
 89

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 21, No 2

Sofia  2021 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2021-0021

A New Digital Image Steganography Based on Center Embedded

Pixel Positioning

Dedi Darwis1,2, Akmal Junaidi3, Dewi Asiah Shofiana3, Wamiliana4
1Doctoral at Faculty of Mathematics and Natural Science, Universitas Lampung, Lampung, Indonesia
2Faculty of Engineering and Computer Science, Universitas Teknokrat Indonesia, Lampung, Indonesia
3Department of Computer Science, Universitas Lampung, Lampung, Indonesia
4Department of Mathematics, Universitas Lampung, Lampung, Indonesia

E-mails: darwisdedi@teknokrat.ac.id akmal.junaidi@fmipa.unila.ac.id

dewi.asiah@fmipa.unila.ac.id wamiliana.1963@fmipa.unila.ac.id

Abstract: In this study we propose a new approach to tackle the cropping problem in

steganography which is called Center Embedded Pixel Positioning (CEPP) which is

based on Least Significant Bit (LSB) Matching by setting the secret image in the

center of the cover image. The evaluation of the experiment indicated that the secret

image can be retrieved by a maximum of total 40% sequential cropping on the left,

right, up, and bottom of the cover image. The secret image also can be retrieved if

the total asymmetric cropping area is 25% that covered two sides (either left-right,

left-up or right-up). In addition, the secret image can also be retrieved if the total

asymmetric cropping area is 70% if the bottom part is included. If asymmetric

cropping area included three sides, then the algorithm fails to retrieve the secret

image. For cropping in the botom the secret image can be extracted up to 70%.

Keywords: Cover image, cropping, security, stego image, steganography.

1. Introduction

Steganography is a technical art on how to hide messages into other media, such as

image, text, audio, and video, that are all known as the steganographic cover.

Steganographic cover contains secret images in which can only be extracted by the

recipient. All digital files in bits can be the media of steganography [1-3].

Secret images in this research are images, whereas RGB (Red, Green, Blue)

images in Portable Network Graphics (PNG) format, which is a lossless compression

image format, were used as the media. The algorithm’s reliability determines the

image quality resulting from steganography in the embedding and extraction process

[4, 5]. There are two primary methods to test the image quality:

1. Fidelity, the ability to accurately process the image with no visual distortion

nor information loss by calculating the Peak-Signal to Noise-Ration (PSNR) [6, 7];

mailto:darwisdedi@teknokrat.ac.id
mailto:akmal.junaidi@fmipa.unila.ac.id
mailto:dewi.asiah@fmipa.unila.ac.id
mailto:wamiliana.1963@fmipa.unila.ac.id

 90

2. Robustness, the stego-analysis attack or image manipulation: attacking the

stego-image with image processing such as crop, blur, noise, rotate, etc., [8-10].

Image lacks the ability to preserve information when a stego-analysis attack

occurs, making robustness as the main concern in steganography [11, 12]. Cropping

is a type of image manipulation that will effectively distort the value of image pixels,

causing the hidden message in a stego-image to get corrupted [6, 13]. The crop

manipulation is effective since secret images are generally stored in a stego-image at

the very last bit of the image located in the top-left corner, which can be cropped

easily [14, 15].

Least Significant Bit (LSB) is a common technique in steganography that can

insert secret images to an image with no visual difference between the original image

and stego-image [16, 17]. The LSB method has been developed by implementing

Nine-Pixel Differencing and LSB Substitution that can increase the embedding

capacity while maintaining the image imperceptible as well as improving the fidelity

value. This development is performed by modifying LSB bit of the image into a 33

block using the equation 𝑑 =
1

8
∑ | 𝑥𝑖 − 𝑥min |8

𝑖=0 . The experiment shows that, on

average, the Mean Square Error (MSE) and PSNR increases by –0.5375 and 47

sequentially, with the average bit storage capacity about 187.069. However, this

method is still unable to resist the image processing attack [18, 19].

A work by A l-A f a n d y et al. [3] discusses a conceptual framework to preserve

the lost information from a cropped stego-image. Crop manipulation effectively

attacks the stego-image since hidden information is usually stored in the last bit,

located at the corner of the image. Hence, when the image is cropped, information

extraction will be difficult or even impossible [3].

Realizing that cropping manipulation mostly fail to retrieve secret image if

cropping is done on the left above position, a new approach using Center Sequential

Technique (CST) is proposed to overcome this problem. In CST, the cover image and

the secret image (in this method the used image also as the secret image), were

grayscale type [14]. In CST, to determine the center of the cover image the length

and the width both were divided by two.

In this research we enhanced the CST method by allowing RGB for cover image

and secret image (still use image as the secret image), and refine the method for

embedding process, and we called the method as Center Embedded Pixel Positioning

(CEPP).

2. CEPP method

This work has develops a technique to insert secret images sequentially by embedding

the message image in the form of bits into the center position of cover image by

calculating the length and width of the image. The method is named CEPP since the

hidden message is embedded at the center of the cover image by developing the way

in which the pixel sequential works. In general, the process steps of CEPP are as

follows.

 91

2.1. Message embedding method

PNG image is utilized as the hidden message that will be embedded into the cover

image in the same format. Fig. 1 illustrates the general message insertion process in

the proposed method.

Fig. 1. Message inserting process

The procedure below describes the steps of the embedding/inserting process.

1. Include cover image

In this step, the algorithm scans the number of columns of the cover image. If

the number of columns = a mod (8), then a is the number of shifting needed to put

the initial point (north west corner) of the message container area.

2. Include message image

The size of the secret image must be smaller than the cover image. In this

proposed algorithm, we implement the secret images which size do not exceed 110

pixels. The reason for using 110 pixels is due to the quality of the stego-image. In

this step pixels value is converted to binary and then change the last bit of the image

to be “0” using LSB.

3. Define the message container area

This process is at the heart of the approach to the proposed method. The first

step carried out was to change the pixel value of the message image into a list form,

then validates the width and height of the cover image so that it is divisible by 8.

Afterward, determine the coordinates to insert the message (xs, xe, ys, ye), called the

container, as illustrated in Fig. 2. Calculation on how to determine the container

coordinate is provided in

(1) xs =
1

4
 𝑤, xe = 𝑤 − xs,

(2) ys =
1

4
 ℎ, ye = ℎ − ys,

where: xs = Container’s width start point; xe = Container’s width end point;

ys = Container’s height start point; ye = Container’s height end point;
𝑤 = Cover image width; ℎ = Cover image height.

 92

Fig. 2. Preparation of container

After obtaining the size of the message container, validation is performed to

ensure that the width of the container is divisible by 8, as in (3) as follows:

(3)
xs = xs + (8 − xs mod(8)),

xe = xe + (8 − xe mod(8)).

If the message length is greater or equal to the area of the container, then the

message cannot be embedded. Otherwise, all message bits are embedded in the

specified container, and a stego-image is created.

4. Message inserting process

This process starts by changing the pixel value of the cover image into binary

and then changing all the last bits of the cover image into “1” using LSB. This

changing is needed to discriminate message counter area and other areas. Since the

image is in RGB then this procedure should be done for each channel (Red, Green,

Blue). The process will take longer if the colour of cover image is very diverse.

5. Create a stego-key

Stego-key is used to extract the secret image. In this proposed algorithm, the

stego-key is determined by counting the weight and height of the secret image.

Moreover, the stego-key is also used to validate the size of message container area.

2.2. Message extraction method

Fig. 3. Process of message extraction

 93

After the hidden message is successfully embedded in the image, the message will be

sent to the recipient, who extracts the message. Fig. 3 shows the process of message

extraction from a stego-image.

The following steps describe the Message Extraction Process:

1. Include stego image

Extraction step starts with scanning the stego-image and check whether the

width of the image is divisible by 8 or not. If it is indivisible by 8, the algorithm will

declare two variables: idx and idy, that can determine the starting point to read the

image.

Fig. 4. Length of stego-bit indivisible by 8

Appertaining to Fig. 4, if the stego-image length is indivisible by 8, the

algorithm generates new binary values. The position of the hidden message is at the

center, surrounded by a black border. The next equation is to acquire the idx value

after calculating the image length:

(4)
id𝑥 = 𝑤 mod(8),
id𝑥 = 21 mod(8),
id𝑥 = 5.

Fig. 5. Bit-reading after idx value determination

Fig. 5 shows that the bit reading starts from the 6th bit. Index array in

programming begins from 0; thus idx value of 5 implies that the bit-reading begins

from the 6th bit. By this calculation and bit-reading, stego-image extraction will

conduct successfully on a cropped image.

2. Find the message container area

After scanning the stego-image, stego-key should be validated. The use of stego-

key is to ensure that the extracted message has the same size as the secret image. The

algorithm only scans the area with “1” values, because the area with value “0” are

beyond the message container area.

3. Extracting message images

After finding the message container area and stego-key is validated, the

extraction process will take place to form the original/secret image by changing

binary into pixel.

 94

3. Result

3.1. Implementation CEPP Algorithm

The message embedding process is conducted in Python programming language as

shown in Fig. 1. The following is a snippet of source code for processing the cover

image and secret image.
cover = cv2.imread(cover, cv2.IMREAD_UNCHANGED)

col, row = cover.shape[:2]

if col % 8 != 0 or row % 8 != 0:

 cover = cv2.resize(cover, ((row+(8-row%8)),

(col+(8- col%8))))

col, row = cover.shape[:2]

secret = cv2.imread(secret, cv2.IMREAD_UNCHANGED)

if secret.shape[1] > 110:

 secret = cv2.resize(secret, None, fx=0.5, fy=0.5)

blue = []

green = []

red = []

for i in range(secret.shape[0]):

 for j in range(secret.shape[1]):

 byte_b = secret[i][j][0]

 byte_g = secret[i][j][1]

 byte_r = secret[i][j][2]

 if byte_b == 0:

 byte_b = np.array([1], dtype=np.uint8)

 if byte_g == 0:

 byte_g = np.array([1], dtype=np.uint8)

 if byte_r == 0:

 byte_r = np.array([1], dtype=np.uint8)

 blue.extend(np.unpackbits(byte_b))

 green.extend(np.unpackbits(byte_g))

 red.extend(np.unpackbits(byte_r))

The secret image is transformed into a list, and then the algorithm calculates the

container coordinates to insert the message into the cover image. Calculating the

container coordinates, cover image validation, and message length towards container

size validation are several processes. The source code used is as follows:
xs = int(col*1/4)

 xe = col - xs

 ys = int(row*1/4)

 ye = row - ys

 if ys%8 != 0 or ye%8 != 0:

 ys = ys + (8-ys%8)

 ye = ye + (8-ye%8)

 95

3.2. Message embedding algorithm and create a stego-key

The following Source Code, is a snippet of the Embedded Center Positioning

algorithm’s core program, the message embedding process to the container area and

creating the stego-key.
idx = 0

for x in range(cover.shape[0]):

 for y in range(cover.shape[1]):

 bit_b = np.unpackbits(cover[x][y][0])

 bit_g = np.unpackbits(cover[x][y][1])

 bit_r = np.unpackbits(cover[x][y][2])

 if x in range(xs, xe) and y in range(ys, ye):

 if idx >= len(blue):

 bit_b[7], bit_g[7], bit_r[7] = 0, 0, 0

 bit_b = np.packbits(bit_b)

 bit_g = np.packbits(bit_g)

 bit_r = np.packbits(bit_r)

 else:

 bit_b[7] = blue[idx]

 bit_g[7] = green[idx]

 bit_r[7] = red[idx]

 bit_b = np.packbits(bit_b)

 bit_g = np.packbits(bit_g)

 bit_r = np.packbits(bit_r)

 if bit_b == 0:

 bit_b = bit_b + 1

 elif bit_b == 255:

 bit_b = bit_b - 1

 if bit_g == 0:

 bit_g = bit_g + 1

 elif bit_g == 255:

 bit_g = bit_g - 1

 if bit_r == 0:

 bit_r = bit_r + 1

 elif bit_r == 255:

 bit_r = bit_r - 1

 idx += 1

 else:

 bit_b[7], bit_g[7], bit_r[7] = 0, 0, 0

 bit_b = np.packbits(bit_b)

 bit_g = np.packbits(bit_g)

 bit_r = np.packbits(bit_r)

 cover[x][y][0] = bit_b

 cover[x][y][1] = bit_g

 cover[x][y][2] = bit_r

 cv2.imwrite(output, cover)

key = (str(secret.shape[0]), str(secret.shape[1]))

print("Stego Key : ", '*'.join(key))

 96

3.3. Message extraction algorithm

Before extracting the hidden message from stego-image, the image is read by the

program using the LoadImage Function and DecKey Function to read stego-key

with the following source code:
def loadImage(img):

 #stego = cv2.imread("cropped.png",

cv2.IMREAD_GRAYSCALE)

 stego = cv2.imread(img, cv2.IMREAD_UNCHANGED)

 return stego

def decKey(key):

 split = key.split('*')

 return split

The following is the main source code for the message extraction process:
def unhide(img, out, key):

 stego = loadImage(img)

 k = decKey(key)

 col, row = int(k[0]), int(k[1])

 idx = 0

 idy = 0

 if (stego.shape[1] % 8) != 0:

 idx = (stego.shape[1] % 8)

 idy = 8 - idx

 #print(idx, idy)

 blue, green, red = core(stego, idx= idx, idy = 0)

 #print(len(message))

 if len(blue) != col*row:

 blue, green, red = core(stego, idx = 0, idy

= idy)

 blue = np.array(blue).reshape(col,row)

 green = np.array(green).reshape(col,row)

 red = np.array(red).reshape(col,row)

 else:

 blue = np.array(blue).reshape(col,row)

 green = np.array(green).reshape(col,row)

 red = np.array(red).reshape(col,row)

 extract = cv2.merge((blue, green, red))

 output = cv2.imwrite(out, extract)

 return output

4. Discussion

4.1. embedding message testing

Test results in the embedding process determine the success rate of the program.

Several PNG formatted images are used as cover images, all are RGB as presented

in Fig. 6.

 97

Fig. 6. Cover image

Selected cover images must vary in color combination, with some samples they

are considerably dominant in the color of Red, Blue, or Green (RGB). With varying

the color, it will also widen the color spectrum of sample images to analyze the

change in image size and quality between the cover image and the stego-image.

The quality of the stego-image is heavily influenced by the size of the secret

image. The smaller the secret image while the cover image is bigger will cause the

proportion of cropping area to increase. The amount of the allowable pixel value of

the secret image can be calculated using the next equation:

cover image size = 𝑤 ℎ,

(5) message container size =
1

2
𝑤

1

2
𝑦 =

1

4
𝑤 ℎ,

LSB that can be used =
1

4
𝑤 ℎ

8
=

1

32
𝑤 ℎ =

𝑤 ℎ

32
.

Results of the embedding process are given in Table 1. All cover images are

listed in Fig. 6, whereas the message image inserted into the cover image is a 3.44

KB PNG image with a dimension of 4580 pixels, being much smaller than each

cover images.

Table 1. Steganography testing

Cover image
Cover image

dimension

Cover image

size (KB)

Stego-image

size

Stego-image

dimension

Pepper.png 512384 280 260 512384

Lenna.png 512512 462 422 512512

Nature.png 400300 162 152 400300

Cat.png 600352 500 480 600352

Red.png 512512 45 80 512512

Red2.png 512512 37 50 512512

Green.png 512512 90 120 512512

Green2.png 512512 21 40 512512

Blue.png 512512 266 280 512512

Blue2.png 512512 19 32 512512

Even though initially, the cover and message image’s size and dimension are

different, Table 1 and Fig. 7 show that the stego-image resulted in having precisely

the same dimension as the cover image. By equalling the image’s dimension, the

quality testing measured using MSE (Mean Square Error) and PSNR is expected to

show a better result.

 98

Fig. 7. Visualization of steganography testing

However, the program was unable to maintain image’s size due to the

compression process of the stego-image, converting it into a PNG image format.

Despite its change in size, since the lossless compression method is applied, there is

only a slight effect on the image quality. Based on the size, stego-images generated

from the program are categorized into two: decrement or increment in size. There is

a tendency that images with a wide variety of colors (e.g., cat.png, lenna.png,

nature.png) have a smaller stego-image file size, whereas images having one

dominant color (e.g., red.png, green.png, blue.png) indicate the opposite.

4.2. Extraction message testing

To start the message extraction process, the program will need a stego-key. Stego-

key is responsible for matching the original message image’s size and the size of the

message image in the message container area. The method proposed in this algorithm

is that during the message insertion process, the final bits in the message container

area are assigned to “1”, while in areas outside the container, the bits are assigned to

“0”. For each side of the rectangular area, bits are also assigned to “1” as a boundary.

Determining the boundary area is necessary so that the algorithm can read the

coordinates of the message container area during the message extraction process and

then adjust it to the message’s length and width based on the previously entered stego-

key.

This study applies the LSB matching method, with bits outside the container

boundary being replaced with “0” to simplify the extraction process. In Fig. 8, the

process of reading a message container area is illustrated by marking the message bit

as “1” in the middle area and on each side of the container. In contrast, the remaining

bits outside the container area are marked as “0”. By implementing this method, when

the image is cropped, whether symmetrical or asymmetrical, the messages in the

container area can still be extracted. However, if the cropping reaches the container

area’s boundary, the message will still be corrupted.

 99

Fig. 8. Process of reading the message container area

4.3. Imperceptibility test

Imperceptibility testing aims to see how difficult or easy stego-images can be

detected by human vision or the Human Visual System (HVS). This test was carried

out manually by involving 35 respondents who were asked to fill in the questionnaire

by comparing original images (cover images) as well as images with secret images

(stego-images). The questionnaire includes several sample images, as given in

Table 2.

Table 2. Imperceptibility test result

Stego image Different Slightly different No different

Pepper.png 2 2 31

Lenna.png 1 1 33

Nature.png 1 2 32

Cat.png 0 3 32

Red.png 1 3 31

Red2.png 1 2 32

Green.png 2 3 30

Green2.png 1 5 29

Blue.png 0 3 32

Blue2.png 1 3 31

Imperceptibility test includes five image samples, which compares the cover

image and stego image. Based on Table 2 and Fig. 9, around 89% of respondents

stated there is no difference between the cover image and the stego image. It can be

concluded that there is no significant change resulted from the steganography

process.

 100

Fig. 9. Visualization of imperceptibility test result

4.4. Fidelity testing

Fidelity test aims to see the quality of the stego-image, whether a significant change

exists after the message is embedded. The test is performed by calculating the MSE

and PSNR. Results from this test are given in Table 3.

Tabel 3. Result of fidelity testing

Cover image Cover image size (KB)
Message image

size (KB)

Stego-image

Size
MSE PSNR

Pepper.png 280 3.44 260 0.5 51.08

Lenna.png 462 3.44 422 0.5 51.08

Nature.png 162 3.44 152 0.4 52.9

Cat.png 500 3.44 480 0.4 52.25

Red.png 45 3.44 80 0.47 51.35

Red2.png 37 3.44 50 0.4 52.01

Green.png 90 3.44 120 0.66 49.87

Green2.png 21 3.44 40 0.54 50.75

Blue.png 266 3.44 280 0.63 50.09

Blue2.png 19 3.44 32 0.39 52.18

High PSNR value denotes a good image quality. Table 3 shows the PSNR value

between the cover image and the stego-image is very good, reaching 52.9 dB,

exceeding the standard 40 dB. On the other hand, the value of MSE is between 0.6,

implying that changes between the cover image and stego-image are not significant

[18, 20-24]. Visualization of the results of the MSE and PSNR test is provided in Figs

10 and 11.

Figs 10 and 11 prove an increase in image quality compared to previous studies.

Research by Swain [18] has an average PSNR value of 47 dB, whereas the CEPP

algorithm proposed in this work is around 52 dB.

 101

Fig. 10. Visualization of MSE result

Fig. 11. Visualization of PSNR result

4.5. Robustness test

A robustness test is conducted to observe whether the stego-image can resist image

processing (specifically cropping) attacks and extract the secret images. In the first

test, we symmetrically crop the stego-image in several directions with the results

presented in Table 4 (✓ is the extraction success; ✕ is the extraction fail).

According to the test results, the stego-image can be cropped symmetrically

from all four directions but with limitations. For the left, right, and upper side, we

can crop the stego-image at a maximum of 25%; otherwise, the message cannot be

extracted. The extraction process will fail due to the embedding process that takes

0.25 of the image’s length or width as the message container area’s boundary, making

the image resistance is only 25% of the overall image. Cropping from the lower side

shows that the message can still be extracted almost 70% from that side (only one

empirical case). In determining the starting point for the message container's

boundary, it does not include the lower side of the image. Therefore, the extraction

process will only fail if we crop the lower side by more than 70 %.

 102

Table 4. Crop test (symmetry)

No
Cover

image

Message

image

Crop

direction

Crop percentage

20 25 30 35 40 45 50 55 60 65 70 75

1

512512

4545

Left ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Right ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Up ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Down ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕

2 9090

Left ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Right ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Up ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Down ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

3

15001500

4545

Left ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Right ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Up ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Down ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕

4 9090

Left ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Right ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Up ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Down ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕

The next observation is by asymmetrically cropping the stego-image. In this test,

the stego-image is cropped from several sides with different cropping percentages

ranging from 5 to 50%. The cropping process is done sequentially from left, right,

up, and bottom. Suppose the stego-image is firstly cropped from the left as much as

5%. The resulting image is then cropped back from the right side for about 10%, and

so on. Test results of the asymmetrical cropping on stego-images are presented in

Table 5 (✓ is the extraction success; ✕ is the extraction fail).

Table 5. Crop test (asymmetry)

No
Crop percentage

Message extraction
Left Right Up Down

1 10 15 0 0 ✓

2 15 10 0 0 ✓

3 10 15 5 0 ✕

4 10 15 0 5 ✕

5 0 0 10 15 ✓

6 0 0 15 10 ✓

7 0 5 10 15 ✕

8 0 0 10 15 ✓

9 25 20 0 0 ✕

10 25 0 0 45 ✓

11 0 25 0 45 ✓

12 0 0 25 0 ✓

13 25 0 0 50 ✕

14 0 25 0 50 ✕

15 0 0 25 50 ✕

 103

Asymmetrically cropping the stego-image was carried out 15 times with the

results available in Table 5. Test results show that asymmetrical cropping can be

performed effectively only if the image is cropped on two sides. From Table 5, we

can see that test cases number 1, 2, 5, 6, 8, 10, 11, and 12 are only cropped on two

sides; thus, messages can be extracted successfully. However, when the cropping

attack is performed on more than two sides, such as in test cases number 3, 4, and 7,

the extraction process will fail. The message container are damaged when the third

cropping is conducted on a different side.

Results of observations on test cases number 10, 11, and 12 prove that the

message can still be extracted if the maximum cropping area at the bottom is 45%

and 25% from either left, right, or top. Meanwhile, test cases number 13, 14, and 15

fail to extract since the total cropping areas are greater than 70%.

5. Conclusion

Based on the discussion, the CEPP algorithm shows a remarkable result in image

steganography, proved by its success in the embedding and message extraction

processes. Stego-images generated using the CEPP algorithm are considered very

good, as indicated by the MSE and PSNR values. The images can also be received

through the Human Visual System (HVS), shown by the Imperceptibility Test results.

CEPP algorithm can resist cropping attacks symmetrically from the left, right, and

top of a maximum to 25%, while performing better at the bottom with a resistance

limit of more than 70%. This proposed algorithm can also resist asymmetric cropping

attacks as long as they are only performed on two sides with a total cropping

percentage, not more than 25%. All results are based on empirical data.

Acknowledgments: This research is funded by The Ministry of Research and Technology/The National

Research and Innovation Agency, the Republic of Indonesia under the schema Doctoral Research

Grant 2021.

R e f e r e n c e s

1. D e s o k y, A. Noiseless Steganography. CRC Press, 2012.

2. A b d E l-L a t i f , A. A., B. A b d E l-A t t, S. E. V e n e g a s-A n d r a c a. A Novel Image

Steganography Technique Based on Quantum Substitution Boxes. – Optics and Laser

Technology, Vol. 116, 2019, pp. 92-102.

3. A l-A f a n d y, K. A., O. S. F a r a g a l l a h, A. E l m h a l a w y, E. S. M. E l-R a b a i e, G. M.

E l-B a n b y. High Security Data Hiding Using Image Cropping and LSB Least Significant Bit

Steganography. – In: 4th International Colloquium on Information Science and Technology

(CIST’16), IEEE, 2016, pp. 400-404.

4. K u m a r, V., D. K u m a r. Digital Image Steganography Based on Combination of DCT and DWT.

– Communications in Computer and Information Science, Vol. 101, 2010, pp. 596-601.

5. K u m a r, S. K., P. D. K. R e d d y, G. R a m e s h, V. R. M a d d u m l a. Image Transformation

Technique Using Steganography Methods Using LWT Technique. – International Information

and Engineering Technology Assocation, Vol. 36, 2019, No 3, pp. 233-237.

6. J u a r e z-S a n d o v a l, O., M. C e d i l l o-H e r n a n d e z, G. S a n c h e z-P e r e z, K. T o s c a n o-

M e d i n a, H. P e r e z-M e a n a, M. N a k a n o-M i y a t a k e. Compact Image Steganalysis

for LSB-Matching Steganography. – In: Proc. of 5th International Workshop on Biometrics

and Forensics, IWBF, 2017.

 104

7. K a d h i m, I. J., P. P r e m a r a t n e, P. J. V i a l, B. H a l l o r a n. Comprehensive Survey of Image

Steganography: Techniques, Evaluations, and Trends in Future Research. – Neurocomputing,

Vol. 335, 2019, pp. 299-326.

8. M i s h r a, M., P. M i s h r a, M. C. A d h i k a r y. Digital Image Data Hiding Techniques:

A Comparative Study. – Ansvesa, Vol. 7, 2014, No 2, pp. 105-115.

9. M i s h r a, B., R. B e g, V. P. S i n g h. Information Security through Digital Image Steganography

Using Multilevel and Compression Technique. – MIT International Journal of Computer

Science & Information Technology, Vol. 3, 2013, No 1, pp. 26-29.

10. H u, D., L. W a n g, W. J i a n g, S. Z h e n g, B. L i. A Novel Image Steganography Method via Deep

Convolutional Generative Adversarial Networks. – IEEE Transactions on Information

Forensics and Security, Vol. 6, 2018, pp. 38303-38314.

11. S i n g h , S., R. B e g , T. J. S i d d i q u i. Robust Image Steganography Using Complex Wavelet

Transform. – In: Proc. of International Multimedia, Signal Processing and Communication

Technologies, IMPACT, 2013, pp. 56-30.

12. H u s s a i n, M., A. W. A. W a h a b, Y. I. B i n I d r i s, A. T. S. H o, T. S. J u n g. Image

Steganography in Spatial Domain: A Survey. – Signal Processing: Image Communication

Vol. 65, 2018, pp. 46-66.

13. Z h o u, Z., Y. M u, Q. M. J. W u. Coverless Image Steganography Using Partial-Duplicate Image

Retrieval. – Soft Computing, Vol. 23, 2019, No 23, pp. 4927-4938.

14. D a r w i s, D., A. J u n a i d i, W a m i l i a n a. A New Approach of Steganography Using Center

Sequential Technique. – In: Journal of Physics: Conference Series. Vol. 1338. 2019.

15. J u a r e z-S a n d o v a l, O., A. F i e r r o-R a d i l l a, A. E s p e j e l-T r u j i l l o, M. N a k a n o-

M i y a t a k e, H. P e r e z-M e a n a. Cropping and Noise Resilient Steganography Algorithm

Using Secret Image Sharing. – In: Proc. of 6th International Conference on Graphic and Image

Processing (ICGIP’14), Vol. 9443, 2015.

16. A k a r, F., Y. Y a l m a n, H. S. V a r o l. Data Hiding in Digital Images Using a Partial Optimization

Technique Based on the Classical LSB Method. – Turkish Journal of Electrical Engineering

and Computer Sciences, Vol. 21, 2013, pp. 2037-2047.

17. S e t i a d i, D. R. I. M., J. J u m a n t o. An Enhanced LSB-Image Steganography Using the Hybrid

Canny-Sobel Edge Detection. – Cybernetics and Information Technologies, Vol. 18, 2018,

No 2, pp. 74-88.

18. S w a i n, G., S. K. L e n k a. A Novel Steganography Technique by Mapping Words with LSB

Array. – International Journal of Signal and Imaging Systems Engineering, Vol. 8, 2015,

No 1-2, pp. 115-122.

19. A l h u m y a n i, H. Efficient Image Cipher Based on Baker Map in the Discrete Cosine Transform.

– Cybernetics and Information Technologies, Vol. 20, 2020, No 1, pp. 68-81.

20. W a m i l i a n a, M. U s m a n, A. H i j r i a n i, W a r s i t o, R. S e t i a w a n. The Hybrid Methods of

Column Transposition with Adaptive Minimum Error Least Significant Bit Replacement

(AMELSBR) Using File jpg/jpeg and png. – International Journal of Computer Science and

Network Security, Vol. 17, 2017, No 7, pp. 174-179.

21. Z h a n g, Y., C. Q i n, W. Z h a n g, F. L i u, X. L u o. On the Fault-Tolerant Performance for a Class

of Robust Image Steganography. – Signal Processing, Vol. 146, 2018, pp. 99-111.

22. Z h a n g, X., F. P e n g, M. L o n g. Robust Coverless Image Steganography Based on DCT and

LDA Topic Classification. – IEEE Transactions on Multimedia. Vol. 20, 2018, No 12,

pp. 3223-3238.

23. W u, P., Y. Y a n g, X. L i. StegNet: Mega Image Steganography Capacity with Deep Convolutional

Network. – Future Internet, Vol. 10, 2018, pp. 1-15.

24. S a h u, A. K., G. S w a i n, E. S. B a b u. Digital Image Steganography Using Bit Flipping. –

Cybernetics and Information Technologies, Vol. 18, 2018, No 1, pp. 69-80.

Received: 15.12.2020; Second Version: 17.03.2021; Third Version: 13.04.2021;

Accepted: 28.04.2021 (fast track)

