
 29

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 21, No 2

Sofia 2021 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2021-0017

Fuzzy-Logic Based Active Queue Management Using

Performance Metrics Mapping into Multi-Congestion Indicators

Mosleh M. Abualhaj1, Mayy M. Al-Tahrawi2, Abdelrahman H. Hussein2,

Sumaya N. Al-Khatib1
1Department of Networks and Information Security, Al-Ahliyya Amman University, Amman, Jordan
2Department of Computer Science, Al-Ahliyya Amman University, Amman, Jordan

E-mails: m.abualhaj@ammanu.edu.jo mtahrawi@ammanu.edu.jo a.husein@ammanu.edu.jo

sumayakh@ammanu.edu.jo

Abstract: The congestion problem at the router buffer leads to serious consequences

on network performance. Active Queue Management (AQM) has been developed to

react to any possible congestion at the router buffer at an early stage. The limitation

of the existing fuzzy-based AQM is the utilization of indicators that do not address

all the performance criteria and quality of services required. In this paper, a new

method for active queue management is proposed based on using the fuzzy logic and

multiple performance indicators that are extracted from the network performance

metrics. These indicators are queue length, delta queue and expected loss. The

simulation of the proposed method show that in high traffic load, the proposed

method preserves packet loss, drop packet only when it is necessary and produce a

satisfactory delay that outperformed the state-of-the-art AQM methods.

Keywords: Congestion control, network performance, active queue management,

fuzzy logic.

1. Introduction

Congestion at the router occurs when the buffer to which the transmitted packets are

to be accommodated, is overflowed. Congestion is mainly occurs because of the

bursty traffic that increases and decreases suddenly [1-4]. As the traffic load increases

with low departure rate, more packets are accommodated in the buffer over time,

which eventually leads to a buffer overflow. At this point, the arrival packets cannot

be accommodated and lead to increase packet loss, worsen the delay and decrease

throughput significantly. As the network is connected with the routers, the

consequences at the router are propagated to the entire network. Drop-Tail (DT)

technique can be implemented to avoid congestion and its consequences. Using DT,

the packets are dropped as the queued packets reach a threshold. Yet, the problem of

the DT technique is the inability to deal with sudden congestion, which eventually

leads to packet loss. Active Queue Management (AQM) is used to monitor the router

 30

buffer actively, avoid congestion and ease the serious consequences of the bursty

traffic [5]. Compared to DT, AQM methods applies different packet dropping

policies to eliminate any possible congestion, as illustrated in Fig. 1.

Time

Q
u

e
u

e
 l

e
n

gt
h

Maximum

Flow

Threshold

No Dropping No Dropping

Packet Dropping

Stochastic Dropping
No Dropping No Dropping

DT

AQM

Fig. 1. DT vs AQM packet dropping policies

Based on the performance indicator, AQM decides whether to accommodate or

drop the arrival packet to avoid buffer overflowing. AQM does not depend on a fixed

threshold, as compared to the DT; instead, AQM stochastically drops packets based

on the network load. Performance indicators are used for the monitoring purpose and

to calculate a Dropping probability (Dp). The goal of the Dp is to set a stochastic

mechanism for packet dropping to avoid global synchronization. Accordingly, the

value of the Dp depends on the characteristic of the performance indicator [6].

Random Early Detection (RED) has been the first method in the AQM technique

and has been developed based on queue monitoring through the Average Queue

Length (AQL) [5]. RED has ben then extended using various performance indicators

and through variation of the dropping policies [7, 8]. The goal of the proposed

methods was to improve the calculation of the Dp to improve network performance.

Accordingly, various indicators have been utilized, such as AQL, the instance queue

length (Q), Arrival-Rate, Load-Rate, Estimated Delay, etc., Fuzzy-based AQM uses

input variables that are equivalent to the performance indicators used in the non-fuzzy

methods. The performance indicator AQL is mapping Q and ∆Q input variables [9].

The existing methods that belong to both techniques (conventional and fuzzy-based)

have been focused on reducing the packet loss and avoid unnecessary packet

dropping [10, 11].

Fuzzification

Fuzzy System

Update Counters

Monitoring

Inference

Defuzzification

Dropping Decision

Input

Variables
Output

Variable

Fig. 2. Fuzzy-based AQM technique

Generally, the consequences at the router are propagated to the network as a

whole. Accordingly, the quality of services and the desired performance embedded

in increasing the throughput and decreasing the delay and loss requires multiple

 31

performance indicators that take into consideration the delay, dropping and loss at

the router buffer. Existing AQM methods utilize one or two performance indicators

at most, which cannot capture the desired performance. Besides, a single performance

indicator in the conventional technique requires multiple counters and thus, multiple

input variables in the fuzzy-based AQM. Thus, there is a limitation in the utilized

indicators, input variables, which influence the network performance [5, 12-14].

In this paper, a fuzzy-based AQM method is developed based on three input

variables that are extracted from the performance metrics. Accordingly, first, the

desire performance is analyzed; the counters are identified then. These counters are

used as inputs to a fuzzy-logic system. The fuzzification process, membership

functions and fuzzy sets are defined to convert the input variables into linguistic terms

with membership degree. The rules are built based on a three-dimensional matrix

with all possible inputs and the linguistic term of the desired output. The rules are

then used to map the input into the output variable. Following the rule

implementation, the aggregation and defuzzification processes are implemented to

obtain the crisp value of the output variable, Dp. Accordingly, the results of this paper

are organized as follows: Section 2 presents a literature review on the related work

for both conventional and fuzzy-based AQM. Section 3 presents the proposed

method, its components, calculation and steps, while Section 4 represents the results

of the simulation in comparison with the existing and up-to-date AQM methods.

Finally, Section 5 presents the conclusion and future work.

2. Related works

The RED Algorithm has been proposed based on maintaining the value of the AQL

and using the calculated AQL value for calculating Dp and making the dropping

decision. The algorithm has been built based on case-based reasoning with various

parameters. Besides predicting congestion, avoid loss and unnecessary packet

dropping, RED has been built to avoid global synchronization and avoid, as much as

possible, dropping of consequent packets. The complex process implemented by the

RED and the fulfilled objectives followed by an adaptation of RED by the Internet

Engineering Task Force (IETF) in RFC 2309 [5]. There are various parameters and

thresholds that have been identified and utilized to address these multiple objectives,

as given in Algorithm 1. The parameters are initialized at line 1. Then, the AQL is

calculated at lines 3-4. The stochastic dropping is implemented at lines 5-9. Full

dropping is implemented at line 10 and no-dropping takes place at line 11. Ideal time

updating is implemented at lines 12-13.

Algorithm 1. RED Algorithm

Step 1. INITIALIZATIONS: AQL:=0, Count = –1

Step 2. FOR-EACH Arrival-Packet(a) DO

Step 3. IF (Q==0) THEN AQL ≔ (1 − 𝑤𝑞)
𝑓(cTime−iTime)

∗ AQL

Step 4. ELSE AQL ≔ (1 − 𝑤𝑞) ∗ AQL + 𝑤𝑞 ∗ AQ

Step 5. IF (minth ≤ AQL < maxth) THEN

Step 6. Count ++

Step 7. Dp′ = 𝐷max ∗ (AQL − minth)/ (maxth − minth)

 32

Step 8. Dp = Dp′/(1 − Count ∗ Dp′)

Step 9. IF (Drop(Dp) == TRUE) THEN Drop Packet (a), Count:= 0

Step 10. ELSE IF (AQL > maxth) THEN Drop Packet (a), Count:= 0

Step 11. ELSE Count:= -1

Step 12. IF (Q==0 && Idle :=FALSE) THEN iTime = cTime, Idle:=TRUE

Step 13. ELSE Idle := FALSE

Count: A counter to reflect the recent accommodation value

AQL: Average Queue Length

Q: Instance Queue Length

cTime: Current Time

iTime: Idle Time

w: Weight value

Dmax: maximum probability value

Minth: minimum threshold

Maxth: maximum threshold

Idle: A variable to denote the idleness of the traffic

With the growth of the distributed and remote applications and shared resources,

the utilization of the network resources has been growing, which creates new

demands for managing the queue at the router buffer. Thus, a need to reduce packet

dropping without consequences on packet loss has emerged. Besides, quick response

to sudden congestion and an increase in the traffic load is required. Accordingly,

various algorithms have been proposed to improve the performance of the RED

method. Among these, Gentle RED (GRED) [15], Adaptive RED (ARED) [16],

Dynamic RED (DRED) [17] and Double Slop RED (DSRED) [18] focused on using

AQL while changing the decision making process and the Dp calculation. The goal

of these methods is to maintain the ability of the AQL in avoiding false congestion

while enhancing the reaction to true congestion by adapting a more fixable approach

compared to the semi-static approach utilized in the RED method. A general form of

using AQL in AQM is utilized in Fig. 3.

Packet Arrival

Compare AQL

Dropping Decision

Calculate AQL

Case 1

Dp Calculation:

 Scenario 1

Dp Calculation:

 Scenario 2

Case 2

Case n

Dp Calculation:

 Scenario n

Fig. 3. AQL-based AQM Algorithm

Adaptive Virtual Queue (AVQ) [19] used both Arrival rate and Load rate

together with a virtual queue that is linked with the actual queue at the router buffer.

The actual queue is synchronized with a virtual queue with capacity that is less than

 33

the actual one. Accordingly, congestion is detected when the virtual queue is

overflowed. Moreover, the virtual link is used and linked with the monitoring of the

actual link. When the traffic load increase at the virtual queue, the Dp is increased

and vice versa. Stabilized AVQ (SAVQ) [20] and Enhanced AVQ (EAVQ) [21] were

built as an extension to AVQ. Random Exponential Marking (REM) [22] used queue

length (q) and the transmission rate as performance indicators. Proportional Integral

controller (PI) [23] used q and the packet loss as performance indicators. BLUE

method [24] used packet loss as a performance indicator and adaptive calculation of

the Dp that differ completely from the way by which RED is implemented.

Accordingly, Dp is not calculated but adaptively increased/decreased based on the

indicator and the link idleness. Similarly, Multi-level RED (MRED) [25] used the

loss as a performance indicator. Effective RED (ERED) [26] extended RED and used

AQL and q as congestion indicators. While Self-tuning RED, [27] used AQL with

adaptive technique as similar to BLUE. Stabilized RED (SRED) [28] used q as a

performance indicator. B a k l i z i et al. [29] and B r i s c o e [3] used AQL as similar

to RED.

Table 1. Summary of the fuzzy-based AQM methods

Reference
Inputs Output

Rule
Set* Set (Length) Function

Set
(Length)

Function

FRED
Queue (3) &
∆ Queue (3)

Trapezoidal Dp (4) Trapezoidal Customized

FEM
Queue (3) &
∆ Queue (3)

Trapezoidal Dp (4) Triangular Customized

FB
Queue (3) &
∆ Queue (3)

Trapezoidal Dp (4) Trapezoidal Full

Fuzzy AQM
Arrival rate (3) &
Arrival factor (3)

Trapezoidal ∆Dp (5) Trapezoidal Full

FCRED
Actual-Target Q (7) &
∆ Actual-Target Q(5)

Triangular ∆Dp (9) Triangular Full

Fuzzy-logic
Controller-
based RED

AQL (3) &
Loss (3)

Trapezoidal Dp (5) Trapezoidal Full

GREDFL
AQL (3) &
Delay (3)

Trapezoidal Dp (4) Trapezoidal Full

Fuzzy RED
Queue (3) &

∆ Queue (3) &
 Delay (3)

Triangular Dp (4) Triangular Full

Fuzzy ERED
AQL (4) &
Queue (3)

Triangular Dp (4) Triangular Full

FLRED
AQL (4) &
Delay (4)

Trapezoidal Dp (4) Trapezoidal Full

 Full: Rules covering all possible combination for the terms in the input sets, such as each rule

cover exactly a single term from each input. Customized: Rules does not cover all cases or using a

set with individual rules; each may cover multiple terms.

 34

As more complex performance indicators are utilized, such as the transmission

rate and estimated loss, more parameters are utilized. Parameter initialization

problem grew and there was a need to ease the problem and face the challenges of

improving the network performance. Fuzzy-RED (FRED) [9] used AQL with fuzzy

inference problem to ease the problem of parameter settings. Similarly, Fuzzy BLUE

(FB) [30] used queue size and packet loss as performance indicators. These methods

produced a single output variable, which is Dp. Fuzzy Controller Random Early

Detection (FCRED) (Sun et al., 2007) used differences between the actual and target

queue length and the change in such difference as input variables to produce a control

value that is used to calculate the value of Dp. Generally, the existing fuzzy-based

AQM methods differ in five aspects, these are: 1) input variables; 2) output variable;

3) membership function; 4) fuzzy sets; 5) fuzzy rule set. Table 1 summarizes the

existing fuzzy-based methods based on these aspects.

Overall, fuzzy-based AQM used common input variables, such as queue, AQL,

delay and loss, to produce the Dp or a variable that used to calculate Dp using an

equation. These inputs are the indicators that were mapped from the conventional-

based AQM and calculated before they can be used with the fuzzy systems. There are

some common characteristics among these variables, such as using a queue to

calculate AQL, delay and arrival rate. The utilized combination of these variables

does not cover all performance metrics. Thus, the input variables are not independent

and not comprehensive. A summary of the utilized indicators and their intrinsic

variables are summarized in Table 2.

Table 2. Summary of the utilized indicators

Indicator Variable, s

Q Instance queue length

AQL Q and Previous AQL

∆Q Q and Previous Q

Arrival-Rate Number of arrived packets

Departure-Rate Number of departed packets

Load Arrival-Rate & Departure-Rate

Delay Q and ∆Q

Accordingly, to optimize the performance of the AQM, the input variables

should be analyzed, and their combination should cover all desired performance

metrics. Besides, except for Fuzzy RED, the existing fuzzy-based used two input

variables, which are not enough to cover the desired performance metrics. In this

paper, the performance metrics will be analyzed, and the core components of these

variables will be used as input to a fuzzy system. Using trapezoidal allows for more

flexibility in the process and can be easily mapped into triangular, yet triangular

cannot be mapped into trapezoidal. Finally, recent studies focus on covering all

possible combination of the input set, each with individual rules to avoid any

complexity. Thus, in the proposed method, trapezoidal membership function and full

rule-set will be used.

 35

3. Proposed work

The proposed AQM method is built to optimize the network performance by covering

the on-demand performance metrics. The framework for building the proposed

method, as illustrated in Fig. 4, consists of the following steps: 1) identify the input

variables by analyzing loss, delay and throughput criteria; 2) identify the fuzzification

components, which are the linguistic sets and the membership functions; 3) set up the

rule set based on trial-and-error while adjusting the membership function of the

output variables; 4) define the aggregation process; 5) set up the simulation

environment.

Identify Variables

Performance Criteria

Identify Fuzzification

Identify Rule Set

Identify Aggregation

Identify Simulation

Trial-and-Error

Related Methods

Fig. 4. The framework of the proposed method

3.1. Input variables

The input variables are extracted based on analyzing three performance metrics; these

are delay, throughput and loss. The delay can be estimated based on the transmission

rate and the queue length. Delay is proportional to the queue length as the arrival

packet has to wait in the FIFO (First-In-First-Out) queue model that is commonly

implemented in the router buffer. Besides, the delay is proportional to the

transmission rate as the increase of the departure λout decrease delay and the increase

of the arrival rate λin increase delay subject to the queue length. The difference

between the λout and λin can be estimated by the changes in the queue length over time.

Accordingly, the estimated delay can be denoted as

(1) 𝑑queue ∝ 𝑞 ∗ ∆𝑞,
where dqueue is the delay at the queue. The Packet Loss (PL) is inversely proportional

to the remaining capacity (v) of the router buffer. As the remaining capacity

decreases, the probability of packet loss increases and vice versa. Accordingly, the

estimated loss can be denoted as

(2) PL ∝ 1 𝑣⁄ .
The throughput can be estimated based on the dropping and the loss. Dropping

is inversely proportional to the queue length as AQM is responsible for early

dropping of packets in a heavily loaded network. Loss as mentioned depends on the

remaining capacity (v). Accordingly, the estimated Throughput (T) can be denoted as

(3) 𝑇 ∝ 𝑣 𝑞.⁄

 36

Accordingly, three variables are extracted from the performance indicators,

these are the queue length (q*), the changing in the queue (∆q*) and the remaining

capacity (v*). The values of these variables are calculated and normalized in the range

[0, 1]. The variable q, which is a counter of the number of packets, is divided by the

buffer capacity (c). The value of the ∆q is calculated as the difference between two

consequent captured lengths, the current and the previous and then normalized in the

range [0, 1]. As such if the difference is positive, the calculated value will be in the

range (0.5, 1] and the range [0, 0.5) will be for negative differences. The value 0.5

means that the difference is zero. The variable v, which is a counter remaining

positions, is divided by the buffer capacity (c). These variables are used as input

variables for the proposed method based on the description of that is summarized in

Table 3.

Table 3. Summary of the Input Variables

Variable Calculation Description

Normalized queue

length (q*)
𝑞∗

𝑡
= 𝑞𝑡/𝑐

The length of the queue based

on the accommodated packets

Queue change (∆q*) ∆𝑞∗
𝑡

= (𝑞𝑡 − 𝑞𝑡−1 + 𝑐)/(2 ∗ 𝑐)
The differences in queue length

between the current time and

the previous time

Normalized

remaining capacity

(v*)

𝑣∗
𝑡 = (𝑐 − 𝑞𝑡)/𝑐

The maximum length of the

queue based on the packets that

can be accommodated

simultaneously

3.2. Fuzzification

The value of the input variables is converted into linguistic term with membership

degree using the associated fuzzy set and the membership function. According to the

space partitioning approach for fuzzy system construction [31], the value range of the

input variable is divided into 2N+1 equal regions. The value of N is set to 1 for the

input variables. Thus, the linguistic set of the input variables is set as {low, moderate,

high}. The membership function is unified for the input variables with trapezoidal,

as illustrated in Fig. 5.

0.0

0.2

0.4

0.6

0.8

1.0

0.6

1.000.8

Low Moderate High

0.1 0.2 0.3 0.4 0.70.5 0.6 0.9

Input

Fig. 5. Membership functions for the input variables in the proposed method

Each region in the function is characterized by four points {a, b, c, d}, where a

and b form the first line and the second line is constructed by c and d. The value of

these points for the input function are as follows: low 0, 0, 0.3, 0.4; moderate 0.3, 0.4,

 37

0.6, 0.7; high 0.6, 0.7, 1.0, 1.0. Accordingly, in the fuzzification process, the crisp

value of the input variable is converted into a term or multiple terms based on the

value range, at which the value occurs. A membership degree (μ) with each term is

calculated as

(4) 𝜇(𝑥) = {

0
(𝑥 − 𝑎) (𝑏 − 𝑎)⁄

1
(𝑑 − 𝑥) (𝑑 − 𝑐)⁄

if 𝑥 < 𝑎, 𝑥 > 𝑑,
if 𝑎 ≤ 𝑥 ≤ 𝑏,
if 𝑏 ≤ 𝑥 ≤ 𝑐,
if 𝑐 ≤ 𝑥 ≤ 𝑑.

Accordingly, for the value of each input variable, one or more linguistic term is

extracted. Based on the membership function utilized and the boundary of the

regions, the extracted terms are associated with membership degree.

3.3. Output variable

The output variable Dp is associated with the membership function with equal regions

as similar to the input variables. The value of N is set to 2 for the output variable and

thus, the linguistic set for the output is {zero, low, moderate, high, extreme}. Based

on previous work [11] and trial-and-error, the membership boundaries of the Dp is

modified as illustrated in Fig. 6. The value of the boundary points for the output

functions are modified to suits the desired output, as follows: zero 0, 0, 0.005, 0.01;

low 0.005, 0.01, 0.4, 0.5; moderate 0.4, 0.5, 0.6, 0.7; high 0.6, 0.7, 0.8, 0.9; extreme

0.8, 0.9, 1.0, 1.0. In the membership function of the output, a variable is used in the

defuzzification process, in which the linguistic term is converted to a crisp value, as

will be discussed in the following subsections.

0.0

0.2

0.4

0.6

0.8

1.0

0.6

Zero Low Moderate High

1.000.80.005 0.01 0.4 0.70.5 0.6 0.9

Extreme

Ouput

Fig. 6. Membership functions for the output variable in the proposed method

3.4. Rule-set

The trial-and-error identifies the rule-set with the expertise in the field together with

those rules that can be concluded from [11]. The fuzzy rules that are built as a full-

set, which means that each possible combination of the terms in the input variables is

associated with a single rule. Accordingly, for the three input variables with three

possible terms, 27 rules are generated in the cross matrix as given in Table 4.

 38

As given in Table 4, an example of a rule from the rule-set is given as follows:

if Q is low and ∆Q is low, and v is high, then Dp is moderate. The rest of the rules

are extracted from the cross matrix similarly.

In the rule evaluation step, based on the terms of the output, a rule is applied,

and the A confidence degree is associated with the THEN-part of the rule is produced

as an output. A confidence degree for each input is obtained using AND operator.

Accordingly, the minimum value of the membership degrees of the input is selected

as the confidence degree of the output term.

Table 4. Rule-set cross matrix

Q Low Moderate High

∆Q

v
Low Moderate High Low Moderate High Low Moderate High

High zero zero zero low low high extreme extreme extreme

Moderate zero zero zero low Moderate high extreme extreme extreme

Low zero zero low Moderate Moderate high extreme extreme extreme

3.5. Aggregation and defuzzification

In the aggregating step, similar output terms are aggregated. As such, based on the

output of the rules evaluation, multiple rules may be evaluated into a similar term,

each of which with a confidence degree. These terms with their confidence degrees

are aggregated into a single term and a single degree. For example, given that the rule

evaluation produced two outputs of the term low with two confidence values, the

output of the aggregation step will be the term low with a single confidence value.

Overall, the aggregation is implemented over the confidence degrees of the THEN-

part of the rules with identical terms.

In the defuzzification step, the terms of the Dp with their aggregated confidence

degree are converted into crisp value. The utilized function for this purpose is the

Centre Of Gravity (COG), which forms an averaging over the membership function

[32].

3.6. Simulation environment

The simulation is implemented in NetBeans Integrated Development Environment

(IDE) and Java Development Kit (1.6). The simulated network consists of input links,

router and output links. The router is associated with a buffer of capacity of 20

packets, similar to the simulation in [10, 11, 29, 33]. The discrete-time queue is used

to model the traffic flow over the network being simulated. Accordingly, the arrival

and departure rates depend on probability values. The values are enumerated to create

different traffic load on the simulated network [34]. The arrival rates are chosen to

be of the values [0.3, 0.5 and 0.95] and the departure of the value 0.5, which were

used in recent AQM evaluations [7, 8, 11, 35]. Three scenarios are created with such

arrival and departure probabilities, light traffic, moderate and heavy traffic. The

packet arrival process is simulated as a Bernoulli process, and the departure is

simulated as geometrically distributed. The simulation components are given in

Fig. 7.

 39

Packet Arrival

Bernoulli Process

Routers Event

Simulation

Discrete Time

Queue

Packet Departure

Geometrically

Distributed

Fig. 7. Simulation components

4. Experimental results

The proposed and compared methods are evaluated in three traffic loads; these are

light traffic, moderate and heavy traffic. The comparison is implemented based on

delay, dropping rate and packet loss, besides retransmitted packets can give a better

indication in the method comparison. Accordingly, it was used as another criterion

for method comparison.

In light traffic, as illustrated in Fig. 8, the proposed and compared methods

performed similarly with reasonable delay. There was no packet loss nor dropping as

the queue is never overflowed with such traffic, and packet dropping is not required.

At this sort of traffic, there was no loss or dropping implemented by the proposed and

compared methods.

Fig. 8. Delay-based comparison for the compared methods in light traffic

In moderate traffic, the proposed method produced better delay compared to

RED and ERED and slightly worse than BLUE, as illustrated in Fig. 9. Yet, BLUE

did not produce better performance in total, as BLUE reached this queuing delay

because of dropping packets unnecessarily as illustrated in Fig. 10. Similar to the

light traffic, there was no packet loss because of using any of the compared methods.

Accordingly, the proposed method outperformed the compared methods by dropping

a suitable amount of packets to prevent loss and preserve delay. At the same time,

RED and ERED dropped slightly fewer packets and sacrificed delay. BLUE drop

almost double number of packets compared to the proposed method and produced

slightly and insignificantly better delay.

In heavy traffic, as major concern of the AQM methods, the results are close to

those in moderate traffic but with clearly distinguished details. The proposed method

RED ERED BLUE Proposed

Series1 3.51 3.51 3.51 3.48

3.51 3.51 3.51 3.48

0.00

10.00

20.00

30.00

40.00

Lo
ss

 (
%

)

PACKET DELAY AT LIGHT
TRAFFIC

 40

produced better delay compared to RED and ERED and worse than BLUE, as

illustrated in Fig. 11. ERED produce a very high delay that cannot be resisted in some

commonly utilized applications like video conferencing. BLUE produce a reasonable

delay, yet did not produce better performance in total, as BLUE reached this queuing

delay as a result of dropping packets unnecessarily as illustrated in Fig.12. ERED

loses a significant amount of data, as illustrated in Fig. 13. Using retransmission as

criteria, it is clear that the proposed method is better than BLUE.

Fig. 9. Delay-based comparison for the compared methods in moderate traffic

Fig. 10. Dropping-based comparison for the compared methods in moderate traffic

RED ERED BLUE Proposed

Series1 13.80 12.41 7.87 8.30

1
3

.8
0

1
2

.4
1

7
.8

7

8
.3

0

0.00

10.00

20.00

30.00

40.00

Lo
ss

 (
%

)

PACKET DELAY AT MODERATE
TRAFFIC

RED ERED BLUE Proposed

Series1 0.06 0.05 0.15 0.07

0
.0

6

0
.0

5 0
.1

5

0
.0

7

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

D
ro

p
 (

%
)

PACKET DROPPING AT MODERATE

TRAFFIC

 41

Fig. 11. Delay-based comparison for the compared methods in heavy traffic

Fig. 12. Dropping-based comparison for the compared methods in heavy traffic

Fig. 13. Loss-based comparison for the compared methods in heavy traffic

RED ERED BLUE Proposed

Series1 19.54 37.84 7.89 16.86

19.54

37.84

7.89
16.86

0.00

20.00

40.00

D
e

la
y

PACKET DELAY AT HEAVY
TRAFFIC

RED ERED BLUE Proposed

Series1 0.47 0.27 0.55 0.47

0.47
0.27

0.55 0.47

0.00

0.50

1.00

D
ro

p
 (

%
)

PACKET DROPPING AT
HEAVY TRAFFIC

RED ERED BLUE Proposed

Loss 0.01 0.21 0.00 0.00

0.01

0.21

0.00 0.00
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Lo
ss

 (
%

)

PACKET LOSS AT HEAVY
TRAFFIC

 42

Fig. 14. Retransmission-based comparison for the compared methods in heavy traffic

Accordingly, as given in the results, the proposed method preserve packet loss,

drop packet only when it is necessary to avoid high dropping rate and drop packet as

early as possible to avoid high delay. Compared to the other methods, the proposed

method is better than RED, as it produces better results by predicting congestion at

an early stage and dropping packets to avoid delay. Besides, the proposed method is

better than ERED as it avoids loss by dropping packets only when it is required based

on the utilized controllers. Finally, the proposed method is better than BLUE as it

avoids high dropping rate while preserving loss by dropping packets and avoid false

congestion, which cannot be avoided in BLUE as results suggest. Having high

dropping indicates that BLUE is sensitive to false congestion that leads to high packet

dropping.

5. Conclusion

A new multi-indicators Active Queue Management (AQM) method is proposed in

this paper. The goal of the proposed method is to optimize the performance of the

AQM according to the commonly utilized performance metrics. Various steps have

been implemented to achieve the intended goals starting with analyzing the

performance metrics and identifying the input variables. The fuzzy system is

implemented based on space partitioning approach, full-set of rules and center of

gravity. The results illustrate that the proposed method preserve packet loss, drop

packet only when it is necessary to avoid high dropping rate and drop packet as early

as possible to avoid high delay. The proposed method also detects congestion at an

early stage and recognize false congestion. The future work will focus on improving

the performance based on the quality of demands. Different applications require

different demands, such as reducing delay, reducing loss, etc. As such, the input

variables will be given different weight by adjusting the rule-set. The system will be

reconstructed based on the newly constructed rule-set, and the results will be

compared with the results obtained in this paper.

RED ERED BLUE Proposed

Series1 0.48 0.47 0.55 0.47

0.48 0.47
0.55

0.47

0.00

0.20

0.40

0.60

0.80

1.00

R
e

tr
an

sm
is

si
o

n
 (

%
)

PACKET RETRANSMISSION AT
HEAVY TRAFFIC

 43

Acknowledgments: We appreciate the Research Deanship of Al-Ahliyya Amman University (AAU) –

Jordan, for providing research resources, equipment and various research programs to encourage

research among faculty members.

R e f e r e n c e s

1. Z h a o, Y., Z. M a, X. Z h e n g, X. T u. An Improved Algorithm of Nonlinear RED Based on

Membership Cloud Theory. – Chinese Journal of Electronics, Vol. 26, 2017, No 3,

pp. 537-543.

2 . Y u - h o n g, Z., Z. X u e - f e n g, T. X u - y a n. Research on the Improved Way of RED Algorithm

S-RED. – International Journal of u-and-e- Service, Science and Technology, Vol. 9, 2016,

No 2, pp. 375-384.

3 . B r i s c o e, B. Insights from Curvy Random Early Detection (RED). 2015.

4 . J a m i l, S., N. A l i p a s a n d i, B. A l i p a s a n d i. An Improvement over Random Early Detection

Algorithm: A Self-Tuning Approach. – Journal of Electrical and Computer Engineering

Innovations (JECEI), Vol. 2, 2014, No 2, pp. 57-61.

5 . F l o y d, S., V. J a c o b s o n. Random Early Detection Gateways for Congestion Avoidance. –

IEEE/ACM Trans. Netw., Vol. 1, 1993, No 4, pp. 397-413.

6 . S h a r m a, N., S. S. R a j p u t, A. K. D w i v e d i, M. S h r m a l i. P-RED: Probability Based

Random Early Detection Algorithm for Queue Management in MANET. – In: Advances in

Computer and Computational Sciences. Springer, 2018, pp. 637-643.

7 . A b u - S h a r e h a, A. A. Enhanced Random Early Detection Using Responsive Congestion

Indicators. – International Journal of Advanced Computer Science and Applications

(IJACSA), Vol. 10, 2019, No 3, pp. 358-367.

8 . A b u - S h a r e h a, A. A. Controlling Delay at the Router Buffer Using Modified Random Early

Detection. – International Journal of Computer Networks & Communications (IJCNC),

Vol. 11, 2019, No 6, pp. 63-75.

9. L i n, D., R. M o r r i s. Dynamics of Random Early Detection. – In: Proceeding of the ACM

SIGCOMM’97 Conference on Applications Technologies, Architectures, and Protocols for

Computer Communication, 1997, pp. 127-137.

10. B a k l i z i, M., H. A b d e l - J a b e r, A. A. A b u - S h a r e h a, M. M. A b u a l h a j,

S. R a m a d a s s. Fuzzy Logic Controller of Gentle Random Early Detection Based on

Average Queue Length and Delay Rate. – International Journal of Fuzzy Systems, Vol. 16,

2014, No 1, pp. 9-19.

11. A b u a l h a j, M. M., A. A. A b u - S h a r e h a, M. M. A l - T a h r a w i. FLRED: An Efficient

Fuzzy Logic Based Network Congestion Control Method. – Neural Computing and

Applications, Vol. 30, 2018, No 3, pp. 925-935.

12. C h e n, W., S. H. Y a n g. The Mechanism of Adapting RED Parameters to TCP Traffic. – Computer

Communications, Vol. 32, 2009, No 13, pp. 1525-1530.

13. S e i f a d d i n i, O., A. A b d u l l a h, H. V o s o u g h. RED, GRED, AGRED Congestion Control

Algorithms in Heterogeneous Traffic Types. – In: International Conference on Computing and

Informatics, 2013.

14. I s m a i l, A. H., A. E l-S a y e d, Z. E l s a g h i r, I. Z. M o r s i. Enhanced Random Early Detection

(ENRED). – International Journal of Computer Applications, Vol. 92, 2014, No 9.

15. F l o y d, S. Recommendations on Using the Gentle Variant of RED. 2000.

http://www.aciri.org/floyd/red/gentle.html

16. F l o y d, S., R. G u m m a d i, S. S h e n k e r. ICSI Adaptive RED: An Algorithm for Increasing the

Robustness of RED’s Active Queue Management. – AT&T Center for Internet Research at

ICSI, 2001.

17. A w e y a, J., M. O u e l l e t t e, D. Y. M o n t u n o. A Control Theoretic Approach to Active Queue

Management. – Computer Networks, Vol. 36, 2001, No (2-3), pp. 203-235.

18. Z h e n g, B., M. A t i q u z z a m a n. DSRED: An Active Queue Management Scheme for Next

Generation Networks. – In: Proc. of 25th Annual IEEE Conference on Local Computer

Networks. LCN 2000, IEEE, pp. 242-251.

 44

19. K u n n i y u r, S., R. S r i k a n t. End-to-End Congestion Control Schemes: Utility Functions,

Random Losses and ECN Marks. – IEEE/ACM Transactions on Networking, Vol. 11, 2003,

No 5, pp. 689-702.

20. L o n g, C. N., B. Z h a o, X. P. G u a n. SAVQ: Stabilized Adaptive Virtual Queue Management

Algorithm. – IEEE Communications Letters, Vol. 9, 2005, No 1, pp. 78-80.

21. Y a n p i n g, Q., L. X i a n g z e, L. Q i, J. W e i. A Stable Enhanced Adaptive Virtual Queue

Management Algorithm for TCP Networks. – In: 2007 IEEE International Conference on

Control and Automation, 2007, pp. 360-365.

22. A t h u r a l i y a, S., V. H. L i, S. H. L o w, Q. Y i n. REM: Active Queue Management. – Teletraffic

Science and Engineering, Vol. 4, 2001, pp. 817-828.

23. H o l l o t, C. V., V. M i s r a, D. T o w s l e y, W. B. G o n g. On Designing Improved Controllers for

AQM Routers Supporting TCP Flows. – In: Proc. of IEEE INFOCOM 2001, Conference on

Computer Communications, Twentieth Annual Joint Conference of the IEEE Computer and

Communications Society (Cat. No 01CH37213), Vol. 3, pp. 1726-1734.

24. F e n g, W. C., D. K a n d l u r, D. S a h a, K. S h i n. BLUE: A New Class of Active Queue

Management Algorithms. Technical Report CSE-TR-387-99, University of Michigan, 1999.

25. K o o, J., B. S o n g, K. C h u n g, H. L e e, H. K a h n g . MRED: A New Approach to Random Early

Detection. – In: Proc. of 15th International Conference on Information Networking, IEEE,

2001, pp. 347-352.

26. A b b a s o v, B., S. K o r u k o g l u. Effective RED: An Algorithm to Improve RED’s Performance

by Reducing Packet Loss Rate. – Journal of Network and Computer Applications, Vol. 32,

2009, No 3, pp. 703-709.

27. C h e n, J., C. H u, Z. J i. Self-Tuning Random Early Detection Algorithm to Improve Performance

of Network Transmission. – Mathematical Problems in Engineering, Vol. 2011, 2011.

28. O t t, T. J., T. V. L a k s h m a n, L. H. W o n g. Sred: Stabilized Red. – In: IEEE INFOCOM’99.

Conference on Computer Communications. Proceedings. 11th Annual Joint Conference of the

IEEE Computer and Communications Societies. The Future is Now (Cat. No 99CH36320),

Vol. 3, 1999, pp. 1346-1355.

29. B a k l i z i, M., H. A b d e l - J a b e r, M. M. A b u - A l h a j, N. A b d u l l a h, S. R a m a d a s s,

S. A. A L m o m a n i. Dynamic Stochastic Early Discovery: A New Congestion Control

Technique to Improve Networks Performance. – International Journal of Innovative

Computing, Information and Control, Vol. 9, 2013, No 3, pp. 1118-1126.

30. Y a g h m a e e, M. H., H. A m i n T o o s i. A Fuzzy Based Active Queue Management Algorithm.

– Simulation Series, Vol. 35, 2003, No 4, pp. 458-464.

31. Y u a n, Y., M. J. S h a w. Induction of Fuzzy Decision Trees. – Fuzzy Sets and Systems, Vol. 69,

1995, No 2, pp. 125-139.

32. N e g n e v i t s k y, M., A. I n t e l l i g e n c e. A Guide to Intelligent Systems. – In: Artificial

Intelligence. 2nd Edition. Pearson Education, 2005.

33. A b d e l -j a b e r, H., J. A b a b n e h, F. T h a b t a h, A. M. D a o u d, M. B a k l i z i. Performance

Analysis of the Proposed Adaptive Gentle Random Early Detection Method under

Noncongestion and Congestion Situations. – In: International Conference on Digital

Enterprise and Information Systems, Berlin, Heidelberg, Springer, 2011, pp. 592-603.

34. K h a t a r i, M., G. S a m a r a. Congestion Control Approach Based on Effective Random Early

Detection and Fuzzy Logic. – arXiv preprint arXiv:1712.0424, 2017.

35. M o h a m m e d, H., G. A t t i y a, S. E l - D o l i l. Active Queue Management for Congestion

Control: Performance Evaluation, New Approach, and Comparative Study. – International

Journal of Computing and Network Technology, Vol. 5, 2017, No 2, pp. 37-49.

Received: 17.11.2020; Second Version: 13.01.2021; Accepted: 23.02.2021

