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Abstract: Merkle-Hellman public key cryptosystem is a long-age old algorithm used 

in cryptography. Despite being computationally fast, for very large input sizes it may 

operate slower due to thread creation overhead or reaching a deadlock situation. In 

this paper, we discuss the working principles of the Traditional Merkle-Hellman 

knapsack cryptosystem, which is an Easy knapsack. The challenges of Hard 

Knapsack and how it overcomes the shortcomings of the Traditional Easy Knapsack, 

are also discussed. The Hard knapsack variant of Merkle-Hellman is solved first 

using plain recursion and then improvised using a dynamic programming approach 

to the problem. Parallelism and Concurrency has been achieved on the dynamic 

programming implementation using OpenMP API which further has enhanced the 

performance time. A comparative study of both variants of Hard Knapsack for 

messages of different lengths has shown that the latter is faster. 

Keywords: Merkle-Hellman public key cryptosystem, Easy knapsack, Hard knapsack, 
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1. Introduction 

The Knapsack problem is an example of a combinatorial optimization problem, 

which seeks for a best solution from among many other solutions. It is concerned 

with a knapsack that has a positive integer volume (or capacity) W. There are N 

distinct items that may potentially be placed in the knapsack, each of which has an 

assigned value. The Merkle-Hellman system utilizes a similar concept of Knapsack. 

The Merkle-Hellman knapsack public key cryptosystem, invented in 1970’s by 

Whitfield Diffie, Martin Hellman and Ralph Merkle, was one of the earliest public 

key cryptosystems. During its proposal in 1970’s it emerged as one of the fastest and 

secure encryption systems. Although Merkle-Hellman is not secure compared to 
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other widely used algorithms like RSA, DSA, SHA-512, etc., it is really fast. In 1984, 

Adi Shamir’s cryptanalysis of Merkle-Hellman has shown that the system can be 

breached easily and hence, has been discarded ever since. The vulnerabilities in the 

system can be attributed to the constraints imposed.  

The Merkle-Hellman system is bounded mainly by two constraints. First, the set 

of knapsack elements must be super increasing – current element’s value is greater 

than the sum of its previous elements in the sequence. This is called an easy knapsack 

sequence in Merkle-Hellman. On the contrary, a hard knapsack sequence is one in 

which elements do not follow the super-increasing constraint. Unlike any other public 

key cryptosystem, Merkle-Hellman system has two keys – a public key for encryption 

and a private key for decryption. The public key is a hard knapsack and the private 

key is an easy knapsack. Due to this constraint, the problem is easily solvable in 

polynomial time. Second, the capacity of the knapsack is fixed; and must be greater 

than sum of all the knapsack elements. The system utilizes two numbers – a multiplier 

and a modulus, in the processes of public key generation and message decryption. 

Another variant of the Merkle-Hellman cryptosystem involves using a hard 

knapsack even for public key. As mentioned earlier, in a hard knapsack, the set of 

input knapsack elements are free from the super-increasing constraint, i.e., random 

selection of elements is supported. This randomized approach accounts for the 

receiver of the encrypted message solving an instance of the subset sum problem 

during decryption phase, which is NP-Hard. The major drawback to this approach 

however, is the exponential nature of recursion. 

For real-life applications, the messages to be sent are practically very large in 

size, making the entire process of encryption and decryption inefficient for a 

recursive solution. An alternate approach for converting a plain recursion to an 

iterative version is by Dynamic Programming (DP). This optimization algorithm 

helps in shrinking the exponential time complexity of recursion to polynomial time. 

The dynamic programming implementation can be further catalysed by using several 

parallelization techniques. OpenMP is a lightweight and scalable model, which 

provides a simple and versatile interface to parallel programmers for developing 

portable parallel applications. It supports parallel multi-platform shared-memory 

programming on all architectures including Unix and Windows Platforms in C, C++ 

and Fortran. We can add vectorized implementations by using the pragma directives 

present in OpenMP, which help in catalysing the decryption process; hence making 

it very efficient [1]. This paper presents an exact recursive and parallelized dynamic 

programming implementation for solving the Hard knapsack. The proposed method 

overcomes the constraint limitations by using a randomized public key and weight 

selection. 

The working of traditional Merkle-Hellman easy knapsack is provided in 

Section 3 of this paper. The proposed Recursive and Parallel Dynamic Programming 

implementations of Hard Knapsack are illustrated in Section 5 of this paper. Finally, 

in the last Section 6 a comparison between the performance of Recursive and Parallel 

dynamic programming implementations of Merkle-Hellman hard knapsack for 

varying message lengths is presented as an illustration. 
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2. Related work 

The Merkle-Hellman knapsack cryptosystem is mostly confronted with security 

issues, but much less in regards to the execution time. Many attacks were successful 

in breaching the system. As this can be impractical for real world applications, there 

have been many proposed approaches, which have been formulated to bolster the 

security breaches in system, and also in reducing the time complexity of Knapsack 

problem. A few of these are listed below. 

To mask the easy knapsack series, Y u a n  P i n g  et al. [2] use a Chinese 

remainder theorem. The implicit intruder must therefore solve at least two 

challenging number theoretical problems in order to recover the information of the 

trapdoor, namely Integer factorization and Diophantine approximation problems. 

P a t c h a r i n  B u a y e n  and J e e r a p o r n  W e r a p u n  [3] suggests a parallel time–

space reduction of polynomial time to solve the 0-1 knapsack. This focuses on 

achieving quick processing by unbiased-filtering as the FS (Feature Sorting) and the 

optimal solutions are similar to the DP where O(n/plog2p + C΄/p) is the optimized 

time-complexity. 

An improved version of Shamir’s attack on the basic Merkle-Hellman 

cryptosystem based on orthogonal lattice technique has been proposed by L i u, B i  

and X u  [4]. This new concept would help in estimating the security of new 

cryptosystems based on Knapsack. An exact algorithm for the knapsack problem in 

cryptography called as The Packing Tree Search algorithm has been provided by 

S l o n k i n a, K u p r i y a s h i n  and B o r z u n o v  [5] and this proved to be one of the 

best algorithms in Knapsack cryptography. The algorithm seems to be scalable, 

although efficiency of parallel computations can be as small as 50-60%. 

It uses the dynamic packing weight estimate, which takes into account faster 

step-based tree traversal techniques with the substitution of linearization-based and 

stack-based tree traversal techniques. To solve large scale 0-1 knapsack problems, 

Z h o u  and Z h a o  [6] have presented the Social Spider Optimization (SSO) 

Algorithm. The SSO algorithm is based on the simulation of social spiders’ 

cooperative behaviour. In this algorithm, individuals emulate a group of spiders who 

communicate in accordance with the cooperative colony’s biological laws. 

By introducing a simple quadratic compact Knapsack problem, B a o c a n g  

w a n  a n d  Y u p u  h u  [7] have proposed a knapsack-type public key cryptosystem. 

This method uses the Chinese remainder theorem to mask the sequence of the simple 

knapsack. The system’s encryption function is nonlinear with respect to message 

vector. The system enjoys high density under there-linearization attack model. A 

discrete logarithm-based public-key cryptosystem has been proposed by P a a r  and 

P e l z l  [8]. The striking feature is that the computational time and size of cipher text 

levelled that of the RSA scheme, whereas it equalled the Elgamal Cryptosystem in 

terms of security level. 

N g u y e n  and S t e r n  [9] notice that the frequent presence of low density 

underlying in knapsacks, made them vulnerable to lattice attacks, both in theory and 

practice. By introducing non-binary coefficients in addition to reducing the weight of 

knapsack, they avoid low-density attacks by increasing the density of the knapsack 
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beyond some critical density. A probabilistic Quantum Poly-Time (QPT) Turing 

Machines modelling of the sender and receiver by employing classical channels 

between them has been proposed by O k a m o t o, T a n a k a  and U c h i y a m a  [10] 

– a new paradigm known as Quantum public-keycryptosystem. It uses a quantum 

trapdoor-function that allows a QPT machine to calculate fwith high probability. 

C a i  and C u s i c k  [11] have presented a Lattice-Based Public key 

cryptosystem that recently identified a random class of integer point lattices that 

could prove the following worst-case average-case equivalence result:  

“If there is a probabilistic polynomial time algorithm which finds a short vector 

in a random lattice from the class, then there is also a probabilistic polynomial time 

algorithm which solves several problems related to the Shortest lattice Vector 

Problem (SVP) in any n-dimensional lattice“. 

3. Merkle-Hellman public key cryptosystem architecture 

We need two different keys in Merkle-Hellman’s public key knapsack cryptosystem. 

One key is Public while the other is Private. The Public key is used in the process of 

Encryption, and helps to encrypt (or encode) the message. Since it is “public”, anyone 

can use it. The Private Key is used in the process of Decryption and helps in decoding 

(or to decrypt) the encrypted message. This key is kept secret (or private) so that the 

message can only be decrypted by the person who knows the key. The person with 

the Private Key may also encrypt a message with the Private Key, and then someone 

with the Public Key may decrypt that message. 

The system has three main modules: 

1. Public and Private Key generation. 

2. Encryption process. 

3. Decryption process. 
 

 
 

Fig. 1. Merkle-Hellman knapsack cryptosystem architecture 
 

Public and private Key generation: Private key for the system is the knapsack 

elements itself, which is a super-increasing sequence. If S is a knapsack containing n 

elements 𝑤1, 𝑤2, 𝑤3, … . , 𝑤𝑛 and P is a private key, then 

S = (𝑤1, 𝑤2, 𝑤3, … . , 𝑤𝑛), 𝑃 = 𝑆 = (𝑤1, 𝑤2, 𝑤3, … . , 𝑤𝑛). 



 62 

A super-increasing sequence is a collection of values, in which current value 

must be greater than the sum of all its previous values in the same collection. Let 𝑤𝑗 

be an arbitrary element of index j in knapsack S. The super-increasing sequence 

satisfies the condition 

∑ 𝑤𝑖

𝑗−1

𝑖=1

< 𝑤𝑗, 1 < 𝑗 ≤ 𝑛. 

Public key is generated by taking the knapsack sequence and multiplying all the 

values by a number, W is called the multiplier, and modulo m is called the modulus. 

The modulus should be a number greater than the sum of all the numbers in the 

sequence. The multiplier and the modulus must be co-prime. This is called an Easy 

knapsack sequence. Let B be the generated public key, then 

𝐵 = (𝑏1, 𝑏2, 𝑏3, … . , 𝑏𝑛) | 𝑏𝑖 = (𝑤𝑖𝑊)mod𝑚, 1 ≤ 𝑖 ≤ 𝑛; 
𝑚 >  ∑ 𝑤𝑖

𝑛
𝑖=1 , gcd(𝑊, 𝑚) = 1. 

The pseudocode for generating private and public key is given below in  

Listing 1 and Listing 2, respectively. 
 

Listing 1. generate_private_key function 

Function 1: generate_private_key 

Input: *arr 

Output: returns private key 

return arr 

 

Listing 2. generate_public_key function 

Function 2: generate_public_key 

Input: *arr, *public_key, N, m, W 

Output: returns public key 

For i = 0 to N do 

public_array[i] = (arr[i]*W) mod m 

end for 

return public_array 
 

Encryption. Encryption is carried out with the help of public key. Message to 

be sent is encrypted by splitting the message into groups of n, n being the number of 

knapsack elements. Let M be a message of k bits 𝑚1, 𝑚2, 𝑚3, … . , 𝑚𝑘 with 𝑚1 being 

the highest order bit. Let message be divided into groups 𝑔1, 𝑔2, … , 𝑔𝑘

𝑛

, 

𝑔𝑖 = (𝑚1+𝑛(𝑖−1), … , 𝑚𝑛𝑖),     1 ≤ 𝑖 ≤ 𝑘/𝑛 . 

The position of bits corresponding to 1 in each group 𝑔𝑖 are looked up in the 

public key B to find the combination of elements and added up. This generates the 

encoded message or ciphertext. Let c be the generated ciphertext formed by 

combining ciphers 𝑐𝑖 of each group 𝑔𝑖, 

𝑐 = {𝑐𝑖}; 𝑐𝑖 = ∑ 𝑏j

𝑛

j=1

𝑔𝑖𝑗 ,    1 ≤ 𝑖 ≤
𝑘

𝑛
. 

The pseudocode for the Encryption process is given below in Listing 3. 
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Listing 3. Encryption function 

Function 3: Encryption 

Input: N, *message, public_key, encrypted, mssg_length 

Output: returns encrypted message 

Declare sum, i, j, pos=0 

For i = 0 to mssg_length/N do 

Initialize sum to 0 

Initialize j to i*N 

While j=0 to (i+1) *N and message[j] not equal to null do 

If message[j] is equal to 1 then 

Increment sum by public_key[j%N] 

End if 

Increment j by 1 

End while 

Initialize encrypted[pos] to sum 

Increment pos by 1 

end For 

return encrypted 
 

Decryption. The first stage of Decryption process involves generating 𝑊−1, 

where 𝑊−1 is multiplicative inverse of 𝑊. The receiver should know both the 

numbers 𝑊 and 𝑚. The inverse is obtained by solving the equation   

(1)   𝑊(𝑊−1) = 1  mod 𝑚.  
The calculated multiplicative inverse is then multiplied by each element of the 

ciphertext 𝑐𝑖, generating some numbers. Let 𝑐′ be the decrypted message 

𝑐′ = {𝑐′
𝑖} | 𝑐′

𝑖 = 𝑐𝑖𝑊−1  mod 𝑚, 1 ≤ 𝑖 ≤ 𝑘/𝑛. 
As this is an Easy knapsack system, i.e., elements are in super-increasing 

sequence, we can easily find the subset of elements in private key which equal 

the obtained numbers in 𝑐′  in polynomial time (O(n)) by using Extended 

Euclidian Algorithm [13]. Let X = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑡) be the list of indices of 

elements in private key 𝑃 which sum to 𝑐′
𝑖, i.e.,  

𝑐′
𝑖 = ∑ 𝑃𝑥𝑗

𝑡

j=1

 |  𝑐′
𝑖 𝜖 𝑐′.  

The message M is then obtained by setting (𝑃𝑥1
, 𝑃𝑥2

, 𝑃𝑥3
, … , 𝑃𝑥𝑡

) → 1 and 

rest to 0. 

𝑀 = {𝑃𝑥𝑖
}  |  𝑃𝑥𝑖

= 1, 𝑥𝑖 ϵ 𝑋;   𝑃𝑥𝑖
= 0, 𝑥𝑖 |ϵ 𝑋;   1 ≤ 𝑖 ≤ 𝑛. 

Example. Consider 𝑆 = {1 , 2 , 4 , 10 , 20 , 40}, 𝑊 = 31   and  𝑚 = 110, 
𝑏1 =  (131) mod 110 = 31, 

𝑏2 =  (231) mod 110 = 62, 

𝑏3 =  (431) mod 110 = 14, 

𝑏4 =  (1031) mod 110 = 90, 

𝑏5 =  (2031) mod 110 = 17, 

𝑏6 =  (4031) mod 110 = 30, 
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𝐵 = (31, 62, 14, 90, 17, 30);     𝑃 = 𝑆 = (1, 2, 4, 10, 20, 40). 

Let 𝑀 = ‘100100111100101110’, 𝑘 = 18 and 𝑛 = 6 => 𝑘/𝑛 = 3, 

𝑔1 = 100100, 
𝑔2 = 111100, 
𝑔3 = 101110, 

𝑐1 = 31 + 90 = 121, 
𝑐2 = 31 + 62 + 14 + 90 = 197, 

𝑐3 = 31 + 14 + 90 + 70 = 205, 

𝑐 = (121, 197, 205). 

By solving Equation (1), we get 𝑊−1 = 71, 
𝑐′1 = 121 × 71 mod 110 = 11 → 𝑋 = (𝑥1, 𝑥4) = 100100, 

𝑐′2 = 197 × 71 mod 110 = 17 → 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) =  111100, 
𝑐′3 = 205 × 71 mod 110 = 35 → 𝑋 = (𝑥1, 𝑥3, 𝑥4, 𝑥5) = 101110, 

∴  𝑀 = 100100 111100 101110.  

4. Hard knapsack and its challenges involved over the Traditional 

Merkle-Hellman knapsack cryptosystem 

The Traditional Merkle-Hellman knapsack cryptosystem involves something known 

as an Easy knapsack. An Easy knapsack is a sequence in which each element in the 

sequence is greater in value than sum of all its previous element values. This knapsack 

is solvable in O(n) polynomial time using a greedy algorithm known as Extended 

Euclidean Algorithm. In a super-increasing sequence, there always exists a unique 

subset for a particular target sum in the decryption process. So, determining the 

combination of elements can be done in a single pass. Another requirement of this 

system involves selecting a weight element for the knapsack, which is fixed and must 

be greater than sum of all the knapsack elements. Therefore, Merkle-Hellman System 

involves constraints of generating a super-increasing sequence and choosing a 

specific weight. 

There exists another variant of the Merkle-Hellman knapsack cryptosystem, 

which uses a Hard knapsack. The Hard knapsack involves generating a random 

weight and a random knapsack sequence, contrary to the super-increasing constraint 

of the traditional Easy knapsack. As the sequence of knapsack elements are randomly 

generated, determining the combination of elements which tantamount to the target 

sum involves solving an instance of the Subset Sum problem, which in practice is 

known to be NP-Hard. 

5. Methodology 

The approach taken towards the problem in the paper is divided into two parts: 

– the first part involves solving the Hard Knapsack of the Merkle-Hellman 

Public Key Cryptosystem in exponential time using a recursive implementation of an 

algorithm called Subset sum; 
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– and the second part involves optimizing the exponential nature of the Subset 

sum using dynamic programming and further parallelizing the optimized solution 

using OpenMP’s pragma distribute Single Instruction Multiple Data (SIMD) 

construct. 

This proposed system has first and second modules similar to the Traditional 

Merkle-Hellman knapsack cryptosystem – Public and Private key generation and 

Encryption process as given in Section 3. The third module deals with decryption 

process of a Hard knapsack followed by optimization and parallelization. In the 

proposed algorithm, selection of knapsack elements and weight of the knapsack are 

at the sender’s discretion as opposed to the super-increasing sequence and a fixed 

weight in the Easy knapsack of the Traditional Merkle-Hellman public key 

cryptosystem. Let w𝑖 𝜖 R𝐼, where R𝐼 represents a set of random integers. For a Hard 

knapsack,  

S = {w𝑖  | w𝑖  ϵ R𝐼}, 
𝑊 = 𝑟  |  𝑟 ϵ 𝑅𝐼. 

5.1. Data recursive solution of Hard knapsack in Merkle-Hellman cryptosystem 

Subset Sum problem is an important decision problem in cryptography [12]. The 

problem involves finding a subset of elements whose totality equals the given target 

sum. In Merkle-Hellman cryptosystem, private key represents the subset and the 

sequence of numbers generated during the decryption process, individually 

represents target sum. The general solution to this problem is recursive in nature. The 

pseudocode for the Decryption process in Hard knapsack and recursive subset sum 

implementation is given below in Listings 4, 5 and 6. 
 

Listing 4. Decryption function 

Function 4: Decryption function 

Input: *encrypt_pointer, W, m, encrypt_items, *private_key, N 

Output: Call to findSubset(set [], size, sum) 

Initialize n_inverse = call to find_multiplicative_inverse(W, m) function 

Initialize i = 0 

Declare decrypt 

While i = 0 to encrypt_items do 

decrypt=(encrypt_pointer[i]*n_inverse) mod m 

call to findSubset(private_key,n,decrypt) 

increment i by 1 

Initialize j to i*N 

End While 
 

Listing 5. findSubset function 

Function 5: findSubset function 

Input: set [], size, sum 

Output: call to subsetSum(set, subset, size, 0, 0, 0, sum) 

Declare a subSet pointer and dynamically allocate memory equal to size 

Call to subsetSum(set, subset, size, 0, 0, 0, sum) 

Free(subset) 
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Listing 6. subsetSum (Recursion) function 

Function 6: subsetSum function 

Input: set [], subSet [], N, subSize, total, nodeCount, sum 

Output: generate decrypted message 

Declare j 

If total is equal to sum then 

Call to displaySubSet (subset, subSize, set, N) 

Return 

Else 

For j = nodeCount to N do 

subset[subSize] = set[j] 

Recursive Call to subsetSum(set, subset, N, subSize+1, total+set[j], j+1, sum) 

End for 

End if 

5.2. Application of dynamic programming and parallelization techniques for reduced 

time complexity of Hard knapsack 

The recursive solution for the Subset Sum problem of Hard knapsack works fine for 

smaller message lengths. In real world applications, the message to be sent from the 

sender to the receiver side is very large. This turns out to be a rather time-consuming 

process. So, dynamic programming algorithm is an optimization to the recursive 

solution of subset sum. It reduces the overhead of exponential time complexity to 

polynomial time. Further, concurrency and parallelism are achieved using OpenMP’s 

pragma distribute simd construct. The parallel construct used is: # pragma omp 

distribute simd. The omp distribute simd directive achieves concurrent execution of 

loop iterations, by distributing these iterations to each master thread which adheres 

to the SIMD (Single Instruction Multiple Data) instructions. Therefore, each master 

thread is assigned different elements of knapsack, wherein the elements of each 

thread are summed up and compared with the target sum in a concurrent fashion. The 

pseudocode for the PDP (Parallelized Dynamic Programming) implementation of 

subset sum is given below in Listing 7. 
 

Listing 7. subsetSum (dynamic programming +parallelization) function 

Function 7: findSubset 

Input: arr [], N, k 

Output: generate decrypted message 

Declare i, j, elem_pos[N] 

For i=0 to N do 

Initialize elem_pos[i]=0 

End for 

Initialize m to pow (2, n) 

#pragma omp distribute simd 

For i=m – 1 till greater than 0 do 

Initialize sum=0 and b=i 

For j=0 to N do 
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Increment sum by (b mod 2) *arr[j] 

Divide b by 2 and assign it to b 

End for 

If sum is equal to k 

Initialize b to i 

For j=0 to N do 

If (b mod 2) then assign elem_pos[j] to 1 

Divide b by 2 and assign it to b 

End for 

End if 

End for 

Initialize original_mssg to 0 

For j=0 to N do 

Update original_mssg = pow (2, j) *elem_pos[N – 1 – j] + original_mssg 

Display original_mssg 

 

 
Fig. 2. Application of dynamic programming and parallelization to Public key knapsack cryptosystem 

6. Results and discussions 

Both the Recursive implementation and Parallel Dynamic Programming (PDP) 

implementation of the Hard knapsack in Merkle-Hellman Public Key cryptosystem 

have been tested on an Intel i3-7100U CPU 7th Gen Processor with a Clock Speed 

@2.40GHz. It is a dual-core processor with two threads per core. The input message 

is a string of characters. Hence, each character is converted to their ASCII format and 

represented in bits. Since ASCII value of a character in English Language is of  

8-bits, the number of elements in knapsack is kept constant – 8. Random knapsack 

elements are taken as {180, 7, 2, 21, 11, 354, 89, 42} and having a random capacity 

of 706. 
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Table 1. Performance time of Recursive and Parallel dynamic programming implementations of Hard 

knapsack for varying message length 

Length of message 

(letter count) 

Average time taken 

(recursive Hard knapsack) 

Average time taken 

(PDP) Hard knapsack 

50 0.004 s 0.004 s 

100 0.009 s 0.008 s 

150 0.013 s 0.012 s 

200 0.021 s 0.014 s 

250 0.019 s 0.018 s 

500 0.04 s 0.031 s 

1000 0.079 s 0.070 s 

 

The performance of both implementations for seven varying message lengths is 

shown above in Table 1. Apparently, for small message lengths, we observe that the 

execution time for both the algorithms is almost similar. However, as the message 

length increases, the latter runs approximately ~1.15 times faster than the former. A 

graphical representation of the performance time for both algorithms in shown below 

in Fig. 3. 

 

 
Fig. 3. Comparative performance of Parallel and Serial Merkle-Hellman Knapsack public key 

cryptosystem for different sizes of message 

7. Conclusion 

The paper discusses the performance of Merkle-Hellman Easy knapsack system and 

various challenges involved in the Hard knapsack of Merkle-Hellman. A recursive 

and parallelized dynamic programming versions of Hard knapsack variant of Merkle-

Hellman have been implemented. Parallelism has been obtained using OpenMP 

pragma constructs. Simulation results show that the parallelized dynamic 

programming implementation has obtained a larger degree of concurrency and hence 

achieves maximum performance in terms of time. Comparative analysis of both 

variants of Hard knapsack for different message sizes gives an insight that the PDP 

implementation is faster. The novelty of this work relates to the properties of Hard 

Merkle-Hellman knapsack – hard public key sequence and dynamic weight selection. 

This might require an attacker solving two instances – a hard sequence for 

determining the public key; and the capacity of the knapsack, leading to an increased 

security for the proposed system. Since the objective of this paper is focused on 
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speeding up the Hard knapsack of Merkle-Hellman system, the security of the 

proposed algorithm forms basis for future research.  
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