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Abstract: A new interconnection network topology called Hierarchical Hexagon 

HH(n) is proposed for massively parallel systems. The new network uses a hexagon 

as the primary building block and grows hierarchically. Our proposed network is 

shown to be superior to the star based and the hypercube networks, with respect to 

node degree, diameter, network cost, and fault tolerance. We thoroughly analyze 

different topological parameters of the proposed topology including fault tolerance 

routing and embedding Hamiltonian cycle. 
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1. Introduction 

An interconnection network topology is denoted by a graph where the processing 

elements are represented by vertices and the bidirectional communication channels 

are represented by edges. It is designed with low diameter, small degree, minimum 

cost, high packing density, and high fault tolerance capability. Most of the parallel 

systems use Hypercube as the basic building block for interconnection which has 

been studied extensively. A better alternative to the Hypercube is the Star graph [1]. 

The Star graphs possess most of the desirable properties of Hypercube [2-4]. Many 

other interconnection topologies have also been proposed in the past which use some 

known networks as the building blocks [5-7]. A d h i k a r i  and T r i p a t h y  [8] in 

2012 proposed a network called Mstar which is based upon Metacubes [9]. It has 

been shown that the performance of Mstar is better than Star graph, Starcube [10], 

Metacube in terms of size, degree, cost, diameter, and average distance. S h i  and 

S r i m a n i  [11] in 2005 proposed Hierarchical Star and claimed that it is superior to 

Star, Folded Hypercube, and Hierarchical Folded Hypercube [12]. 

In recent years, the Hierarchical Interconnection Networks (HIN) have attracted 

increasing attention of the researchers. This is because they provide a framework to 

design networks with reduced link cost. The said networks employ multiple levels in 

which the lower-level networks are used to provide local communication and the 
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higher-level networks are used to facilitate remote communication. A number of 

hierarchical interconnection networks have been proposed in the literature [13-17]. 

However, for getting better fault-tolerance in hierarchical interconnection network 

the hexagon can be considered as the basic building block.  

In this paper, a new fault-tolerant interconnection network called the 

Hierarchical Hexagon HH(n) with degree n is proposed. We thoroughly investigate 

the topological properties, routing, fault-tolerance, and the performance of the 

proposed network HH(n). It is shown that the proposed network is better than Star, 

Hierarchical Star, Mstar, Folded Hypercubes, Hierarchical Folded Hypercube 

HFN(n, n), Dragonfly [18], 3-D Torus, Tofu [19] (Ajima, Hypercube [20], and Fat 

tree [21]. 

The rest part of the present paper is organized as follows: In Section 2, the brief 

description of the existing topologies is presented. The newly-proposed network 

HH(n) is discussed in Section 3. Its topological properties are discussed in Section 4. 

The detail routing technique in both fault-free and faulty situations are elaborated and 

illustrated in Section 5. The performance comparison is carried out in Section 6. The 

presence of a Hamiltonian cycle in the proposed system is proved in Section 7. The 

concluding remarks are presented in Section 8. 

2. Related works 

T r o b e c  R o m a n  et al. [22] in 2017 surveyed that most of the supercomputers use 

Fat Tree, Dragonfly, K Computer [23], Tofu (5D Torus), and 3-D Torus as 

interconnection networks. The Dragonfly topology is a highly scalable and high-

performance network. It also provides fully interconnection patterns. The Dragonfly 

is used as the interconnection topology in many supercomputers. F u e n t e s  et al. 

[24] in 2012 have proved that the concentrated torus has a better option than the 

dragonfly network for a limited number of nodes. In the same work, the authors also 

have shown the cost of the concentrated torus to be lower with better fault tolerance 

than the dragonfly network. 

Another highly scalable interconnection topology is the Tofu which has some 

similarity with Dragonfly topology. But, the diameter of Dragonfly is less than Tofu, 

3-D torus, and Hypercube. For scaling up the network to a large extent, the length of 

the cable becomes a promising challenge. This concern is resolved by introducing 

optical cable. Since the uses of long optical cables dictate the cost. However, this 

packaging can be resolved by making a balance between copper for short links and 

optics for longer links [18]. 

In many topologies, high radix (degree) routers are used to reduce the network 

diameter, as it becomes the major bottleneck of the communication. In dragonfly 

topology and concentrated torus, approximately 75 and 80 percent of the total links 

are connected to a router, respectively [24]. In the case of any router fault, the most 

part of links and computing nodes become disabled. The performance of Dragonfly 

may drop significantly due to the negative effects derived from congestion situations. 

The worst of them is the Head-of-Line (HoL) blocking effect, which appears when a 
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packet at the head of a buffer blocks the rest of the packets, even if they request access 

to the available ports.  

A Hierarchical interconnection network using only two-levels was originally 

proposed by D a n d a m u d i  and E a g e r  [14] in 1990. D u h, C h e n  and F a n g  [12] 

in 1995 proposed a two-level topology called a Hierarchical Folded Hypercube which 

is the variation of a Folded Hypercube. G h o s e  and D e s a i  [7] 1989 proposed a 

Hierarchical Cube Network consisting of a 2n number of basic modules in which 

each one is a Hypercube of dimension n. It has been proved that Hierarchical Cube 

is superior to Hypercube. The Hierarchical Interconnection Networks (HIN’s) 

become a better choice when a large number of processors are to be connected in a 

parallel system. There are two main motivations behind the use of hierarchical 

topology. First, for very large systems, the number of links needed with conventional 

networks may become prohibitively large. Hence, the future systems need to 

minimize the number of links to reduce the hardware complexity and cost. The 

Hierarchical Interconnection Networks exploit the locality that exists in 

communication patterns to allow a reduction in the required number of links. Second, 

the communication overhead introduced by the interconnection networks for large 

systems can be reduced by matching the structure of the problem to the 

communication structure of the system (i.e., network topology). This matching is 

achieved effectively in a Hierarchical Interconnection Network. 

3. The proposed interconnection network: The Hierarchical Hexagon 

(HH(n)) 

In this section, we propose a new interconnection network called the Hierarchical 

Hexagon (HH). The proposed network is built upon Hexagon as the basic building 

block. It consists of a number of hexagons depending upon the degree of the node. 

The minimum degree is assumed to be 2. So, the total number of nodes in the 

proposed topology is a power of 6. A HH with the degree n=3 (HH(3)) is shown in 

Fig. 1. 

 
Fig. 1. Hierarchical Hexagon HH(3) 
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The modular layout diagram of the HH(4) without connection is shown in  

Fig. 2. Here, each module has degree 3 and it consists of a total of 36 such modules. 

Each module can be connected to the rest of the modules in order to make its degree 

4. A Hierarchical Hexagon Network HH(n) of dimension n consists of a number of 

modules (each module is a hexagonal graph of dimension n) interconnected by edges. 

Each node of HH(n) is represented by two parameters (m, n), where m is the module 

number and n represents the node number within the module.  
 

 
Fig. 2. Module layout of an HH(4) 

4. Topological properties of the HH(n) 

Definition 1. A HH(n) is represented by the interconnection of hexagons with degree 

n where n ≥ 2 and two nodes are connected by an edge if any one of the following 

conditions is satisfied.  

(a) The node1(m, n) for each m, there exists an edge from node position n to  

n + 1 mod 6 and n – 1 mod 6. 

(b) If m ≠ n, there exists an edge between node1(m, n) to nod2(n, m), where  

n < total number of nodes in one module and m< total number of modules in the 

network. 

(c) If m=n, there exists an external edge /link between node1(m, m) to 

node2(m′, m′) where |m – m′| = total module/2.        

Theorem 1. A HH(n) consists of  62𝑛−2
 number of nodes, where n ≥ 2. 

P r o o f: As one hexagon consists of 6 nodes, which is similar to a Hierarchical 
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Star with dimension 2, so the minimum dimension is 2. The number of nodes grows 

from dimension 2 onwards. Again, as the size grows in quadratic, so the exponent 

must be multiples of 2, i.e., 2n–2. As the total number of nodes in a hexagon is 6. So, 

the total number of nodes in HH(n) will be   62𝑛−2
. Hence the proof.  

Theorem 2. HH(n) consists of 62𝑛−2−1 number of hexagons. 

P r o o f: From Theorem 1, it is clear that the total number of nodes present in 

HH(n) is  62𝑛−2
. So, the total numbers of hexagons in an HH(n) are 

  62𝑛−2

6
= 62𝑛−2−1

. 

Hence the proof. 

Theorem 3. The total number of modules of an HH(n) is   62𝑛−3
 for n ≥ 3. 

P r o o f: The size of HH(n) increases in quadratic (exponential power of 2). So, 

the total number of modules can be obtained from the square root of the total number 

of nodes present, i.e., √62𝑛−2
=62𝑛−2−1

= 62𝑛−3
. Hence the proof. 

Lemma 1. Each module of an HH(n) consists of a number of sub-modules. 

From the total number of nodes, the sub-module number can be derived by dividing 

the node number by the total number of modules. 

Illustration 1. Here, we illustrate the applicability of the Theorem 3 with an 

example. 

An HH(n) consists of   62𝑛−3
 number of modules and the same number of nodes 

in each module. Again, each module consists of   62𝑛−2/4 a number of sub-modules 

and this division continue until it obtains one hexagon. Let n = 4, then the HH(4) 

consist of   624−2/2=36 modules and 36 nodes in each module. Again, each module 

consists of 6 hexagonal sub-modules. The total number of nodes = 64 = 1296 nodes. 

Suppose, the node number is 1293, then, the module number and node number within 

a module can be obtained by |1293|mod36 = node33 of the 35th module. Again from 

node number 33, the sub-module number is obtained by |33|mod6= node3 of 5th sub-

module. 

Theorem 4. The total number of edges of an n-dimensional hexagon HH(n) is 

  62𝑛−2
× n/2. 

P r o o f: The total number of edges present in a regular topology is the product 

of the total number of nodes and half of a degree. In HH(n), the degree is n and the 

total number of nodes is 62𝑛−2
. So, the total number of edges =  62𝑛−2

× 𝑛/2. Hence 

the Proof. 

Illustration 2. Here, we illustrate the applicability of the Theorem 4 with an 

example. 

Let n = 2, then for the HH(2) total number of edges =  622−2
×  

2

2
= 6. It is also 

shown in Fig. 1 that HH(2) consists of 6 nodes. Similarly, the HH(3) as shown in  

Fig. 1 consists of   623−2
×  

3

2
=

36×3

2
= 54 number of edges. 

Theorem 5. The diameter D(n) of HH(n) of degree n can be found, recursively 

by the expression 

D(n)={
2 × 𝐷 (𝑛 − 1)–  1   if   𝑛 > 2,

3       if          𝑛 = 2,
} 

where D(n – 1) is the diameter of HH(n – 1). 
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P r o o f: The diameter of a network is the maximum of the shortest distance 

between any two nodes. From Definition 1, it is clear that all modules are 

interconnected and within one module each sub-modules are also interconnected. So, 

there is at least one edge in between any two modules and also in between any two 

sub-modules within a module. The total number of external edges is half of the total 

number of modules. As the hexagon is the basic building block which consists of 6 

edges, so the diameter of a hexagon is 6/2=3. The number of hexagons increases with 

the increase in dimension. The total distance between any two nodes can be reduced 

by two edges if an external link exists in between two modules, otherwise, the path 

will be reduced by 1 either through an external link of another module. Hence the 

proof.  

Illustration 3. The Theorem 5 is illustrated here through an example. 

Let us consider n = 3, the distance between node1 (0, 1) to node 2 (4, 2) of an 

HH(3) can be computed as follows. 

As there is no external link between node1 and node2, so a path can be selected 

from another module, i.e, module2. The diameter is shown in the black shaded link 

in Fig. 3.  

Theorem 6. The cost of HH(n) is C(n) which is recursively found by 

C(n) = {
𝑛 × (2 ×  𝐷 (𝑛 − 1)–  1)  if  𝑛 > 2,

3 × 𝑛        if         𝑛 = 2.
} 

P r o o f: The cost of the network is the product of the node degree and diameter. 

It directly follows from Theorem 5. 
 

 
Fig. 3. Illustration of the diameter of HH(3) 

 

Theorem 7. The bisection width of HH(n) is  

{(
  62𝑛−3

2
+ 1) ×

  62𝑛−3

2
  if   𝑛 ≥ 3,

3                   if             𝑛 = 2.

} 
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P r o o f: The bisection width of a network is the minimum number of links 

required to be removed in order to divide the network into two equal halves. The 

bisection width plays a vital role in VLSI layouts of the network topology. The 

minimum dimension of HH(n) is 2 which is a hexagon. A Hexagon consists of 6 

edges, so, the bisection width for a hexagon is 3. In HH(n), each module is 

interconnected by two links, i.e., one internal link to each module and one external 

link to a specific module. So, the bisection width will be half of the total modules in 

addition to the total number of an external link. Hence the proof. 

Illustration 4. The Theorem 7 is illustrated through the following example. 

As shown in Fig. 3, the total number of modules is 6. So, we can take any three 

modules. Each module is connected to the other three modules by a single link and 

one external link. So, the total edge=3×3+3(for external link) = 12. By removing 

these 12 edges, the topology structure will be divided into two equal halves. So, the 

bisection width of HH(3)=12. 

Lemma 2. The total number of disjoint paths between any two nodes in HH(n) 

is n. 

P r o o f: As the degree of HH(n) is n so, n number of edges are incident on any 

node, hich provides n number of disjoint paths to this node. Hence the proof. 

5. Routing in HH  

In this Section, routings in two different situations are considered for the proposed 

network HH(n). Those two are fault-free and faulty situation. The routing can be 

static in a fault-free situation. In the case of the occurrence of fault or congestion, a 

path can be selected dynamically. The routing in HH(n) is done by forwarding the 

messages directly to the module where the destination node is present. Instead of 

broadcasting, selective forwarding is done in HH(n) in order to reduce the network 

congestion. The source and destination nodes can be represented by two parameters 

as mentioned as per the Definition 1.  

Let, Source = node1(X, Y), and Destination = node2 (X′, Y′). The path between 

the source and destination can be obtained by using the following routing techniques. 

5.1. Routing in Fault-free situation 

Case 1. The destination is in the same module as the source node (X=X′).  

All the sub-modules are interconnected within a module. For routing, the 

message can be sent to the sub-module directly where the destination node is present. 

The computation of finding a sub-module is done in a recursive manner until the 

smallest sub-module (Hexagon) is obtained. Within a hexagon, the message is 

forwarded in the shortest path.  

Case 2. The source node and the destination node are in different modules  

(X ≠ X′). 

At first the message is directly sent to the destination module. Then, the 

destination sub-module can be computed by following the procedure outlined for  

Case 1. 
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i. Illustration of Fault-free routing 

Here, we illustrate the details of routing in fault-free situation. We illustrate the 

fault-free routing in two cases, i.e., source and destination are present in the same 

module and in different modules. Let us consider node1 (0, 4), and node2 (0, 1) as 

source node and destination node respectively. As the module numbers of both nodes 

are same so, it indicates that both nodes are in the same module. The module cannot 

be further divided to obtain sub-module number as it is the smallest sub-module 

(Hexagon). Hence, the source and destination nodes are in the same Hexagon and 

message can be forwarded directly through the shortest path. The path from source1 

and destination1 is illustrated in shaded colour in Fig. 4. Similarly, the Case 2 of the 

fault-free situation is illustrated in the same figure. Consider node3 (4, 5) as source 

node and node4 (2, 5) as the destination node. As the module numbers are different 

so, they are in different modules and further sub-module is the smallest one. So, the 

message can be directly forwarded to the destination module and within sub-module 

(Hexagon) the path can be selected as per Case 1 of Fault-free routing. 

The two paths for the above considered cases are explained as follows. 

The Path1 represents the path between the source1 and the destination1 and the 

Path2 represents the path between the source2 and the destination2. 

Source1= node1 (0, 4), Destination1= node2 (0, 1),  

Path1= (0, 4) – (0, 5) – (0, 0) – (0, 1), 

Source2 = node3 (4, 5), Detination2 = node4 (2, 5), 

Path2 = (4, 5) – (4, 0) – (4, 1) – (4, 2) – (2, 4) – (2, 5). 

 

 
Fig. 4. Path in Fault-free situation 
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5.2. Routing in a faulty situation (Fault-tolerant routing) 

Here, we consider the following cases of a faulty situation. 

Case 1. The source and destination are in same smallest sub-module (Hexagon). 

In the case of link/node becoming faulty, the message can be sent to the 

destination by forwarding the message in reverse direction.  

Case 2. The source node and the destination node are in different modules  

(X ≠ X′). 

In the case of link/node becoming faulty, the message can be sent to the module 

connected to the node just before the faulty node/link. Then, that module will send 

the message directly to the destination module. The routing in HH(n) is selective 

forwarding instead of broadcasting.   

ii. Illustration of routing 

The fault-tolerant routing in the said cases is illustrated by considering different 

positions of the source and destination nodes. Let us consider two nodes, i.e., source1 

node1 (3, 5) and destination1 node2 (3, 1). As both nodes are in the same module so, 

the path is selected according to Case 1 of fault-free routing procedure. It is shown in 

Fig. 5. The dotted lines show the faulty links. The faulty link is tolerated by 

forwarding packets in reverse direction as per Case 1 of fault-tolerant routing method. 

As the source and destination module are different, so, the path is established through 

a direct link to the destination module as per Case 2 of routing. The number on the 

link shows the following type of path. 

Static path/ Fault-free path=1 

Fault tolerant path=2. 

In a link fault situation, the fault can be tolerated by forwarding packets to the 

other module which is directly connected to the node before/after the faulty one. The 

dotted line shown in Fig. 5 represents the faulty path. This fault is tolerated by 

forwarding packets to module 2 and then to the destination module through a direct 

link. So, 

Path1= (4, 2) – (4, 1) – (4, 0) – (0, 4) – (0, 5) – (0, 0), 

Path2= (4, 2) – (2, 4) – (2, 5) – (2, 0) – (0, 2) – (0, 1) – (0, 0). 

According to Lemma 2, the total number of disjoint paths between any  

two nodes of HH(3) is 3. In Fig. 5 the disjoint paths between node1 (4, 2) and  

node2 (0, 0) are as follow: 

Path1 = (4, 2) – (4, 1) – (4, 0) – (0, 4) – (0, 5) – (0, 0), 

Path2 = (4, 2) – (2, 4) – (2, 5) – (2, 0) – (0, 2) – (0, 1) – (0, 0), 

Path3 = (4, 2) – (4, 3) – (3, 4) – (3, 3) – (0, 0). 

According to the proposed principle of the routing of HH(n), the Path1 is to be 

selected, because the source module is directly connected to the destination module. 

But in Path2 and Path3, the source and destination modules are connected through 

other modules. In static routing, the Path1 will be selected and rest paths can be used 

in case of a fault situation. 
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Fig. 5. Path between source node1 (4, 2) and destination node2 (0, 0) 

6. Performance comparison  

Table 1. Analytical comparisons of HH(n) 

Type of 

Network 
Degree 

Number 

of nodes 
Diameter Cost factor 

Hierarchical 

Hexagon 

HH(n) 

(proposed) 

n   62𝑛−2
 {

2 × 𝐷 (𝑛 − 1)–  1 if 𝑛 > 2 
3         if        𝑛 = 2

} {𝑛 × (2 × 𝐷 (𝑛 − 1)–  1)  if 𝑛 > 2 
3 × 𝑛      if           𝑛 = 2

} 

Hierarchical 

Star HS(n, n) 
n (n!)2 2⌊ 

3(𝑛−1)

2
⌋+1 n×(2⌊ 

3(𝑛−1)

2
⌋+1) 

Star Sn n – 1 n! ⌊ 
3(𝑛 − 1)

2
⌋ (n – 1)×

 
⌊ 

3(n – 1)

2
⌋ 

Folded 

Hypercube 

FHn 

n+1 2n ⌈
𝑛 + 1

2
⌉ (n + 1)×⌈

𝑛+1

2
⌉ 

Hierarchical 

Folded 

Hypercube 

HFN(n, n) 

n+2 22n 2⌈
𝑛+1

2
⌉+1 (n+2)×(2 ⌈

𝑛+1

2
⌉ + 1) 

Metastar 

Mstar(k, m) 
k+m – 1 2k(m!)2 (⌊

3(𝑚−1)

2
⌋ + 1)2k (⌊

3(𝑚−1)

2
⌋ + 1)2k×(k+m – 1) 

Exchanged 

Crossed 

Cube  

ECQ(s, t) 

(s+1)/(t+1) 
 

2𝑠+𝑡+1 
(⌈

𝑠 + 1

2
⌉ + ⌈

𝑡 + 1

2
⌉ + 2) (⌈

𝑠 + 1

2
⌉ + ⌈

𝑡 + 1

2
⌉ + 2) × (

𝑠 + 𝑡 + 2

2
) 

Exchange 

Folded 

Cross 

Cube 

EFCQ(s, t) 

(s+2)/(t+2) 2𝑠+𝑡+1 (⌈
𝑠 + 2

2
⌉ + ⌈

𝑡 + 2

2
⌉ − 1) 

(
𝑠 + 𝑡 + 4

2
) × 

×(⌈
𝑠+2

2
⌉ + ⌈

𝑡+2

2
⌉ − 1) 
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Table 2. The numerical comparison of HH(n) 
Network type Value of n Number of nodes Degree Diameter Cost factor 

Hierarchical 
Hexagon HH(n) 

(proposed) 

2 6 2 3 6 

4 1296 4 9 36 

6 2.82×1012 6 33 198 

8 1.85×1049 8 129 1032 

10 1.6×10199 10 513 5130 

12 6.71×10796 12 2049 24,588 

Metastar 
Mstar(k, m) 

2 8 2 4 8 

4 1152 4 10 40 

6 1.03×106 6 16 96 

8 3.26×109 8 22 176 

10 2.64×1013 10 28 280 

12 4.58×1017 12 34 408 

Hierarchical 
Star 

HS(n, n) 

2 6 2 3 6 

4 576 4 9 36 

6 5.18×105 6 15 90 

8 1.63×109 8 21 168 

10 1.32×1013 10 27 270 

12 2.29×1017 12 33 396 

Star graph 
Sn 

6 720 5 7 35 

9 3.62×105 8 12 96 

13 6.23×109 12 18 216 

16 2.09×1013 15 22 330 

19 1.22×1017 18 27 486 

22 1.12×1021 21 31 651 

Folded 
Hypercube 

FHn 

9 512 10 5 50 

19 5.24×105 20 10 200 

30 1.07×109 31 16 496 

43 8.8×1012 44 22 968 

57 1.44×1017 58 29 1682 

73 9.94×1021 74 37 2378 

Hierarchical 
Folded 

hypercube 
HFN(n, n) 

5 1024 7 7 49 

9 2.62×105 11 11 121 

15 1.07×109 17 17 289 

22 1.76×1013 24 25 600 

29 2.88×1017 31 31 961 

36 4.72×1021 38 39 1482 

4 38416 3.2 21 67.2 

6 7.5×106 3.2 33 105.6 

8 14×108 3.2 45 144 

9 20×109 3.2 51 163.2 

10 28.92×1010 3.2 57 182.4 

11 4.049×1012 3.2 63 201.6 

40 7×1045 3.2 237 545.1 

ECQ 

3 8 2 4 8 

4 16 3 5 15 

5 32 3 5 15 

6 64 4 6 24 

7 128 4 6 24 

9 512 5 7 35 

10 1024 6 8 48 

12 4096 7 9 63 

EFCQ 

3 8 3 2 6 

4 16 4 3 12 

5 32 4 3 12 

6 64 5 4 20 

7 128 6 4 24 

9 512 7 5 35 

10 1024 7 6 42 

12 4096 8 7 56 
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In general, for a desirable interconnection structure, the degree, diameter, and 

cost should be as small as possible. A network with large node degree tends to 

increase the hardware cost. Smaller diameter means the lower communication 

overheads. As the diameter of HH(n) can be obtained recursively so, the cost factor 

is also computed, recursively.  

In this section, the performance of the proposed Hierarchical Hexagon network 

is compared with the existing networks based upon the results of the comparison of 

various topological properties. The comparison is done in terms of degree, the 

number of nodes, diameter, and its cost. Table 1 presents the analytical comparison 

among the HH(n), HS(n, n), Sn, FHn, HFN(n, n), Mstar(k, m), ECQ [25], and EFCQ 

[26].  

The results in Table 1 show that these networks have their own advantages and 

disadvantages. The numerical comparisons of various performance metrics of 

different networks with the proposed network are shown in Table 2. 

For a particular node degree, the total number of nodes in the proposed network 

HH(n) is observed to be more among all the topologies. As an example: let us 

consider node degree 6 in Table 2, the number of nodes present in HH(n) is the 

highest among Mstar, Star graph, Hierarchical Star, Folded Hypercube, Hierarchical 

Folded hypercube, ECQ, and EFCQ. Similarly, the cost is also the least among other 

topologies for any size of the network. The result of the comparison of our proposed 

network HH(n) with other topologies in terms of size, degree, cost, diameter, and 

packing density are shown in Fig. 3 to Fig. 6. The comparison of diameter and the 

degree of HH(n) with some prominent networks like Dragonfly, Fat tree, Tofu, 3-D 

Torus are also shown in Table 3.  
 

Table 3. Comparison of the degree and diameter of the proposed network Hierarchical 

Hexagon (for size=4096). 

Topology Degree Diameter 

3-D Torus 6 24 

Tofu 10 12 

Hypercube 12 12 

Dragonfly 48 5 

Fat-tree 32 5 

Hierarchical Hexagon 5 17 

 

From the Table 3, it is observed that for a particular size of a network, the degree 

of our proposed network Hierarchical Hexagon is the lowest, though the diameter is 

more than others except for the 3-D Torus. 

From Fig. 6, it is observed that for designing a higher size network, the required 

node degree is the least in case of the proposed network HH(n). The degree of HS(n) 

is found to be the lowest among the Star graph, Folded Hypercube, and Hierarchical 

Folded Hypercube. The comparison of the diameter with respect to the size of the 

network is shown in Fig. 7.  

The diameter of HH(n) is observed to be smaller than HFcube [17]. As HFCube 

has the lowest diameter among dBCube(c, d), HHC, HCN(n, n), FolH, RFH, REH, 

FloH, and THIN [27]. So, the HH(n) has the lowest diameter among all these 
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networks. The diameter of n-star is the lowest for all size of the network but the 

degree is more in comparison to HH(n).  

 

 
Fig. 6. Comparison of size with degree of HH(n) 

 

 
Fig. 7. Comparison of diameter versus size of HH(n) 

The comparison of cost is shown in Fig. 8. The cost of HH(n) is the smallest of 

all the networks: Star graph, HStar, MStar, FHn, HFn, ECQ, and EFCQ for any size 

of the network.   
 

 
Fig. 8. Comparision of cost versus size of HH(n) 
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The packing density of a network is defined in terms of the size of the network 

per unit cost. It is an important factor in deciding the size of VLSI design layout. The 

comparison of packing density of HH(n) is compared and shown in Fig. 9. From the 

same figure, it is observed that the packing density of HH(n) is the highest among all 

topologies under consideration.  
 

 
Fig. 9. Comparison of packing density versus size of HH(n) 

7. Hamiltonian property of the proposed network HH(n) 

The presence of the Hamiltonian cycle contributes significantly to the fault-tolerance 

of an interconnection. A Hamiltonian cycle is a simple cycle that visits every node 

exactly once. A Hamiltonian path is derived from a Hamiltonian cycle by removing 

any link from that cycle. Thus, each node of a network is assigned a label. The label 

is assigned depending upon the position of a node in a Hamiltonian path in the 

network. The first node in the path is assigned as label 0 and the last node in the path 

is assigned label N−1, where N is the total number of nodes in the network. It is also 

used to design adaptive fault-tolerant routing technique. The desired property of an 

interconnection topology is the presence of a Hamilton cycle, which increases fault 

tolerance and it plays a vital role in the design of parallel algorithms, such as 

broadcasting. As deadlock recovery can be achieved on any network with 

Hamiltonian cycle by using two deadlock buffers per node. 

Theorem 8. Hierarchical Hexagon(n) contains a Hamiltonian cycle. 

P r o o f: G a r e y  and J o h n s o n  [28] in 1979 proved that to find the 

Hamiltonian cycle of a graph belongs to the NP-Complete problem of computer 

science. However, R a h m a n, K a y k o b a d  and F i r o z  [29] in 2014 and 

M e h e d y, K a m r u l  and K a y k o b a d  [30] in 2007 impose conditions to prove the 

presence of the Hamiltonian cycle of a graph. According to the given conditions of 

M e h e d y, K a m r u l  and K a y k o b a d  [30] in 2007, if a graph consists of at least 

n2/4 number of edges then it ensures the presence of the Hamiltonian cycle, where n 

represents the number of nodes. The total number of edges of an HH(n) is  

62𝑛−2
× (n/2). In order to prove the presence of Hamiltonian cycle in HH(n), the total 

number of edges must be more than n2/4. This can be proved by mathematical 

induction method.  
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Let P(n) = 62𝑛−2
× n/2. 

For n = 2, P(n) is 6. 

So, P(n)> n2/4 is true for n=2. 

Similarly P(n) is true for n = k. So, we have to prove that P(n) is true for k + 1, 

i.e., P(k + 1) > (k + 1)2/4, 

(1)   62𝑘+1−2
= 62𝑘−1

> (𝑘 + 1)2/4, 

as P(k) is true So, 62𝑘−2
 > k2 / 4 

Since 62𝑘−2
< 62𝑘−1

,   

(2)   62𝑘−2
> k2/4. 

By finding square root in both side of Equation (2) we get 

(3)   62𝑘−3
 > k/2. 

For all value of k ≥ 2, 

(4)   62𝑘−2
>1/4. 

By adding Equations (2), (3) and (4), we get  

(5)   62𝑘−2
(2 + 62−1

)> (k2+1+2k)/4,  

As 2 + 62−1
< 6. 

So, Equation (5) can be written as 62𝑘−2
× 6 > (k2+1+2k)/4 =62𝑘−1

>
(𝑘 + 1)2/4. 

So, P(k + 1) is true for any value of n. 

Hence, the graph contains the Hamiltonian cycle. 

A. Illustration of the Hamiltonian cycle in HH(n) 

Starting from any module and the rest modules are covered in a cycle as follows: 

Module x – Module (x+1) – Module (x–1) – Module (x+2) – Module (x–2) – Module 

(x+3) –...+ Module (x+m) – Module x, where m is the number of modules. 

When the message traverses to the next module (+ve sign), then the path will be 

in the anticlockwise direction within the module and the clockwise direction for 

before module (– ve sign).    

Illustration 5. Here the applicability of Theorem 8 is illustrated with an 

example. The presence of the Hamiltonian cycle in the proposed HH(n) is illustrated. 

Consider the starting module for constructing a Hamiltonian path of HH(3) is 1. 

Hamiltonian cycle contains modules in the following order: 

Module 1 – Module 2 – Module 0 – Module 3 – Module 5 – Module 4 – Module 1. 

The Hamiltonian cycle is shown in Fig. 10, where the starting module is 1. The 

detail path is Module 1 (1-0-5-4-3-2) – Module 2 (1-2-3-4-5-0) – Module 0 (2-1-0-5-

4-3) – Module 3 (0-1-2-3-4-5) – Module 4 (5-0-1-2-3-4) – Module 1 (1). 

Similarly, the Hamiltonian cycle can also start from any other module. So, the 

total number of Hamiltonian cycles = the total number of modules/2. The total path 

length of the Hamiltonian cycle of HH(3) is 6×5+6=36. So HH(3) consists of three 

Hamiltonian cycles of length 36 each. 
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Fig. 10. Hamiltonian cycle embedded upon HH(3) 

8. Conclusion 

In this paper, a new hierarchical fault-tolerant interconnection network called as 

Hierarchical Hexagon (HH(n)) was proposed. Our proposed network can be used for 

massively parallel systems. It uses Hexagon as a basic building block. Its topological 

properties such as node degree, diameter, bisection width, network cost, and packing 

density were investigated and compared with other contemporary networks. It has 

been observed that HH(n) is best of the Star graphs, Hierarchical Star, Mstar, and 

other networks under consideration with regard to degree, diameter and network cost. 

The routing techniques for four different cases are presented along with illustrations: 

(i) Fault-free routing in case of both source and destination are in same module; 

(ii) Routing in fault-free situation where both source and destination nodes are 

in different module; 

(iii) Fault-tolerant routing in the case of both source and destination nodes are 

in the same module; 

(iv) Fault-tolerant routing in the case of both source and destination nodes are 

in different modules. 

The HH(n) is found to offer a high degree of fault tolerance. The presence of a 

Hamiltonian cycle was illustrated through an example. The above comparisons are 

summarized below. For any size of a network, the node degree of HH(n) is always 

less as compared to the other networks under consideration.  

(1)  The diameter of HH(n) is smaller than HFCube, Fat tree, Dragonfly, 3-D 

Torus, Tofu, dBCube(c, d), HHC, HCN(n, n), FolH, RFH, REH, FloH, and THIN. 

(2) The cost of HH(n) is observed to be the lowest among all other networks 

under consideration. 

(3) The packing density of HH(n) is more than MStar, HStar, and HFcube. So, 

HH(n) is also suitable for design of VLSI chips. 
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