by the author of the paper.

An advantage of HRABAC is the easy to maintain policy. It prevents an

unauthorized action to be executed and, at the same time, protects certain data. In

information system, the authorization process in HRABAC regulates the execution

of actions, like view and edit, against a database record. Meanwhile, it protects a

database record, when an action is granted, via additional checks. An application of

the proposed model is given in an accounting information system.

The rest of this paper is structured as follows. In Section 2, the AC models for

enterprise software – RBAC and ABAC, are described. In Section 3, the new model

HRABAC is proposed. The application of laravelroles/rolespermissions, that is based

on HRABAC is described in Section 4. In Section 5 a comparison between ABAC,

RBAC and HRABAC is proposed. The results are presented in a table. Section 6

suggests future developments and conclusions.

 87

2. Related work

RBAC [3, 4, 24] is the most popular AC model for enterprise software. The family

of RBAC models – RBAC96 framework is introduced in 1996 [4]. It consists of four

models: the basic RBAC0 model, the advanced models RBAC1 and RBAC2, and the

consolidated model RBAC3.

The basic RBAC0 model has three sets of entities as components: a set of users,

a set of roles and a set of permissions. A user is human being. A role is a job title

within organization. A permission is approved access to resources. They are always

positive. A session is a mapping of one user onto a subset of roles. The subsets of

used roles in different sessions may differ. That supports the least privilege principle.

Permissions that modify the sets of users, roles and permissions are called

administrative permissions.

The model RBAC1 supports role hierarchies. This is the ability of one role to

inherit the permissions of another role.

RBAC2 introduces constraints. RBAC3 combines RBAC1 and RBAC2.

NIST (National Institute of Standards and Technology) ABAC [5, 24] has been

introduced in 2014. The components of ABAC [6] are subjects, objects, the attributes

of subjects, the attributes of objects, environment conditions, policies and AC

mechanism. The AC mechanism consists of policy decision point and policy

enforcement point. A subject is human being, computer or router. An object is the

requested system resource. A policy is a rule that regulates the access of the user,

using the values of subject attributes, object attributes and environment conditions.

The AC mechanism evaluates the subject attributes, the object attributes, the

environment conditions and policies, and determines whether to grant or deny access.

Time and location can be involved in ABAC policy as environment conditions.

ABAC policy can be expressed for attributes that not exist at the moment, but they

can be added in future.

There are many software solutions, based on RBAC, called installable packages

for managing roles and permissions [27-29]. They possess working and tested AC

schemes that are installed on a developed application, in order to save time and effort

of the software developers. The packages have the limitations of the AC model

RBAC, so they are not fine-grained.

ABAC is too complicated for configuring to be implemented in an installable

package. There are no packages, based on ABAC.

In response to the requirements of the practice for an easily configurable and

fine-grained access control solution that can be installed on a developed information

system, Laravel package laravelroles/rolespermissions [25, 26] has been developed.

Laravel is the most popular PHP framework аnd the most widely used. The package

laravelroles/rolespermissions has been developed on Laravel, so that the maximum

number of programmers could use it. It provides working and tested functionalities

for managing users, roles and permissions, which are added to an information system

only via installation, there is no necessity for writing programming code. HRABAC

has the advantages of both RBAC and ABAC models that are easy to configure and

possess fine-grained access control.

 88

3. HRABAC

It is important to combine RBAC and ABAC, in order to use the advantages and to

avoid the drawbacks of both AC models for enterprise software [1]. Assume we have

an accounting information system with four roles: Administrator, Manager,

Accountant and Employee. Administrator has access to all pages of the information

system. Manager can manage (create, edit, delete, read) employees and the salaries

of employees. Accountant can manage salaries of employees. Employee can view

only his/her salary data. The roles: Administrator, Manager, Accountant and

Employee, can be assigned to users with RBAC.

The problem in RBAC is: if to the role Employee is given permission to read

salary data, it would be possible the user with role Employee to see the salary data of

all users in the database. If the user with the role Employee is forbidden to see the

salaries of all users, he/she cannot see his/her own salary data. But the requirement

of the system is: the users with role Employee to see only his/her salary data.

Here can be used the expressive power of ABAC policy. For that purpose, we

introduce policy functions that evaluate attributes. Thus, HRABAC model is

designed to cover the security requirements of information systems.

Definition 1. Let Users = {u1, u2, …, un} be a set of users, Roles =

{r1, r2,…, rm} be a set of roles, Ops be a set of operations, Obs be a set of objects,

Permissions = {p1, p2,…, pq} = 2(Ops×Obs) is a set of permissions.

Definition 2. Let Subjects be a set of subjects, where subject is a mapping of

one user to many roles.

Definition 3. The function assigned_permissions: Roles→2Permissions is the

mapping of role r onto a set of permissions.

Definition 4. The function subject_roles: SUBJECTS→2Roles is the mapping of

subject s onto a set of roles.

Definition 5. RH ⊆ Roles × Roles is a partial order on Roles called inheritance

relation, written as ≥, where r1 ≥ r2 only if all permissions of r2 are also permissions

of r1, and all users of r1 are also users of r2.

Fig. 1. Role hierarchy in accounting information system

 89

In the context of accounting information system, the set of roles is

Roles = {Administrator, Manager, Accountant, Employee}.

There is inheritance relation RH ⊆ Roles × Roles, written as ≥, and we have

these ordered pairs:

Administrator ≥ Manager, Manager ≥ Accountant, Accountant ≥ Employee,

Administrator ≥ Employee, Manager ≥ Employee, and Administrator ≥ Accountant.

The role hierarchy in the accounting information system is shown on Fig. 1.

Definition 6. Let Sat1, Sat2, …, Satk be subject attributes, Obat1, Obat2, …, Obatt

are object attributes and for the subject s, s ∈ Subjects, Subject_attributes(s)⊆

Sat1×Sat2×…×Satk is attribute assignment relation. Let, for the object o ∈ Obs,

Object_attributes(o)⊆ Obat1×Obat2×…×Obatt be attribute assignment relation.

 PF = {f1, f2, …, fl} is a set of policy functions. Policy function decides

whether subject s can access object o, when such a permission is not assigned to role.

Policy function is a function, that evaluates a subset of the attributes of s and a subset

of attributes of o, with a boolean value.

 For a s∈Subjects, o∈Obs exists: fi(Subject_attributes(s),

Object_attributes(o)) = True. It is necessary for the access decision part of HRABAC

to grant access, when the requested object does not belong to a permission, that is

assigned to one of the roles of the subject, the policy function for the subject and the

requested object to have True value.

In the context of accounting information system, the attributes of the subject are

the fields of the database record, matching the user. If that database record is user,

the subject attributes are: Sat1 = user.id, Sat2 = user.first_name, Sat3 = user.last_name,

Sat4 = user.email, Sat5 = user.telephone.
Subject_attributes(s) = (user.id, user.first_name, user.last_name, user.email,

user.telephone) is an attribute assignment relation for the subject.
If the object o∈ Obs represents a database record salary with salary data, then

the object attributes are: Obat1 = salary.id, Obat2 = salary.month, Obat3 =

salary.amount, Obat4 = salary.user_id.
Object_attributes(o) = (salary.id, salary.month, salary.amount, salary.user_id) is

attribute assignment relation for the object.
Then “own” is a policy function, own∈PF, own(Subject_attributes(s),

Object_attributes(o)) = True under the condition: user.id = salary.user_id. In other

words, the user must “own” the salary, to view the details about it.

Definition 7. The function is_active_subject is a boolean function,

is_active_subject: Subjects → BOOLEAN. A subject s, for which

is_active_subject(s) = False, does not have access rights.

Definition 8. The function is_active_role is a boolean function,

is_active_role: Roles→ BOOLEAN;

a role r, for which is_active_role(r) = False, does not have access rights.

So, if the subject is inactive, it cannot access the requested resource. If active

subject is assigned to inactive role, the access is denied via that role.

 90

Fig. 2. The components of HRABAC

The interaction of the components of HRABAC (Fig. 2) is as it is follows.

Step 1. The function is_active_subject evaluates the subject, passed as

argument, with a boolean value. If thе evaluated value is false – go to Step 6. If the

result of the evaluation is true – go to Step 2.

Step 2. HRABAC checks if there are roles assigned to the subject.

Step 2.1. If there is a role assigned to the subject: the function is_active_role

evaluates the role with a boolean value. If that value is false – HRABAC checks for

another role. If the result of the evaluation is true – go to Step 3.

Step 2.2. If there is no role, which is not evaluated – go to Step 6.

Step 3. If a permission, which contains the requested object, is assigned to the

role – go to Step 5. If there is no such a permission – go to Step 4.

Step 4. HRABAC checks for policy function.

Step 4.1. If a policy function exists, which is not evaluated: HRABAC

evaluates the policy function with arguments the subject attributes

(Subject_attributes) and object attributes (Object_attributes), with a boolean value. If

the result value is true – go to Step 5. If the result value of the evaluation is false – go

to Step 4.

Step 4.2. If a policy function, which is not evaluated, does not exist – go to

Step 6.

Step 5. Access Decision – the requested access is granted.

Step 6. Access Decision – the requested access is denied.

 91

Definition 9. If s is a subject, p is a permission, a boolean function can_access

is defined with arguments s and p. The function can_access is the access decision

function for HRABAC. Formally, if s∈Subjects, p∈Permissions,

can_access: Subjects×Permissions → BOOLEAN.

Fig. 3. The process of access control of HRABAC

The access decision function has true value, or can_access(s, p) = True, only

when

1) is_active_subject(s) = True and role r exists: is_active_role(r) =

True^r∈ subject_roles(s)^p∈ assigned_permissions(r);

2) is_active_subject(s) = True and object ob∈Obs exists, operation op∈Ops:

(op, ob)∈Permissions^role r exists: r∈ subject_roles(s)^is_active_role(r) =

True^policy function f exists: f∈PF, f(Subject_attributes(s), Object_attributes(ob)) =

True.

Otherwise, can_access(s, p) = False.

In other words, the access decision function has true value, when the object is

accessible via:

1) role;

2) policy function.

The evaluation of can_access function is shown in Fig. 3.

 92

The scheme of access control in HRABAC is, as follows:

 First, HRABAC checks whether the subject is active.

 If the subject is inactive, the access is denied.

 If the subject is active, HRABAC checks whether an assigned active role

exists. If not, access is denied.

 For each of the assigned active roles, there is a check, whether the requested

permission is assigned to role. In this is the case, access is granted.

 If the requested permission is not assigned to role, HRABAC checks,

whether the value of the existing policy functions is True to grant access. In the

opposite case, the access is denied.

HRABAC can restrict access to certain actions in information systems. When it

is not possible an action to be forbidden to user, HRABAC protects certain data.

The main concepts of HRABAC are:

1. Subjects and roles can be active or inactive.

2. A subject is member of a role and a permission is assigned to a role.

3. Policy functions evaluate the attributes of the subject and the object.

4. The access decision part checks whether to grant access via a role or via a

policy function evaluation.

In the context of the accounting web information system, the process of

evaluating access decision function can_access is given with pseudocode:
function canAccess(user, permission): boolean
begin
 if(user.is_active)
 foreach(role in user→roles)
 if(role.is_active)
 foreach(permissionIter in role→permissions)
 if(permissionIter == permission)
 return True;
 endif
 endforeach
 salaryRecord =

getSalaryRecordByPermission(permission);
 if (owns(user, salaryRecord))
 return True;
 endif
 endif
 endforeach
 endif
 return False;
end
owns is an implementation of policy function which returns True if the user

“owns” the salary.
getSalaryRecordByPermission returns the salary record mapping the

permission. In other words, it returns the requested object.

 93

4. Application of laravelroles/rolespermissions, that is based on

HRABAC, in accounting information system

Personal data should not be shown to all people indiscriminately. It should be

protected. That is one of the tasks of the software package

laravelroles/rolespermissions, which is based on HRABAC, in addition to managing

users, roles and permissions.

Laravel package laravelroles/rolespermission is installed on an accounting

information system. This adds functionalities for managing users, roles and

permissions to the accounting information system. They have graphical user

interfaces. The interface “List of users” is shown on Fig. 4. The inactive users are

colored in red, while the active users are colored in black. Inactive users do not have

access rights.

Fig. 4. Graphical user interface “List of Users” of Laravel package laravelroles/rolespermissions

According to modern requirements for protecting personal data, user with role

“Employee” does not have access rights to the salary data of the other users, while

user with role “Accountant” manages salary data.

In other Laravel packages, that are based on RBAC, if we forbid seeing salary

data for the role “Employee”, the result will be that every user with role “Employee”

cannot see any salary data, including his/her own salary data.

The package laravelroles/rolespermissions provides fine-grained access control.

This denotes that user with role “Employee” can see only his/her salary data in

accounting information system.

The package laravelroles/rolespermissions, that is based on HRABAC, can be

installed to any information system or software application, that requires managing

roles and permissions, and fine-grained access control.

5. Comparison between ABAC, RBAC and HRABAC

ABAC, RBAC and HRABAC are compared by the following parameters: easy

configurability, fine-grained policies, and workflow control.
Easy configurability. HRABAC is easy configurable access control model, like

RBAC. That is why they are implemented in installable packages [26-29]. ABAC is

 94

hard configurable access control model and there are no installable packages that

realize that model.

Fine-grained policies. ABAC uses attributes and supports fine-grained

policies. HRABAC is fine-grained too, because it can display only data for a specific

user, not all data. RBAC is not fine-grained, because if a user does not have a

permission to view all data, he/she cannot read the data about him/her.
Workflow control. RBAC and HRABAC can be used for workflow control.

There are known permissions for each role: each job what can do. There is no data

for ABAC to support workflow control.
The results of the comparison between ABAC, RBAC and HRABAC are shown

on Table 1. It can be seen, that HRABAC has the advantages of both access control

models RBAC and ABAC.

Table 1. Comparison between RBAC, ABAC and HRABAC

Parameter RBAC ABAC HRABAC

Easy configurability yes no yes

Fine-grained policies no yes yes

Workflow control yes no yes

The model being proposed fulfills the requirements of information systems and

enterprise software of easy configuring, and at the same time, it provides fine-grained

access control solution. HRABAC extends RBAC and has the advantages of RBAC

and ABAC models. An exemplary accounting information system with implemented

HRABAC is described in brief.

6. Future developments and conclusions

The proposed model fulfills the requirements of information systems and enterprise

software of easy configuring, providing at the same time, fine-grained access control

solution. HRABAC extends RBAC and has the advantages of RBAC and ABAC

models. The possibility of deactivating of subject and role improves the security of

the software, where the proposed model is applied.

An accounting information system is shown, whose access control requirements

are impossible to be solved with RBAC or ABAC separately. The check whether the

access can be granted via role or via policy function evaluation in HRABAC,

provides a flexible way of access control.

The scheme of access control in HRABAC is as follows:

 First, HRABAC checks whether the subject is active.

 If the subject is inactive, the access is denied.

 If the subject is active, HRABAC checks whether an assigned active role

exists. If not, access is denied.

 For the assigned active roles, there is a check, whether the requested

permission is assigned to the role. In this case, access is granted.

 95

 If the requested permission is not assigned to a role, HRABAC checks

whether the value of the existing policy functions is True to grant access. In the

opposite case, the access is denied.

HRABAC can restrict access to certain actions in information system. When it

is not possible an action to be forbidden to user, HRABAC protects certain data. In

the context of accounting information system, the attributes of the subject are the

fields of the database record, matching the user. If the object represents a database

record with salary data, then the user with role Employee, for which the action “read

salary” is forbidden, must “own” the salary, to read the details about it. HRABAC

model can be implemented in other frameworks. New models can be developed,

based on HRABAC, designed for workflow control systems.

R e f e r e n c e s

1 . K u h n, D. R., E. J. C o y n e, T. R. W e i l. Adding Attributes to Role-Based Access Control – IEEE

Computer, Vol. 43, 2010, No 6, pp. 79-81.

2. F e r r a i o l o, D. F., D. R. K u h n, R. C h a n d r a m o u l i. Role-Based Access Control. Second

Edition. Artech House, 2007.

3. Fe r r a i o l o, D. F., R. S a n d h u, S. G a v r i l a, D. R. K u h n, R. C h a n d r a m o u l i. Proposed

NIST Standard for Role-Based Access Control. – ACM Transactions on Information and

System Security, Vol. 4, August 2001, No 3, pp. 224-274.

4. S a n d h u, R., E. C o y n e, H. F e i n s t e i n, C. Yo u m a n. Role-Based Access Control Models –

IEEE Computer, Vol. 29, February 1996, No 2, pp. 38-47.

5. H u, V. C., D. F e r r a r i o l o, R. K u h n, A. S c h n i t z e r, K. S a n d l i n, R. M i l l e r, S. K a r e n.

Guide to Attribute Based Access Control (ABAC) Definitions and Considerations – In: NIST

Special Publication 800-162, SIN’13, 2014.

6. J i n, X., R. K r i s h n a n, R. S a n d h u. A Unified Attribute-Based Access Control Model Covering

DAC, MAC and RBAC. – In: IFIP Annual Conference on Data and Applications Security and

Privacy. Vol. 7371. Springer, 2012, pp. 41-55.

7. F r e d e r i c k, G., M. D a n i e l, S. S a n d r a, G. C a r o l. Information Technology Control and Audit.

Auerbach Publications, 2004.

8. S m i t h, R. E. Authentication From Passwords to Public Keys. Addison Wesley, 2002.

9. S a n d h u, R., P. S a m a r a t i. Authentication, Access Control, and Audit. – ACM Comput. Surv.,

Vol. 28, March 1996, No 1, pp. 241-243.

10. S c h l e g e l, M., P. A m t h o r. Beyond Administration: A Modeling Scheme Supporting the

Dynamic Analysis of Role-Based Access Control Policies. – In: Proc. of 17th International

Joint Conference on e-Business and Telecommunications (ICETE’2020) – SECRYPT, 2020,

pp. 431-442. ISBN: 978-989-758-446-6, ISSN 2184-7711, DOI: 10.5220/0009834304310442.

11. G u c l u, M., C. B a k i r, V. H a k k o y m a z. A New Scalable and Expandable Access Control

Model for Distributed Database Systems in Data Security – In: Hindawi, Scientific

Programming. Vol. 2020. 2020, Article ID 8875069. 10 p.

https://doi.org/10.1155/2020/8875069
12. C h a t t e r j e e, A., Y. P i t r o d a, M. P a r m a r. Dynamic Role-Based Access Control for

Decentralized Applications – In: Blockchain – ICBC 2020. Lecture Notes in Computer

Science. Vol. 12404. Springer, Cham, 2020, pp. 185-197. DOI: 10.1007/978-3-030-59638-

5_13.

13. A b d a l l a, M., D. C a t a l a n o, R. G a y, B. U r s u. Inner-Product Functional Encryption with

Fine-Grained Access Control. – In: S. Moriai, H. Wang, Eds. Advances in Cryptology –

ASIACRYPT 2020. ASIACRYPT 2020. Lecture Notes in Computer Science. Vol. 12493.

Cham., Springer, 2020, pp. 467-497.

https://doi.org/10.1007/978-3-030-64840-4_16

https://doi.org/10.1155/2020/8875069

 96

14. D i n g, S., J. C a o, C. L i, K. F a n, H. L i. A Novel Attribute-Based Access Control Scheme Using

Blockchain for IoT – In: IEEE Access, Vol. 7, 2019, pp. 38431-38441.

DOI: 10.1109/ACCESS.2019.2905846.

15. S u n, S., S. C h e n, R. D u. Trusted and Efficient Cross-Domain Access Control System Based on

Blockchain. – Scientific Programming, Vol. 2020, 2020, Article ID 8832568. 13 p.

https://doi.org/10.1155/2020/8832568
16. A l b u l a y h i, K., A. A b u h u s s e i n, F. A l s u b a e i, F. T. S h e l d o n. Fine-Grained Access

Control in the Era of Cloud Computing: An Analytical Review. – In: 10th Annual Computing

and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 2020,

pp. 748-755. DOI: 10.1109/CCWC47524.2020.9031179.

17. L i, H., L. P e i, D. L i a o, S. C h e n, M. Z h a n g, D. X u. FADB: A Fine-Grained Access Control

Scheme for VANET Data Based on Blockchain. – IEEE Access, Vol. 8, 2020,

pp. 85190-85203. DOI: 10.1109/ACCESS.2020.2992203.

18. M e n e k a, M., K. M e e n a k s h i s u n d a r a m. An Enhancement Role and Attribute Based Access

Control Mechanism in Big Data. – International Journal of Electrical and Computer

Engineering (IJECE), Vol. 8, 2018, No 5, pp. 3187-3193. ISSN: 2088-8708,

DOI: 10.11591/ijece.v8i5pp3187-3193.

19. Z i g m o n d a, E., S. C h o n g a, C. D i m o u l a s b, S. M o o r e c. Fine-Grained Language-Based

Access Control for Database-Backed Applications – The Art, Science, and Engineering of

Programming, Vol. 4, 2020, No 2, Article 3. 30 p. DOI: 10.22152/programming-

journal.org/2020/4/3.

20. D i n g, Y., H. S a t o. Bloccess: Towards Fine-Grained Access Control Using Blockchain in a

Distributed Untrustworthy Environment. – In: Proc. of 8th IEEE International Conference on

Mobile Cloud Computing, Services, and Engineering (MobileCloud), Oxford, UK, 2020,

 pp. 17-22. DOI: 10.1109/MobileCloud48802.2020.00011.

21. L i u, M., C. Y a n g, H. L i, Y. Z h a n g. An Efficient Attribute-Based Access Control (ABAC)

Policy Retrieval Method Based on Attribute and Value Levels in Multimedia Networks. – In:

Sensors 2020, Vol. 20, 2020, No 6, 1741. 15 p.

https://doi.org/10.3390/s20061741
22. S h y n u, P., K. S i n g h. A Comprehensive Survey and Analysis on Access Control Schemes in

Cloud Environment. – Cybernetics and Information Technologies, Vol. 16, 2016, No 1,

pp. 19-38.

23. T u, S., S. N i u, M. L i. An Efficient Access Control Scheme for Cloud Environment. – Cybernetics

and Information Technologies, Vol. 13, 2013, No 3, pp. 77-90.

24. Ekran Systems, 2020.

https://www.ekransystem.com/en/blog/rbac-vs-abac
25. P e n e l o v a, M. Last Access Mart 2021.

https://packagist.org/packages/laravelroles/rolespermissions
26. P e n e l o v a, M. Last Access Mart 2021.

https://github.com/MGP-Ucict/mpenelova

27. S p a t i e. Last Access Mart 2021.

https://github.com/spatie/laravel-permission

28. S i l b e r, J. Last Access Mart 2021.

https://github.com/JosephSilber/bouncer

29. K e n e d y, J. Last Access Mart 2021.

https://github.com/jeremykenedy/laravel-roles

Received: 03.01.2021; Second Version: 29.03.2021; Third Version: 06.06.2021;

Accepted: 01.07.2021

