
 58

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES  Volume 21, No 2

Sofia  2021 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2021-0019

A Recursive and Parallelized Dynamic Programming

Implementation of Hard Merkle-Hellman Knapsack System for

Public Key Cryptography

Vaddadi Sai Rahul, N. Narayanan Prasanth, S. P. Raja

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu,

India

E-mails: nnprcd@gmail.com avemariaraja@gmail.com

Abstract: Merkle-Hellman public key cryptosystem is a long-age old algorithm used

in cryptography. Despite being computationally fast, for very large input sizes it may

operate slower due to thread creation overhead or reaching a deadlock situation. In

this paper, we discuss the working principles of the Traditional Merkle-Hellman

knapsack cryptosystem, which is an Easy knapsack. The challenges of Hard

Knapsack and how it overcomes the shortcomings of the Traditional Easy Knapsack,

are also discussed. The Hard knapsack variant of Merkle-Hellman is solved first

using plain recursion and then improvised using a dynamic programming approach

to the problem. Parallelism and Concurrency has been achieved on the dynamic

programming implementation using OpenMP API which further has enhanced the

performance time. A comparative study of both variants of Hard Knapsack for

messages of different lengths has shown that the latter is faster.

Keywords: Merkle-Hellman public key cryptosystem, Easy knapsack, Hard knapsack,

recursion, dynamic programming, parallelism, OpenMP API.

1. Introduction

The Knapsack problem is an example of a combinatorial optimization problem,

which seeks for a best solution from among many other solutions. It is concerned

with a knapsack that has a positive integer volume (or capacity) W. There are N

distinct items that may potentially be placed in the knapsack, each of which has an

assigned value. The Merkle-Hellman system utilizes a similar concept of Knapsack.

The Merkle-Hellman knapsack public key cryptosystem, invented in 1970’s by

Whitfield Diffie, Martin Hellman and Ralph Merkle, was one of the earliest public

key cryptosystems. During its proposal in 1970’s it emerged as one of the fastest and

secure encryption systems. Although Merkle-Hellman is not secure compared to

mailto:nnprcd@gmail.com

 59

other widely used algorithms like RSA, DSA, SHA-512, etc., it is really fast. In 1984,

Adi Shamir’s cryptanalysis of Merkle-Hellman has shown that the system can be

breached easily and hence, has been discarded ever since. The vulnerabilities in the

system can be attributed to the constraints imposed.

The Merkle-Hellman system is bounded mainly by two constraints. First, the set

of knapsack elements must be super increasing – current element’s value is greater

than the sum of its previous elements in the sequence. This is called an easy knapsack

sequence in Merkle-Hellman. On the contrary, a hard knapsack sequence is one in

which elements do not follow the super-increasing constraint. Unlike any other public

key cryptosystem, Merkle-Hellman system has two keys – a public key for encryption

and a private key for decryption. The public key is a hard knapsack and the private

key is an easy knapsack. Due to this constraint, the problem is easily solvable in

polynomial time. Second, the capacity of the knapsack is fixed; and must be greater

than sum of all the knapsack elements. The system utilizes two numbers – a multiplier

and a modulus, in the processes of public key generation and message decryption.

Another variant of the Merkle-Hellman cryptosystem involves using a hard

knapsack even for public key. As mentioned earlier, in a hard knapsack, the set of

input knapsack elements are free from the super-increasing constraint, i.e., random

selection of elements is supported. This randomized approach accounts for the

receiver of the encrypted message solving an instance of the subset sum problem

during decryption phase, which is NP-Hard. The major drawback to this approach

however, is the exponential nature of recursion.

For real-life applications, the messages to be sent are practically very large in

size, making the entire process of encryption and decryption inefficient for a

recursive solution. An alternate approach for converting a plain recursion to an

iterative version is by Dynamic Programming (DP). This optimization algorithm

helps in shrinking the exponential time complexity of recursion to polynomial time.

The dynamic programming implementation can be further catalysed by using several

parallelization techniques. OpenMP is a lightweight and scalable model, which

provides a simple and versatile interface to parallel programmers for developing

portable parallel applications. It supports parallel multi-platform shared-memory

programming on all architectures including Unix and Windows Platforms in C, C++

and Fortran. We can add vectorized implementations by using the pragma directives

present in OpenMP, which help in catalysing the decryption process; hence making

it very efficient [1]. This paper presents an exact recursive and parallelized dynamic

programming implementation for solving the Hard knapsack. The proposed method

overcomes the constraint limitations by using a randomized public key and weight

selection.

The working of traditional Merkle-Hellman easy knapsack is provided in

Section 3 of this paper. The proposed Recursive and Parallel Dynamic Programming

implementations of Hard Knapsack are illustrated in Section 5 of this paper. Finally,

in the last Section 6 a comparison between the performance of Recursive and Parallel

dynamic programming implementations of Merkle-Hellman hard knapsack for

varying message lengths is presented as an illustration.

 60

2. Related work

The Merkle-Hellman knapsack cryptosystem is mostly confronted with security

issues, but much less in regards to the execution time. Many attacks were successful

in breaching the system. As this can be impractical for real world applications, there

have been many proposed approaches, which have been formulated to bolster the

security breaches in system, and also in reducing the time complexity of Knapsack

problem. A few of these are listed below.

To mask the easy knapsack series, Y u a n P i n g et al. [2] use a Chinese

remainder theorem. The implicit intruder must therefore solve at least two

challenging number theoretical problems in order to recover the information of the

trapdoor, namely Integer factorization and Diophantine approximation problems.

P a t c h a r i n B u a y e n and J e e r a p o r n W e r a p u n [3] suggests a parallel time–

space reduction of polynomial time to solve the 0-1 knapsack. This focuses on

achieving quick processing by unbiased-filtering as the FS (Feature Sorting) and the

optimal solutions are similar to the DP where O(n/plog2p + C΄/p) is the optimized

time-complexity.

An improved version of Shamir’s attack on the basic Merkle-Hellman

cryptosystem based on orthogonal lattice technique has been proposed by L i u, B i

and X u [4]. This new concept would help in estimating the security of new

cryptosystems based on Knapsack. An exact algorithm for the knapsack problem in

cryptography called as The Packing Tree Search algorithm has been provided by

S l o n k i n a, K u p r i y a s h i n and B o r z u n o v [5] and this proved to be one of the

best algorithms in Knapsack cryptography. The algorithm seems to be scalable,

although efficiency of parallel computations can be as small as 50-60%.

It uses the dynamic packing weight estimate, which takes into account faster

step-based tree traversal techniques with the substitution of linearization-based and

stack-based tree traversal techniques. To solve large scale 0-1 knapsack problems,

Z h o u and Z h a o [6] have presented the Social Spider Optimization (SSO)

Algorithm. The SSO algorithm is based on the simulation of social spiders’

cooperative behaviour. In this algorithm, individuals emulate a group of spiders who

communicate in accordance with the cooperative colony’s biological laws.

By introducing a simple quadratic compact Knapsack problem, B a o c a n g

w a n a n d Y u p u h u [7] have proposed a knapsack-type public key cryptosystem.

This method uses the Chinese remainder theorem to mask the sequence of the simple

knapsack. The system’s encryption function is nonlinear with respect to message

vector. The system enjoys high density under there-linearization attack model. A

discrete logarithm-based public-key cryptosystem has been proposed by P a a r and

P e l z l [8]. The striking feature is that the computational time and size of cipher text

levelled that of the RSA scheme, whereas it equalled the Elgamal Cryptosystem in

terms of security level.

N g u y e n and S t e r n [9] notice that the frequent presence of low density

underlying in knapsacks, made them vulnerable to lattice attacks, both in theory and

practice. By introducing non-binary coefficients in addition to reducing the weight of

knapsack, they avoid low-density attacks by increasing the density of the knapsack

 61

beyond some critical density. A probabilistic Quantum Poly-Time (QPT) Turing

Machines modelling of the sender and receiver by employing classical channels

between them has been proposed by O k a m o t o, T a n a k a and U c h i y a m a [10]

– a new paradigm known as Quantum public-keycryptosystem. It uses a quantum

trapdoor-function that allows a QPT machine to calculate fwith high probability.

C a i and C u s i c k [11] have presented a Lattice-Based Public key

cryptosystem that recently identified a random class of integer point lattices that

could prove the following worst-case average-case equivalence result:

“If there is a probabilistic polynomial time algorithm which finds a short vector

in a random lattice from the class, then there is also a probabilistic polynomial time

algorithm which solves several problems related to the Shortest lattice Vector

Problem (SVP) in any n-dimensional lattice“.

3. Merkle-Hellman public key cryptosystem architecture

We need two different keys in Merkle-Hellman’s public key knapsack cryptosystem.

One key is Public while the other is Private. The Public key is used in the process of

Encryption, and helps to encrypt (or encode) the message. Since it is “public”, anyone

can use it. The Private Key is used in the process of Decryption and helps in decoding

(or to decrypt) the encrypted message. This key is kept secret (or private) so that the

message can only be decrypted by the person who knows the key. The person with

the Private Key may also encrypt a message with the Private Key, and then someone

with the Public Key may decrypt that message.

The system has three main modules:

1. Public and Private Key generation.

2. Encryption process.

3. Decryption process.

Fig. 1. Merkle-Hellman knapsack cryptosystem architecture

Public and private Key generation: Private key for the system is the knapsack

elements itself, which is a super-increasing sequence. If S is a knapsack containing n

elements 𝑤1, 𝑤2, 𝑤3, … . , 𝑤𝑛 and P is a private key, then

S = (𝑤1, 𝑤2, 𝑤3, … . , 𝑤𝑛), 𝑃 = 𝑆 = (𝑤1, 𝑤2, 𝑤3, … . , 𝑤𝑛).

 62

A super-increasing sequence is a collection of values, in which current value

must be greater than the sum of all its previous values in the same collection. Let 𝑤𝑗

be an arbitrary element of index j in knapsack S. The super-increasing sequence

satisfies the condition

∑ 𝑤𝑖

𝑗−1

𝑖=1

< 𝑤𝑗, 1 < 𝑗 ≤ 𝑛.

Public key is generated by taking the knapsack sequence and multiplying all the

values by a number, W is called the multiplier, and modulo m is called the modulus.

The modulus should be a number greater than the sum of all the numbers in the

sequence. The multiplier and the modulus must be co-prime. This is called an Easy

knapsack sequence. Let B be the generated public key, then

𝐵 = (𝑏1, 𝑏2, 𝑏3, … . , 𝑏𝑛) | 𝑏𝑖 = (𝑤𝑖𝑊)mod𝑚, 1 ≤ 𝑖 ≤ 𝑛;
𝑚 > ∑ 𝑤𝑖

𝑛
𝑖=1 , gcd(𝑊, 𝑚) = 1.

The pseudocode for generating private and public key is given below in

Listing 1 and Listing 2, respectively.

Listing 1. generate_private_key function

Function 1: generate_private_key

Input: *arr

Output: returns private key

return arr

Listing 2. generate_public_key function

Function 2: generate_public_key

Input: *arr, *public_key, N, m, W

Output: returns public key

For i = 0 to N do

public_array[i] = (arr[i]*W) mod m

end for

return public_array

Encryption. Encryption is carried out with the help of public key. Message to

be sent is encrypted by splitting the message into groups of n, n being the number of

knapsack elements. Let M be a message of k bits 𝑚1, 𝑚2, 𝑚3, … . , 𝑚𝑘 with 𝑚1 being

the highest order bit. Let message be divided into groups 𝑔1, 𝑔2, … , 𝑔𝑘

𝑛

,

𝑔𝑖 = (𝑚1+𝑛(𝑖−1), … , 𝑚𝑛𝑖), 1 ≤ 𝑖 ≤ 𝑘/𝑛 .

The position of bits corresponding to 1 in each group 𝑔𝑖 are looked up in the

public key B to find the combination of elements and added up. This generates the

encoded message or ciphertext. Let c be the generated ciphertext formed by

combining ciphers 𝑐𝑖 of each group 𝑔𝑖,

𝑐 = {𝑐𝑖}; 𝑐𝑖 = ∑ 𝑏j

𝑛

j=1

𝑔𝑖𝑗 , 1 ≤ 𝑖 ≤
𝑘

𝑛
.

The pseudocode for the Encryption process is given below in Listing 3.

 63

Listing 3. Encryption function

Function 3: Encryption

Input: N, *message, public_key, encrypted, mssg_length

Output: returns encrypted message

Declare sum, i, j, pos=0

For i = 0 to mssg_length/N do

Initialize sum to 0

Initialize j to i*N

While j=0 to (i+1) *N and message[j] not equal to null do

If message[j] is equal to 1 then

Increment sum by public_key[j%N]

End if

Increment j by 1

End while

Initialize encrypted[pos] to sum

Increment pos by 1

end For

return encrypted

Decryption. The first stage of Decryption process involves generating 𝑊−1,

where 𝑊−1 is multiplicative inverse of 𝑊. The receiver should know both the

numbers 𝑊 and 𝑚. The inverse is obtained by solving the equation

(1) 𝑊(𝑊−1) = 1 mod 𝑚.
The calculated multiplicative inverse is then multiplied by each element of the

ciphertext 𝑐𝑖, generating some numbers. Let 𝑐′ be the decrypted message

𝑐′ = {𝑐′
𝑖} | 𝑐′

𝑖 = 𝑐𝑖𝑊−1 mod 𝑚, 1 ≤ 𝑖 ≤ 𝑘/𝑛.
As this is an Easy knapsack system, i.e., elements are in super-increasing

sequence, we can easily find the subset of elements in private key which equal

the obtained numbers in 𝑐′ in polynomial time (O(n)) by using Extended

Euclidian Algorithm [13]. Let X = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑡) be the list of indices of

elements in private key 𝑃 which sum to 𝑐′
𝑖, i.e.,

𝑐′
𝑖 = ∑ 𝑃𝑥𝑗

𝑡

j=1

 | 𝑐′
𝑖 𝜖 𝑐′.

The message M is then obtained by setting (𝑃𝑥1
, 𝑃𝑥2

, 𝑃𝑥3
, … , 𝑃𝑥𝑡

) → 1 and

rest to 0.

𝑀 = {𝑃𝑥𝑖
} | 𝑃𝑥𝑖

= 1, 𝑥𝑖 ϵ 𝑋; 𝑃𝑥𝑖
= 0, 𝑥𝑖 |ϵ 𝑋; 1 ≤ 𝑖 ≤ 𝑛.

Example. Consider 𝑆 = {1 , 2 , 4 , 10 , 20 , 40}, 𝑊 = 31 and 𝑚 = 110,
𝑏1 = (131) mod 110 = 31,

𝑏2 = (231) mod 110 = 62,

𝑏3 = (431) mod 110 = 14,

𝑏4 = (1031) mod 110 = 90,

𝑏5 = (2031) mod 110 = 17,

𝑏6 = (4031) mod 110 = 30,

 64

𝐵 = (31, 62, 14, 90, 17, 30); 𝑃 = 𝑆 = (1, 2, 4, 10, 20, 40).

Let 𝑀 = ‘100100111100101110’, 𝑘 = 18 and 𝑛 = 6 => 𝑘/𝑛 = 3,

𝑔1 = 100100,
𝑔2 = 111100,
𝑔3 = 101110,

𝑐1 = 31 + 90 = 121,
𝑐2 = 31 + 62 + 14 + 90 = 197,

𝑐3 = 31 + 14 + 90 + 70 = 205,

𝑐 = (121, 197, 205).

By solving Equation (1), we get 𝑊−1 = 71,
𝑐′1 = 121 × 71 mod 110 = 11 → 𝑋 = (𝑥1, 𝑥4) = 100100,

𝑐′2 = 197 × 71 mod 110 = 17 → 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) = 111100,
𝑐′3 = 205 × 71 mod 110 = 35 → 𝑋 = (𝑥1, 𝑥3, 𝑥4, 𝑥5) = 101110,

∴ 𝑀 = 100100 111100 101110.

4. Hard knapsack and its challenges involved over the Traditional

Merkle-Hellman knapsack cryptosystem

The Traditional Merkle-Hellman knapsack cryptosystem involves something known

as an Easy knapsack. An Easy knapsack is a sequence in which each element in the

sequence is greater in value than sum of all its previous element values. This knapsack

is solvable in O(n) polynomial time using a greedy algorithm known as Extended

Euclidean Algorithm. In a super-increasing sequence, there always exists a unique

subset for a particular target sum in the decryption process. So, determining the

combination of elements can be done in a single pass. Another requirement of this

system involves selecting a weight element for the knapsack, which is fixed and must

be greater than sum of all the knapsack elements. Therefore, Merkle-Hellman System

involves constraints of generating a super-increasing sequence and choosing a

specific weight.

There exists another variant of the Merkle-Hellman knapsack cryptosystem,

which uses a Hard knapsack. The Hard knapsack involves generating a random

weight and a random knapsack sequence, contrary to the super-increasing constraint

of the traditional Easy knapsack. As the sequence of knapsack elements are randomly

generated, determining the combination of elements which tantamount to the target

sum involves solving an instance of the Subset Sum problem, which in practice is

known to be NP-Hard.

5. Methodology

The approach taken towards the problem in the paper is divided into two parts:

– the first part involves solving the Hard Knapsack of the Merkle-Hellman

Public Key Cryptosystem in exponential time using a recursive implementation of an

algorithm called Subset sum;

 65

– and the second part involves optimizing the exponential nature of the Subset

sum using dynamic programming and further parallelizing the optimized solution

using OpenMP’s pragma distribute Single Instruction Multiple Data (SIMD)

construct.

This proposed system has first and second modules similar to the Traditional

Merkle-Hellman knapsack cryptosystem – Public and Private key generation and

Encryption process as given in Section 3. The third module deals with decryption

process of a Hard knapsack followed by optimization and parallelization. In the

proposed algorithm, selection of knapsack elements and weight of the knapsack are

at the sender’s discretion as opposed to the super-increasing sequence and a fixed

weight in the Easy knapsack of the Traditional Merkle-Hellman public key

cryptosystem. Let w𝑖 𝜖 R𝐼, where R𝐼 represents a set of random integers. For a Hard

knapsack,

S = {w𝑖 | w𝑖 ϵ R𝐼},
𝑊 = 𝑟 | 𝑟 ϵ 𝑅𝐼.

5.1. Data recursive solution of Hard knapsack in Merkle-Hellman cryptosystem

Subset Sum problem is an important decision problem in cryptography [12]. The

problem involves finding a subset of elements whose totality equals the given target

sum. In Merkle-Hellman cryptosystem, private key represents the subset and the

sequence of numbers generated during the decryption process, individually

represents target sum. The general solution to this problem is recursive in nature. The

pseudocode for the Decryption process in Hard knapsack and recursive subset sum

implementation is given below in Listings 4, 5 and 6.

Listing 4. Decryption function

Function 4: Decryption function

Input: *encrypt_pointer, W, m, encrypt_items, *private_key, N

Output: Call to findSubset(set [], size, sum)

Initialize n_inverse = call to find_multiplicative_inverse(W, m) function

Initialize i = 0

Declare decrypt

While i = 0 to encrypt_items do

decrypt=(encrypt_pointer[i]*n_inverse) mod m

call to findSubset(private_key,n,decrypt)

increment i by 1

Initialize j to i*N

End While

Listing 5. findSubset function

Function 5: findSubset function

Input: set [], size, sum

Output: call to subsetSum(set, subset, size, 0, 0, 0, sum)

Declare a subSet pointer and dynamically allocate memory equal to size

Call to subsetSum(set, subset, size, 0, 0, 0, sum)

Free(subset)

 66

Listing 6. subsetSum (Recursion) function

Function 6: subsetSum function

Input: set [], subSet [], N, subSize, total, nodeCount, sum

Output: generate decrypted message

Declare j

If total is equal to sum then

Call to displaySubSet (subset, subSize, set, N)

Return

Else

For j = nodeCount to N do

subset[subSize] = set[j]

Recursive Call to subsetSum(set, subset, N, subSize+1, total+set[j], j+1, sum)

End for

End if

5.2. Application of dynamic programming and parallelization techniques for reduced

time complexity of Hard knapsack

The recursive solution for the Subset Sum problem of Hard knapsack works fine for

smaller message lengths. In real world applications, the message to be sent from the

sender to the receiver side is very large. This turns out to be a rather time-consuming

process. So, dynamic programming algorithm is an optimization to the recursive

solution of subset sum. It reduces the overhead of exponential time complexity to

polynomial time. Further, concurrency and parallelism are achieved using OpenMP’s

pragma distribute simd construct. The parallel construct used is: # pragma omp

distribute simd. The omp distribute simd directive achieves concurrent execution of

loop iterations, by distributing these iterations to each master thread which adheres

to the SIMD (Single Instruction Multiple Data) instructions. Therefore, each master

thread is assigned different elements of knapsack, wherein the elements of each

thread are summed up and compared with the target sum in a concurrent fashion. The

pseudocode for the PDP (Parallelized Dynamic Programming) implementation of

subset sum is given below in Listing 7.

Listing 7. subsetSum (dynamic programming +parallelization) function

Function 7: findSubset

Input: arr [], N, k

Output: generate decrypted message

Declare i, j, elem_pos[N]

For i=0 to N do

Initialize elem_pos[i]=0

End for

Initialize m to pow (2, n)

#pragma omp distribute simd

For i=m – 1 till greater than 0 do

Initialize sum=0 and b=i

For j=0 to N do

 67

Increment sum by (b mod 2) *arr[j]

Divide b by 2 and assign it to b

End for

If sum is equal to k

Initialize b to i

For j=0 to N do

If (b mod 2) then assign elem_pos[j] to 1

Divide b by 2 and assign it to b

End for

End if

End for

Initialize original_mssg to 0

For j=0 to N do

Update original_mssg = pow (2, j) *elem_pos[N – 1 – j] + original_mssg

Display original_mssg

Fig. 2. Application of dynamic programming and parallelization to Public key knapsack cryptosystem

6. Results and discussions

Both the Recursive implementation and Parallel Dynamic Programming (PDP)

implementation of the Hard knapsack in Merkle-Hellman Public Key cryptosystem

have been tested on an Intel i3-7100U CPU 7th Gen Processor with a Clock Speed

@2.40GHz. It is a dual-core processor with two threads per core. The input message

is a string of characters. Hence, each character is converted to their ASCII format and

represented in bits. Since ASCII value of a character in English Language is of

8-bits, the number of elements in knapsack is kept constant – 8. Random knapsack

elements are taken as {180, 7, 2, 21, 11, 354, 89, 42} and having a random capacity

of 706.

 68

Table 1. Performance time of Recursive and Parallel dynamic programming implementations of Hard

knapsack for varying message length

Length of message

(letter count)

Average time taken

(recursive Hard knapsack)

Average time taken

(PDP) Hard knapsack

50 0.004 s 0.004 s

100 0.009 s 0.008 s

150 0.013 s 0.012 s

200 0.021 s 0.014 s

250 0.019 s 0.018 s

500 0.04 s 0.031 s

1000 0.079 s 0.070 s

The performance of both implementations for seven varying message lengths is

shown above in Table 1. Apparently, for small message lengths, we observe that the

execution time for both the algorithms is almost similar. However, as the message

length increases, the latter runs approximately ~1.15 times faster than the former. A

graphical representation of the performance time for both algorithms in shown below

in Fig. 3.

Fig. 3. Comparative performance of Parallel and Serial Merkle-Hellman Knapsack public key

cryptosystem for different sizes of message

7. Conclusion

The paper discusses the performance of Merkle-Hellman Easy knapsack system and

various challenges involved in the Hard knapsack of Merkle-Hellman. A recursive

and parallelized dynamic programming versions of Hard knapsack variant of Merkle-

Hellman have been implemented. Parallelism has been obtained using OpenMP

pragma constructs. Simulation results show that the parallelized dynamic

programming implementation has obtained a larger degree of concurrency and hence

achieves maximum performance in terms of time. Comparative analysis of both

variants of Hard knapsack for different message sizes gives an insight that the PDP

implementation is faster. The novelty of this work relates to the properties of Hard

Merkle-Hellman knapsack – hard public key sequence and dynamic weight selection.

This might require an attacker solving two instances – a hard sequence for

determining the public key; and the capacity of the knapsack, leading to an increased

security for the proposed system. Since the objective of this paper is focused on

 69

speeding up the Hard knapsack of Merkle-Hellman system, the security of the

proposed algorithm forms basis for future research.

R e f e r e n c e s

1. M a l i k, M., S. M a l h o t r a, N. P r a s a n t h. Time Improvement of Smith-Waterman Algorithm

Using OpenMP and SIMD. – FTNCT 2019, CCIS 1206, 2020, pp. 686-697.

https://doi.org/10.1007/978-981-15-4451-4_54

2 . P i n g, Y., B. W a n g, S. T i a n, J. Z h o u, H. M a. Towards aProbabilistic Knapsack Public-Key.

– Cryptosystem with High Density, Information, Vol. 10, 2019, No 2, 75.

https://doi.org/10.3390/info10020075

3. B u a y e n, P., J. W e r a p u n. Parallel Time–Space Reduction by Unbiasedfiltering for Solving the

0/1-Knapsack Problem. – Journal of Parallel and Distributed Computing, Vol. 122, December

2018, pp. 195-208.

https://doi.org/10.1016/j.jpdc.2018.08.003

4. L i u, J., J. B i, S. X u. An Improved Attack on the Basic Merkle-Hellman KnapsackCryptosystem. –

IEEE Access, Vol. 7, 2019, pp. 59388-59393. DOI:10.1109/ACCESS.2019.2913678.

5. S l o n k i n a, I., M. K u p r i y a s h i n, G. B o r z u n o v. Analysis and Optimization of

the PackingTree Search Algorithm for the Knapsack Problem. – In: Proc. of IEEE

Conference of Russian YoungResearchers in Electrical and Electronic Engineering

(EIConRus’19), Saint Petersburg and Moscow, Russia, 2019, pp. 1811-1815.

DOI: 10.1109/EIConRus.2019.8657309.

6. Z h o u, Y. Q., R. Z h a o. Solving Large-Scale 0-1 Knapsack Problem by the Socialspideroptimisation

Algorithm. – January International Journal of Computing Science and Mathematics, Vol. 9,

2018, No 5, pp. 433-441. DOI: 10.1504/IJCSM.2018.095497.

7. B a o c a n g, w a n, Y u p u h u. Quadratic Compact Knapsack Public-Key Cryptosystem. –

Computers & Mathematics with Applications, Vol. 59, 2019, No 1, pp. 194-206.

https://doi.org/10.1016/j.camwa.2009.08.031

8. P a a r, C., J. P e l z l. Public-Key Cryptosystems Based on the Discrete Logarithm Problem. – In:

Understanding Cryptography. Berlin, Heidelberg, Springer, 2010.

https://doi.org/10.1007/978-3-642-04101-3_8

9. N g u y ễ n, P. Q., J. S t e r n. Adapting Density Attacks to Low-Weight Knapsacks. – In: B. Roy, Ed.

Advances in Cryptology – ASIACRYPT 2005. ASIACRYPT 2005. Lecture Notes in

Computer Science. Vol. 3788. Berlin, Heidelberg, Springer, 2005.

https://doi.org/10.1007/11593447_3

10. O k a m o t o, T., K. T a n a k a, S. U c h i y a m a. Quantum Public-Key Cryptosystems. – In: Proc.

of 20th Annual International Cryptology Conference on Advances in Cryptology

(CRYPTO ’00). Berlin, Heidelberg, Springer-Verlag, 2000, pp. 147-165.

11. C a i, J. Y., T. W. C u s i c k. A Lattice- Based Public-Key Cryptosystem. – In: S. Tavares, H. Meijer,

Eds. Selected Areas in Cryptography. SAC 1998. Lecture Notes in ComputerScience.

Vol. 1556. Berlin, Heidelberg, Springer, 1999.

https://doi.org/10.1007/3-540-48892-8_18

12. R a g h u n a n d a n, K. R., A. G a n e s h, S. S u r e n d r a, K. B h a v y a. Key Generation Using

Generalized Pell’s Equation in Public Key Cryptography Based on the Prime Fake Modulus

Principle to Image Encryption and Its Security Analysis. – Cybernetics and Information

Technologies, Vol. 20, 2020, No 3.

13. https://www.wikiwand.com/en/Merkle%E2%80%93Hellman_knapsack_cryptosystem

Received: 29.12.2020; Second Version: 16.03.2021; Accepted: 30.03.2021

