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Abstract: The congestion problem at the router buffer leads to serious consequences 

on network performance. Active Queue Management (AQM) has been developed to 

react to any possible congestion at the router buffer at an early stage. The limitation 

of the existing fuzzy-based AQM is the utilization of indicators that do not address 

all the performance criteria and quality of services required. In this paper, a new 

method for active queue management is proposed based on using the fuzzy logic and 

multiple performance indicators that are extracted from the network performance 

metrics. These indicators are queue length, delta queue and expected loss. The 

simulation of the proposed method show that in high traffic load, the proposed 

method preserves packet loss, drop packet only when it is necessary and produce a 

satisfactory delay that outperformed the state-of-the-art AQM methods. 

Keywords: Congestion control, network performance, active queue management, 

fuzzy logic.     

1. Introduction 

Congestion at the router occurs when the buffer to which the transmitted packets are 

to be accommodated, is overflowed. Congestion is mainly occurs because of the 

bursty traffic that increases and decreases suddenly [1-4]. As the traffic load increases 

with low departure rate, more packets are accommodated in the buffer over time, 

which eventually leads to a buffer overflow. At this point, the arrival packets cannot 

be accommodated and lead to increase packet loss, worsen the delay and decrease 

throughput significantly. As the network is connected with the routers, the 

consequences at the router are propagated to the entire network. Drop-Tail (DT) 

technique can be implemented to avoid congestion and its consequences. Using DT, 

the packets are dropped as the queued packets reach a threshold. Yet, the problem of 

the DT technique is the inability to deal with sudden congestion, which eventually 

leads to packet loss. Active Queue Management (AQM) is used to monitor the router 
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buffer actively, avoid congestion and ease the serious consequences of the bursty 

traffic [5]. Compared to DT, AQM methods applies different packet dropping 

policies to eliminate any possible congestion, as illustrated in Fig. 1.  
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Fig. 1. DT vs AQM packet dropping policies 

Based on the performance indicator, AQM decides whether to accommodate or 

drop the arrival packet to avoid buffer overflowing. AQM does not depend on a fixed 

threshold, as compared to the DT; instead, AQM stochastically drops packets based 

on the network load. Performance indicators are used for the monitoring purpose and 

to calculate a Dropping probability (Dp). The goal of the Dp is to set a stochastic 

mechanism for packet dropping to avoid global synchronization. Accordingly, the 

value of the Dp depends on the characteristic of the performance indicator [6]. 

Random Early Detection (RED) has been the first method in the AQM technique 

and has been developed based on queue monitoring through the Average Queue 

Length (AQL) [5]. RED has ben then extended using various performance indicators 

and through variation of the dropping policies [7, 8]. The goal of the proposed 

methods was to improve the calculation of the Dp to improve network performance. 

Accordingly, various indicators have been utilized, such as AQL, the instance queue 

length (Q), Arrival-Rate, Load-Rate, Estimated Delay, etc., Fuzzy-based AQM uses 

input variables that are equivalent to the performance indicators used in the non-fuzzy 

methods. The performance indicator AQL is mapping Q and ∆Q input variables [9]. 

The existing methods that belong to both techniques (conventional and fuzzy-based) 

have been focused on reducing the packet loss and avoid unnecessary packet 

dropping [10, 11]. 
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Fig. 2. Fuzzy-based AQM technique  

Generally, the consequences at the router are propagated to the network as a 

whole. Accordingly, the quality of services and the desired performance embedded 

in increasing the throughput and decreasing the delay and loss requires multiple 
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performance indicators that take into consideration the delay, dropping and loss at 

the router buffer. Existing AQM methods utilize one or two performance indicators 

at most, which cannot capture the desired performance. Besides, a single performance 

indicator in the conventional technique requires multiple counters and thus, multiple 

input variables in the fuzzy-based AQM. Thus, there is a limitation in the utilized 

indicators, input variables, which influence the network performance [5, 12-14]. 

In this paper, a fuzzy-based AQM method is developed based on three input 

variables that are extracted from the performance metrics. Accordingly, first, the 

desire performance is analyzed; the counters are identified then. These counters are 

used as inputs to a fuzzy-logic system. The fuzzification process, membership 

functions and fuzzy sets are defined to convert the input variables into linguistic terms 

with membership degree. The rules are built based on a three-dimensional matrix 

with all possible inputs and the linguistic term of the desired output. The rules are 

then used to map the input into the output variable. Following the rule 

implementation, the aggregation and defuzzification processes are implemented to 

obtain the crisp value of the output variable, Dp. Accordingly, the results of this paper 

are organized as follows: Section 2 presents a literature review on the related work 

for both conventional and fuzzy-based AQM. Section 3 presents the proposed 

method, its components, calculation and steps, while Section 4 represents the results 

of the simulation in comparison with the existing and up-to-date AQM methods. 

Finally, Section 5 presents the conclusion and future work.  

2. Related works 

The RED Algorithm has been proposed based on maintaining the value of the AQL 

and using the calculated AQL value for calculating Dp and making the dropping 

decision. The algorithm has been built based on case-based reasoning with various 

parameters. Besides predicting congestion, avoid loss and unnecessary packet 

dropping, RED has been built to avoid global synchronization and avoid, as much as 

possible, dropping of consequent packets. The complex process implemented by the 

RED and the fulfilled objectives followed by an adaptation of RED by the Internet 

Engineering Task Force (IETF) in RFC 2309 [5]. There are various parameters and 

thresholds that have been identified and utilized to address these multiple objectives, 

as given in Algorithm 1. The parameters are initialized at line 1. Then, the AQL is 

calculated at lines 3-4. The stochastic dropping is implemented at lines 5-9. Full 

dropping is implemented at line 10 and no-dropping takes place at line 11. Ideal time 

updating is implemented at lines 12-13.  

Algorithm 1. RED Algorithm 

Step 1. INITIALIZATIONS: AQL:=0, Count = –1 

Step 2. FOR-EACH Arrival-Packet(a) DO 

Step 3.       IF (Q==0) THEN AQL ≔ (1 − 𝑤𝑞)
𝑓(cTime−iTime)

∗ AQL 

Step 4.       ELSE  AQL ≔ (1 − 𝑤𝑞) ∗ AQL + 𝑤𝑞 ∗ AQ   

Step 5.       IF (minth ≤ AQL < maxth)  THEN 

Step 6.               Count ++  

Step 7.               Dp′ = 𝐷max ∗ (AQL − minth)/ (maxth − minth) 
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Step 8.               Dp =  Dp′/(1 − Count ∗  Dp′) 

Step 9.               IF (Drop(Dp) == TRUE) THEN Drop Packet (a), Count:= 0 

Step 10.        ELSE IF (AQL > maxth) THEN Drop Packet (a), Count:= 0 

Step 11.        ELSE Count:= -1                      

Step 12.        IF (Q==0 && Idle :=FALSE) THEN iTime = cTime, Idle:=TRUE 

Step 13.        ELSE Idle := FALSE 

Count: A counter to reflect the recent accommodation value 

AQL: Average Queue Length 

Q: Instance Queue Length 

cTime: Current Time 

iTime: Idle Time  

w: Weight value  

Dmax: maximum probability value 

Minth: minimum threshold 

Maxth: maximum threshold 

Idle: A variable to denote the idleness of the traffic 

With the growth of the distributed and remote applications and shared resources, 

the utilization of the network resources has been growing, which creates new 

demands for managing the queue at the router buffer. Thus, a need to reduce packet 

dropping without consequences on packet loss has emerged. Besides, quick response 

to sudden congestion and an increase in the traffic load is required. Accordingly, 

various algorithms have been proposed to improve the performance of the RED 

method. Among these, Gentle RED (GRED) [15], Adaptive RED (ARED) [16], 

Dynamic RED (DRED) [17] and Double Slop RED (DSRED) [18] focused on using 

AQL while changing the decision making process and the Dp calculation. The goal 

of these methods is to maintain the ability of the AQL in avoiding false congestion 

while enhancing the reaction to true congestion by adapting a more fixable approach 

compared to the semi-static approach utilized in the RED method. A general form of 

using AQL in AQM is utilized in Fig. 3. 
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Fig. 3. AQL-based AQM Algorithm 

Adaptive Virtual Queue (AVQ) [19] used both Arrival rate and Load rate 

together with a virtual queue that is linked with the actual queue at the router buffer. 

The actual queue is synchronized with a virtual queue with capacity that is less than 
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the actual one. Accordingly, congestion is detected when the virtual queue is 

overflowed. Moreover, the virtual link is used and linked with the monitoring of the 

actual link. When the traffic load increase at the virtual queue, the Dp is increased 

and vice versa. Stabilized AVQ (SAVQ) [20] and Enhanced AVQ (EAVQ) [21] were 

built as an extension to AVQ. Random Exponential Marking (REM) [22] used queue 

length (q) and the transmission rate as performance indicators. Proportional Integral 

controller (PI) [23] used q and the packet loss as performance indicators. BLUE 

method [24] used packet loss as a performance indicator and adaptive calculation of 

the Dp that differ completely from the way by which RED is implemented. 

Accordingly, Dp is not calculated but adaptively increased/decreased based on the 

indicator and the link idleness. Similarly, Multi-level RED (MRED) [25] used the 

loss as a performance indicator. Effective RED (ERED) [26] extended RED and used 

AQL and q as congestion indicators. While Self-tuning RED, [27] used AQL with 

adaptive technique as similar to BLUE. Stabilized RED (SRED) [28] used q as a 

performance indicator. B a k l i z i  et al. [29] and B r i s c o e  [3] used AQL as similar 

to RED.  

Table 1. Summary of the fuzzy-based AQM methods  

Reference 
Inputs Output 

Rule  
Set* Set (Length) Function 

Set  
(Length) 

Function 

FRED 
Queue (3) &  
∆ Queue (3) 

Trapezoidal Dp (4) Trapezoidal Customized 

FEM 
Queue (3) &  
∆ Queue (3) 

Trapezoidal Dp (4) Triangular Customized 

FB 
Queue (3) &  
∆ Queue (3) 

Trapezoidal Dp (4) Trapezoidal Full 

Fuzzy AQM 
Arrival rate (3) &  
Arrival factor (3) 

Trapezoidal ∆Dp (5) Trapezoidal Full 

FCRED 
Actual-Target Q (7) &  
∆ Actual-Target Q(5) 

Triangular ∆Dp (9) Triangular Full 

Fuzzy-logic  
Controller- 
based RED 

AQL (3) &  
Loss (3) 

Trapezoidal Dp (5) Trapezoidal Full 

GREDFL 
AQL (3) &  
Delay (3) 

Trapezoidal Dp (4) Trapezoidal Full 

Fuzzy RED 
Queue (3) &  

∆ Queue (3) & 
 Delay (3) 

Triangular Dp (4) Triangular Full 

Fuzzy ERED 
AQL (4) &  
Queue (3) 

Triangular Dp (4) Triangular Full 

FLRED 
AQL (4) &  
Delay (4) 

Trapezoidal Dp (4) Trapezoidal Full 

 Full: Rules covering all possible combination for the terms in the input sets, such as each rule 

cover exactly a single term from each input. Customized: Rules does not cover all cases or using a 

set with individual rules; each may cover multiple terms. 
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As more complex performance indicators are utilized, such as the transmission 

rate and estimated loss, more parameters are utilized. Parameter initialization 

problem grew and there was a need to ease the problem and face the challenges of 

improving the network performance. Fuzzy-RED (FRED) [9] used AQL with fuzzy 

inference problem to ease the problem of parameter settings. Similarly, Fuzzy BLUE 

(FB) [30] used queue size and packet loss as performance indicators. These methods 

produced a single output variable, which is Dp. Fuzzy Controller Random Early 

Detection (FCRED) (Sun et al., 2007) used differences between the actual and target 

queue length and the change in such difference as input variables to produce a control 

value that is used to calculate the value of Dp. Generally, the existing fuzzy-based 

AQM methods differ in five aspects, these are: 1) input variables; 2) output variable; 

3) membership function; 4) fuzzy sets; 5) fuzzy rule set. Table 1 summarizes the 

existing fuzzy-based methods based on these aspects.  

Overall, fuzzy-based AQM used common input variables, such as queue, AQL, 

delay and loss, to produce the Dp or a variable that used to calculate Dp using an 

equation. These inputs are the indicators that were mapped from the conventional-

based AQM and calculated before they can be used with the fuzzy systems. There are 

some common characteristics among these variables, such as using a queue to 

calculate AQL, delay and arrival rate. The utilized combination of these variables 

does not cover all performance metrics. Thus, the input variables are not independent 

and not comprehensive. A summary of the utilized indicators and their intrinsic 

variables are summarized in Table 2. 

 

Table 2. Summary of the utilized indicators  

Indicator Variable, s 

Q  Instance queue length  

AQL Q and Previous AQL  

∆Q Q and Previous Q 

Arrival-Rate Number of arrived packets 

Departure-Rate Number of departed packets 

Load Arrival-Rate & Departure-Rate 

Delay Q and ∆Q 

Accordingly, to optimize the performance of the AQM, the input variables 

should be analyzed, and their combination should cover all desired performance 

metrics. Besides, except for Fuzzy RED, the existing fuzzy-based used two input 

variables, which are not enough to cover the desired performance metrics. In this 

paper, the performance metrics will be analyzed, and the core components of these 

variables will be used as input to a fuzzy system. Using trapezoidal allows for more 

flexibility in the process and can be easily mapped into triangular, yet triangular 

cannot be mapped into trapezoidal. Finally, recent studies focus on covering all 

possible combination of the input set, each with individual rules to avoid any 

complexity. Thus, in the proposed method, trapezoidal membership function and full 

rule-set will be used.  
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3. Proposed work 

The proposed AQM method is built to optimize the network performance by covering 

the on-demand performance metrics. The framework for building the proposed 

method, as illustrated in Fig. 4, consists of the following steps: 1) identify the input 

variables by analyzing loss, delay and throughput criteria; 2) identify the fuzzification 

components, which are the linguistic sets and the membership functions; 3) set up the 

rule set based on trial-and-error while adjusting the membership function of the 

output variables; 4) define the aggregation process; 5) set up the simulation 

environment.   
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Identify Fuzzification 

Identify Rule Set

Identify Aggregation

Identify Simulation

Trial-and-Error

Related Methods 

 

Fig. 4. The framework of the proposed method  

3.1. Input variables  

The input variables are extracted based on analyzing three performance metrics; these 

are delay, throughput and loss. The delay can be estimated based on the transmission 

rate and the queue length. Delay is proportional to the queue length as the arrival 

packet has to wait in the FIFO (First-In-First-Out) queue model that is commonly 

implemented in the router buffer. Besides, the delay is proportional to the 

transmission rate as the increase of the departure λout decrease delay and the increase 

of the arrival rate λin increase delay subject to the queue length. The difference 

between the λout and λin can be estimated by the changes in the queue length over time. 

Accordingly, the estimated delay can be denoted as  

(1)   𝑑queue ∝ 𝑞 ∗ ∆𝑞, 
where dqueue is the delay at the queue. The Packet Loss (PL) is inversely proportional 

to the remaining capacity (v) of the router buffer. As the remaining capacity 

decreases, the probability of packet loss increases and vice versa. Accordingly, the 

estimated loss can be denoted as 

(2)   PL ∝ 1 𝑣⁄ . 
The throughput can be estimated based on the dropping and the loss. Dropping 

is inversely proportional to the queue length as AQM is responsible for early 

dropping of packets in a heavily loaded network. Loss as mentioned depends on the 

remaining capacity (v). Accordingly, the estimated Throughput (T) can be denoted as  

(3)   𝑇 ∝ 𝑣 𝑞.⁄  
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Accordingly, three variables are extracted from the performance indicators, 

these are the queue length (q*), the changing in the queue (∆q*) and the remaining 

capacity (v*). The values of these variables are calculated and normalized in the range 

[0, 1]. The variable q, which is a counter of the number of packets, is divided by the 

buffer capacity (c). The value of the ∆q is calculated as the difference between two 

consequent captured lengths, the current and the previous and then normalized in the 

range [0, 1]. As such if the difference is positive, the calculated value will be in the 

range (0.5, 1] and the range [0, 0.5) will be for negative differences. The value 0.5 

means that the difference is zero. The variable v, which is a counter remaining 

positions, is divided by the buffer capacity (c). These variables are used as input 

variables for the proposed method based on the description of that is summarized in 

Table 3.  

Table 3. Summary of the Input Variables 

Variable Calculation Description 

Normalized queue 

length (q*) 
𝑞∗

𝑡
= 𝑞𝑡/𝑐 

The length of the queue based 

on the accommodated packets  

Queue change (∆q*) ∆𝑞∗
𝑡

= (𝑞𝑡 − 𝑞𝑡−1 + 𝑐)/(2 ∗  𝑐) 
The differences in queue length 

between the current time and 

the previous time   

Normalized 

remaining capacity 

(v*) 

𝑣∗
𝑡 = (𝑐 − 𝑞𝑡)/𝑐 

The maximum length of the 

queue based on the packets that 

can be accommodated 

simultaneously 

3.2. Fuzzification 

The value of the input variables is converted into linguistic term with membership 

degree using the associated fuzzy set and the membership function. According to the 

space partitioning approach for fuzzy system construction [31], the value range of the 

input variable is divided into 2N+1 equal regions. The value of N is set to 1 for the 

input variables. Thus, the linguistic set of the input variables is set as {low, moderate, 

high}. The membership function is unified for the input variables with trapezoidal, 

as illustrated in Fig. 5.  
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Fig. 5. Membership functions for the input variables in the proposed method 

Each region in the function is characterized by four points {a, b, c, d}, where a 

and b form the first line and the second line is constructed by c and d. The value of 

these points for the input function are as follows: low 0, 0, 0.3, 0.4; moderate 0.3, 0.4, 
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0.6, 0.7; high 0.6, 0.7, 1.0, 1.0. Accordingly, in the fuzzification process, the crisp 

value of the input variable is converted into a term or multiple terms based on the 

value range, at which the value occurs. A membership degree (μ) with each term is 

calculated as  

(4)   𝜇(𝑥) = {

0
(𝑥 − 𝑎) (𝑏 − 𝑎)⁄

1
(𝑑 − 𝑥) (𝑑 − 𝑐)⁄

if  𝑥 < 𝑎, 𝑥 > 𝑑,
if   𝑎 ≤ 𝑥 ≤ 𝑏,
if   𝑏 ≤ 𝑥 ≤ 𝑐,
if   𝑐 ≤ 𝑥 ≤ 𝑑.

 

Accordingly, for the value of each input variable, one or more linguistic term is 

extracted. Based on the membership function utilized and the boundary of the 

regions, the extracted terms are associated with membership degree. 

3.3. Output variable  

The output variable Dp is associated with the membership function with equal regions 

as similar to the input variables. The value of N is set to 2 for the output variable and 

thus, the linguistic set for the output is {zero, low, moderate, high, extreme}. Based 

on previous work [11] and trial-and-error, the membership boundaries of the Dp is 

modified as illustrated in Fig. 6. The value of the boundary points for the output 

functions are modified to suits the desired output, as follows: zero 0, 0, 0.005, 0.01; 

low 0.005, 0.01, 0.4, 0.5; moderate 0.4, 0.5, 0.6, 0.7; high 0.6, 0.7, 0.8, 0.9; extreme 

0.8, 0.9, 1.0, 1.0. In the membership function of the output, a variable is used in the 

defuzzification process, in which the linguistic term is converted to a crisp value, as 

will be discussed in the following subsections.  
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Fig. 6. Membership functions for the output variable in the proposed method 

3.4. Rule-set  

The trial-and-error identifies the rule-set with the expertise in the field together with 

those rules that can be concluded from [11]. The fuzzy rules that are built as a full-

set, which means that each possible combination of the terms in the input variables is 

associated with a single rule. Accordingly, for the three input variables with three 

possible terms, 27 rules are generated in the cross matrix as given in Table 4.  
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As given in Table 4, an example of a rule from the rule-set is given as follows: 

if Q is low and ∆Q is low, and v is high, then Dp is moderate. The rest of the rules 

are extracted from the cross matrix similarly.  

In the rule evaluation step, based on the terms of the output, a rule is applied, 

and the A confidence degree is associated with the THEN-part of the rule is produced 

as an output. A confidence degree for each input is obtained using AND operator. 

Accordingly, the minimum value of the membership degrees of the input is selected 

as the confidence degree of the output term.  

 
Table 4. Rule-set cross matrix  

Q Low Moderate High 

∆Q 

v 
Low Moderate High Low Moderate High Low Moderate High 

High zero zero zero low low high extreme extreme extreme 

Moderate zero zero zero low Moderate high extreme extreme extreme 

Low zero zero low Moderate Moderate high extreme extreme extreme 

3.5. Aggregation and defuzzification  

In the aggregating step, similar output terms are aggregated. As such, based on the 

output of the rules evaluation, multiple rules may be evaluated into a similar term, 

each of which with a confidence degree. These terms with their confidence degrees 

are aggregated into a single term and a single degree. For example, given that the rule 

evaluation produced two outputs of the term low with two confidence values, the 

output of the aggregation step will be the term low with a single confidence value. 

Overall, the aggregation is implemented over the confidence degrees of the THEN-

part of the rules with identical terms.  

In the defuzzification step, the terms of the Dp with their aggregated confidence 

degree are converted into crisp value. The utilized function for this purpose is the 

Centre Of Gravity (COG), which forms an averaging over the membership function 

[32].  

3.6. Simulation environment  

The simulation is implemented in NetBeans Integrated Development Environment 

(IDE) and Java Development Kit (1.6). The simulated network consists of input links, 

router and output links. The router is associated with a buffer of capacity of 20 

packets, similar to the simulation in [10, 11, 29, 33]. The discrete-time queue is used 

to model the traffic flow over the network being simulated. Accordingly, the arrival 

and departure rates depend on probability values. The values are enumerated to create 

different traffic load on the simulated network [34]. The arrival rates are chosen to 

be of the values [0.3, 0.5 and 0.95] and the departure of the value 0.5, which were 

used in recent AQM evaluations [7, 8, 11, 35]. Three scenarios are created with such 

arrival and departure probabilities, light traffic, moderate and heavy traffic. The 

packet arrival process is simulated as a Bernoulli process, and the departure is 

simulated as geometrically distributed. The simulation components are given in  

Fig. 7. 
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Fig. 7. Simulation components 

4. Experimental results  

The proposed and compared methods are evaluated in three traffic loads; these are 

light traffic, moderate and heavy traffic. The comparison is implemented based on 

delay, dropping rate and packet loss, besides retransmitted packets can give a better 

indication in the method comparison. Accordingly, it was used as another criterion 

for method comparison.  

In light traffic, as illustrated in Fig. 8, the proposed and compared methods 

performed similarly with reasonable delay. There was no packet loss nor dropping as 

the queue is never overflowed with such traffic, and packet dropping is not required. 

At this sort of traffic, there was no loss or dropping implemented by the proposed and 

compared methods.  
 

 

Fig. 8. Delay-based comparison for the compared methods in light traffic 

In moderate traffic, the proposed method produced better delay compared to 

RED and ERED and slightly worse than BLUE, as illustrated in Fig. 9. Yet, BLUE 

did not produce better performance in total, as BLUE reached this queuing delay 

because of dropping packets unnecessarily as illustrated in Fig. 10. Similar to the 

light traffic, there was no packet loss because of using any of the compared methods. 

Accordingly, the proposed method outperformed the compared methods by dropping 

a suitable amount of packets to prevent loss and preserve delay. At the same time, 

RED and ERED dropped slightly fewer packets and sacrificed delay. BLUE drop 

almost double number of packets compared to the proposed method and produced 

slightly and insignificantly better delay.   

In heavy traffic, as major concern of the AQM methods, the results are close to 

those in moderate traffic but with clearly distinguished details. The proposed method 
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produced better delay compared to RED and ERED and worse than BLUE, as 

illustrated in Fig. 11. ERED produce a very high delay that cannot be resisted in some 

commonly utilized applications like video conferencing. BLUE produce a reasonable 

delay, yet did not produce better performance in total, as BLUE reached this queuing 

delay as a result of dropping packets unnecessarily as illustrated in Fig.12. ERED 

loses a significant amount of data, as illustrated in Fig. 13. Using retransmission as 

criteria, it is clear that the proposed method is better than BLUE.  

 

 

Fig. 9. Delay-based comparison for the compared methods in moderate traffic 

 

 

Fig. 10. Dropping-based comparison for the compared methods in moderate traffic 
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Fig. 11. Delay-based comparison for the compared methods in heavy traffic 

 

 

Fig. 12. Dropping-based comparison for the compared methods in heavy traffic 

 

 

Fig. 13. Loss-based comparison for the compared methods in heavy traffic 
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Fig. 14. Retransmission-based comparison for the compared methods in heavy traffic 

 

Accordingly, as given in the results, the proposed method preserve packet loss, 

drop packet only when it is necessary to avoid high dropping rate and drop packet as 

early as possible to avoid high delay. Compared to the other methods, the proposed 

method is better than RED, as it produces better results by predicting congestion at 

an early stage and dropping packets to avoid delay. Besides, the proposed method is 

better than ERED as it avoids loss by dropping packets only when it is required based 

on the utilized controllers. Finally, the proposed method is better than BLUE as it 

avoids high dropping rate while preserving loss by dropping packets and avoid false 

congestion, which cannot be avoided in BLUE as results suggest. Having high 

dropping indicates that BLUE is sensitive to false congestion that leads to high packet 

dropping.  

5. Conclusion 

A new multi-indicators Active Queue Management (AQM) method is proposed in 

this paper. The goal of the proposed method is to optimize the performance of the 

AQM according to the commonly utilized performance metrics. Various steps have 

been implemented to achieve the intended goals starting with analyzing the 

performance metrics and identifying the input variables. The fuzzy system is 

implemented based on space partitioning approach, full-set of rules and center of 

gravity. The results illustrate that the proposed method preserve packet loss, drop 

packet only when it is necessary to avoid high dropping rate and drop packet as early 

as possible to avoid high delay. The proposed method also detects congestion at an 

early stage and recognize false congestion. The future work will focus on improving 

the performance based on the quality of demands. Different applications require 

different demands, such as reducing delay, reducing loss, etc. As such, the input 

variables will be given different weight by adjusting the rule-set. The system will be 

reconstructed based on the newly constructed rule-set, and the results will be 

compared with the results obtained in this paper.  
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